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ON THE INVERSE OF INTEGRAL
OPERATORS WITH KERNEL OPERATORS

AMIN BOUMENIR

ABSTRACT. We study the boundedness of integral op-
erators whose kernels are functions of operators V f(z) :=

flz)+ f k(z,t,L)f(t) du(t), where k(z,t,\) is an entire func-
tion of A and L is an unbounded self-adjoint operator in
Lzu(t)' By using Korotkov’s theorem we derive a simple nec-

essary condition for V' to be a Carleman type operator. We
are particularly interested in the cases when the inverse oper-
ator exists and has the same form as V. This study provides a
new method for the inversion of integral equation of Carleman

type.

1. Introduction. We first are interested in the boundedness of
operators defined by

Vi) :f(ac)—i—/k(x,t,L)f(t) du(t), du(z) ae.

in the Hilbert space Lgu(z)’ where k(z,t, ) is an entire function of A,
dp measurable in z and ¢, and L is an unbounded self-adjoint operator
acting in the separable Hilbert space LZM - In fact one needs k(z,t, \)
to be an analytic function of A in the neighborhood of the spectrum of
L only.

For the sake of simplicity we shall assume that

k(z,t,\) = Z an(z, t)A"

n>0

and so V f(x) is defined by

(1) V@)= @)+ [ Y anle 0L F0) dult),  du(a) ae

n>0
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where a,,(z,t) are du(t)-measurable and [ |a,(z,t)|? du(t) < oo for all
n. In the next section, we shall define the domain of the operator V'
by using the transform associated with the self-adjoint operator L. In
the same way we study the possible extension, to spaces containing
eigenfunctionals. In these rigged spaces the representation of the
operator V reduces to a one-parameter family of Fredholm operators.
Thus we reduce the inversion of a Carleman integral operator to the
inversion of a family of Fredholm operators. Here the analyticity of the
kernel k(z,t,\) in terms of A plays a major role. We shall prove the
following result:

Theorem. Assume that
(i) V and V! are bounded in ®', and
(i) [ [ |k(z,t,N)|? dp(z) du(t) < oo dT'(X) almost everywhere for all
AEo.

Then there exzists an entire function h(z,t,\) of A\ and a self-adjoint
operator P such that

V= £ + [ Bt PP - 2) (0 du)
where h(z,t,\)/TI(A — \;)™ is the resolvent kernel of Ty " .

Equations involving operators of this kind occur frequently in applied
mathematics, for example the inversion of the Laplace transform on the
real line leads to

1
L' := =LT cosh(ixD)T*
T

where L is the Laplace transform, i.e., an integral operator, D is the
derivation operator and 7' is a unitary transformation. It is easy to
understand the nature of operators defined by (1), by examining the
following simple example:

Vi) =f(z)+ %/ litz > (= ;,t)nD"f(t) dt, z€R.
n>0 :

It is clear that if f(z) is entire then

Vi(z) =2f(z)
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and hence is a bounded operator in L?,.

In fact the method is applicable any time we can decompose the
kernel, i.e.,

H(z,t) := Z L"ay,(z,t)

and under certain conditions it follows

/ H(z, )£ (t) dt = / S an e, )L f (1) dt.

n>0

2. Notation. Without loss of generality, we can assume the
spectrum of L, o say, to be simple. The concept of rigged spaces will
help us describe the different parts of the spectrum and find appropriate
spaces for the generalized eigenfunctions, see [5]. Recall that if A € &
then there exists a minimizing sequence, sometimes referred to as a
Weyl sequence, f,, such that

LZ

fu(t,A) € Dy CLZM(t)’ I full =1, ILfrn = Afull “50.

If the Weyl sequence f,, is compact in L?i“(t), then A is in the discrete

spectrum, i.e., eigenvalue. If f,, is not compact in Lfm(t), then we

assume the existence of a countably normed space ® imbedded in
Lzu(t), and so it follows ® < L?m(t) < ®'. For the topology, we

shall assume that ® is densely imbedded in Lflu( £ and invariant under
L, ie., L® C ®. Due to the continuous imbedding L?iu(t) — &' the
Weyl sequence {f, (., A)} is bounded in &’ and so compact. Clearly this

means fp,(z, ) 2 ¢(x,A) and a simple argument shows that
(2) L'o(x,\) = Ap(z,\) in @'
Indeed, for g € @,

(L =N)g, fr)axa — (L —N)g,o(z,\))oxar
= (g, (L' = Np(z,\)) s xa-

On the other hand,

(L= Ng, fa)oxe = (g, Lfn — Afu)axe — 0



374 A. BOUMENIR

and so (2) follows.

Since the operator is symmetric, i.e., L C L', we shall agree to write
Lo(z,\) = Ap(z,\) in @'
The associated unitary transform or ¢-transform is first defined only

in ® and so denoted by f(\) := (f, (2, A))axae. It is then extended
by continuity to the whole space Lgu(t) and reads as

Vf €L /f (t, A)du(t).

The inverse transform of f()\) € L2 is defined by

/f OBV INEY

where T'()\) is the spectral function associated with the operator L.
Since L is self-adjoint, the set of eigenfunctionals is complete in @',
that is

Vfeo, /f o(t, ) du(t) =0
VA€o

(3)

Let us observe that if the spectrum is simple but contains a negative
part then the multiplicity of the spectrum of even powers of L will be
two.

We now introduce some notations and conditions to be used in the
next sections.

Let Dy~ denote the domain of the operator L™ in Lflu(m) and Dy =
s> Drr~. For self-adjoint operators, it is well known that Dy # @
and even dense in Lzu(z). Since the kernel contains functions of two
variables, by L:a(z,t) we shall mean the action of L on the variable

t. In case we transform functions with several variables, the hat, “*”

designates the transformed variable, e.g.,

o, 3) = [ ala,plt, Nu(t).
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For the sake of simplicity we shall sometimes need to use the following
conditions to hold as [A\| = oo :

A) There exists an a > 0 for all j > 0, |¢(t,A) Y13 an(z, t)A"| <
c(m)\)\|qe“)‘2; dI'(X\) almