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ON A WIENER-HOPF INTEGRAL EQUATION

M.T. MCGREGOR

1. Introduction. In [1] the following perceptive observation
is made: “Much of the fascination of Wiener-Hopf theory is the
difficulty in obtaining explicit answers in concrete cases.” In a private
communication from one of the authors of [1] the following question
was posed, “Determine {E,} such that
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where 8, = (n +3/4)m, n=0,1,2,..., and E, > 0 for all n.”
We choose to show that >~ , E, /B, = 1, so that (1) should read

T = E, T = E, sin 6
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Furthermore, we shall relate the solution of (2) to the solution of the
integral equation
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Clearly, if we replace 6 by i, then (3) becomes

(4) /Ooo (sin (% + 0> e + sin G - 0>e"y>P(y) dy = \/55139,

and if we assume that P(y) admits the series expansion

P(y) = Z Eneiﬁ"ya
n=0
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so that its Laplace transform is

E,
Bn+ 0’

P(9) = LIP(y)](6) =)
n=0

then (4) takes the form of a Wiener-Hopf equation

sin 0
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sin <Z + 0>P(0) + sin (Z - 0>P(6’) = 2—0 ,
which is, of course, (2).
2. Finding the coefficients E,, and proving the result. We

begin by considering the meromorphic function
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which is such that F(0) = 1, and F(¢) has simple poles at § =
(n+3/4)m, n = 0,1,2,..., due to I'(3/4 — 6/x), and simple zeros
at 0 = (n+ 1/4)7, n = 0,1,2,..., due to 1/T'(1/4 — 8/7). With
Brn=(n+3/4)m, n=0,1,2,..., the Mittag-Lefller expansion for F(6)
gives
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with a corresponding expression for F(—6).

Next, we form the sum
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= V2sin 66,



WIENER-HOPF INTEGRAL EQUATION 481

provided
(6) sin <% + 0>F(0) = sin (% - 0>F(—0).
Using (5), we see that (6) is equivalent to
1 46 3 0\ . («m
1 0 3 6\ . by

and each side of this equation reduces to m when we use the well-known
formula

(7) I(z)I'(1-2)=n/sinwz

with 2 =1/4+60/m and 2 =1/4 — 0 /.

It only remains to determine the coefficients K,, in the Mittag-Leffler
expansion for F(6) to give us E,, = K, /B, where 8, = (n + 3/4)m,
n=20,1,2,.... Now, by (5),

K, = lim (8 — 3,)F(9)
0—Bn
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With z = 3/4 — 6/7 in the well-known formula,

L(z)=T(z+n+1)/2(z+1)--- (2 +n),
we deduce that
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since I'(1) = 1. Hence,
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and using (7) we can write

r<—n— %) _7r(—1)"+1/f‘<n+g>
() -r)
K, = <F<i>>2F<n+ g)/n!m/i

Clearly, E,, = K, /B, is positive for all n > 0, and our proof of (2) is
complete.

and

giving

In conclusion, we give a direct proof that
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From the Mittag-Leffler expansion
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we have immediately
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Using (5), we have
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and, by (7), M T
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which yields, on setting z = 1/4,

I'(3/4) T'(1/4)
T(3/4)  T(/4

It follows that —F'(0) = 1, as required.
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