ON A WIENER-HOPF INTEGRAL EQUATION

M.T. MCGREGOR

1. Introduction. In [1] the following perceptive observation is made: "Much of the fascination of Wiener-Hopf theory is the difficulty in obtaining explicit answers in concrete cases." In a private communication from one of the authors of [1] the following question was posed, "Determine $\{E_n\}$ such that

(1)
$$\sin\left(\frac{\pi}{4} + \theta\right) \sum_{n=0}^{\infty} \frac{E_n}{\beta_n - \theta} + \sin\left(\frac{\pi}{4} - \theta\right) \sum_{n=0}^{\infty} \frac{E_n}{\beta_n + \theta}$$
$$= \sqrt{2} \frac{\sin \theta}{\theta} \sum_{n=0}^{\infty} \frac{E_n}{\beta_n},$$

where $\beta_n = (n + 3/4)\pi$, n = 0, 1, 2, ..., and $E_n > 0$ for all n."

We choose to show that $\sum_{n=0}^{\infty} E_n/\beta_n = 1$, so that (1) should read

$$(2) \quad \sin\left(\frac{\pi}{4} + \theta\right) \sum_{n=0}^{\infty} \frac{E_n}{\beta_n - \theta} + \sin\left(\frac{\pi}{4} - \theta\right) \sum_{n=0}^{\infty} \frac{E_n}{\beta_n + \theta} = \sqrt{2} \frac{\sin\theta}{\theta}.$$

Furthermore, we shall relate the solution of (2) to the solution of the integral equation

(3)
$$\int_0^\infty (\cosh\theta\cos\theta y - \sinh\theta\sin\theta y) P(y) \, dy = \frac{\sinh\theta}{\theta}.$$

Clearly, if we replace θ by $i\theta$, then (3) becomes

(4)
$$\int_0^\infty \left(\sin\left(\frac{\pi}{4} + \theta\right) e^{\theta y} + \sin\left(\frac{\pi}{4} - \theta\right) e^{-\theta y} \right) P(y) \, dy = \sqrt{2} \frac{\sin\theta}{\theta},$$

and if we assume that P(y) admits the series expansion

$$P(y) = \sum_{n=0}^{\infty} E_n e^{-\beta_n y},$$

Received by the editors on August 16, 1994.

Copyright ©1995 Rocky Mountain Mathematics Consortium

so that its Laplace transform is

$$\tilde{P}(\theta) = \mathcal{L}[P(y)](\theta) = \sum_{n=0}^{\infty} \frac{E_n}{\beta_n + \theta},$$

then (4) takes the form of a Wiener-Hopf equation

$$\sin\left(\frac{\pi}{4} + \theta\right)\tilde{P}(-\theta) + \sin\left(\frac{\pi}{4} - \theta\right)\tilde{P}(\theta) = \sqrt{2}\frac{\sin\theta}{\theta},$$

which is, of course, (2).

2. Finding the coefficients E_n and proving the result. We begin by considering the meromorphic function

(5)
$$F(\theta) = \frac{\Gamma(3/4 - \theta/\pi)\Gamma(1/4)}{\Gamma(1/4 - \theta/\pi)\Gamma(3/4)}$$

which is such that F(0) = 1, and $F(\theta)$ has simple poles at $\theta = (n+3/4)\pi$, $n = 0, 1, 2, \ldots$, due to $\Gamma(3/4 - \theta/\pi)$, and simple zeros at $\theta = (n+1/4)\pi$, $n = 0, 1, 2, \ldots$, due to $1/\Gamma(1/4 - \theta/\pi)$. With $\beta_n = (n+3/4)\pi$, $n = 0, 1, 2, \ldots$, the Mittag-Leffler expansion for $F(\theta)$ gives

$$F(\theta) = 1 + \sum_{n=0}^{\infty} \left(\frac{K_n}{\theta - \beta_n} + \frac{K_n}{\beta_n} \right) = 1 + \theta \sum_{n=0}^{\infty} \frac{K_n}{\beta_n (\theta - \beta_n)},$$

with a corresponding expression for $F(-\theta)$.

Next, we form the sum

$$\sin\left(\frac{\pi}{4} + \theta\right) \sum_{n=0}^{\infty} \frac{K_n}{\beta_n(\beta_n - \theta)} + \sin\left(\frac{\pi}{4} - \theta\right) \sum_{n=0}^{\infty} \frac{K_n}{\beta_n(\beta_n + \theta)}$$

$$= \sin\left(\frac{\pi}{4} + \theta\right) (1 - F(\theta))/\theta$$

$$+ \sin\left(\frac{\pi}{4} - \theta\right) (F(-\theta) - 1)/\theta$$

$$= \sqrt{2} \sin\theta/\theta,$$

provided

(6)
$$\sin\left(\frac{\pi}{4} + \theta\right) F(\theta) = \sin\left(\frac{\pi}{4} - \theta\right) F(-\theta).$$

Using (5), we see that (6) is equivalent to

$$\Gamma\left(\frac{1}{4} + \frac{\theta}{\pi}\right)\Gamma\left(\frac{3}{4} - \frac{\theta}{\pi}\right)\sin\left(\frac{\pi}{4} + \theta\right)$$

$$= \Gamma\left(\frac{1}{4} - \frac{\theta}{\pi}\right)\Gamma\left(\frac{3}{4} + \frac{\theta}{\pi}\right)\sin\left(\frac{\pi}{4} - \theta\right),$$

and each side of this equation reduces to π when we use the well-known formula

(7)
$$\Gamma(z)\Gamma(1-z) = \pi/\sin \pi z$$

with $z = 1/4 + \theta/\pi \text{ and } z = 1/4 - \theta/\pi$.

It only remains to determine the coefficients K_n in the Mittag-Leffler expansion for $F(\theta)$ to give us $E_n = K_n/\beta_n$, where $\beta_n = (n+3/4)\pi$, $n = 0, 1, 2, \ldots$. Now, by (5),

$$K_n = \lim_{\theta \to \beta_n} (\theta - \beta_n) F(\theta)$$

$$= \frac{\Gamma(1/4)}{\Gamma(3/4)\Gamma(-n - 1/2)} \lim_{\theta \to \beta_n} (\theta - \beta_n) \Gamma\left(\frac{3}{4} - \frac{\theta}{\pi}\right).$$

With $z = 3/4 - \theta/\pi$ in the well-known formula,

$$\Gamma(z) = \Gamma(z+n+1)/z(z+1)\cdots(z+n),$$

we deduce that

$$K_n = \frac{\Gamma(1/4)\Gamma(1)}{\Gamma(3/4)\Gamma(-n-1/2)(-n)(-n+1)\cdots(-1)(-1/\pi)}$$
$$= \frac{(-1)^{n+1}\pi\Gamma(1/4)}{n!\Gamma(3/4)\Gamma(-n-1/2)}$$

since $\Gamma(1) = 1$. Hence,

$$K_n = \pi (-1)^{n+1} \Gamma\left(\frac{1}{4}\right) / n! \Gamma\left(\frac{3}{4}\right) \Gamma\left(-n - \frac{1}{2}\right),$$

and using (7) we can write

$$\Gamma\left(-n-\frac{1}{2}\right) = \pi(-1)^{n+1}/\Gamma\left(n+\frac{3}{2}\right)$$

and

$$\Gamma\left(\frac{3}{4}\right) = \pi\sqrt{2}/\Gamma\left(\frac{1}{4}\right)$$

giving

$$K_n = \left(\Gamma\left(\frac{1}{4}\right)\right)^2 \Gamma\left(n + \frac{3}{2}\right) / n! \pi \sqrt{2}.$$

Clearly, $E_n = K_n/\beta_n$ is positive for all $n \geq 0$, and our proof of (2) is complete.

In conclusion, we give a direct proof that

$$\sum_{n=0}^{\infty} \frac{E_n}{\beta_n} = \sum_{n=0}^{\infty} \frac{K_n}{(\beta_n)^2} = 1.$$

From the Mittag-Leffler expansion

$$F(\theta) = 1 + \theta \sum_{n=0}^{\infty} \frac{K_n}{\beta_n(\theta - \beta_n)}$$

we have immediately

$$\sum_{n=0}^{\infty} \frac{K_n}{(\beta_n)^2} = -\lim_{\theta \to 0} \frac{F(\theta) - 1}{\theta} = -F'(0).$$

Using (5), we have

$$-F'(0) = \frac{1}{\pi} \left(\frac{\Gamma'(3/4)}{\Gamma(3/4)} - \frac{\Gamma'(1/4)}{\Gamma(1/4)} \right),$$

and, by (7),

$$\frac{\Gamma'(z)}{\Gamma(z)} - \frac{\Gamma'(1-z)}{\Gamma(1-z)} = -\pi \cot \pi z,$$

which yields, on setting z = 1/4,

$$\frac{\Gamma'(3/4)}{\Gamma(3/4)} - \frac{\Gamma'(1/4)}{\Gamma(1/4)} = \pi.$$

It follows that -F'(0) = 1, as required.

REFERENCES

1. R.R. London, H.P. McKean, L.C.G. Rogers and David Williams, *A martingale approach to some Wiener-Hopf problems*, I, Séminaire de Probabilités 16, Lecture Notes in Math. 920, Springer, Heidelberg, 1982, 41–67.

Department of Mathematics, University of Wales Swansea, Singleton Park, Swansea, SA2 8PP, U.K.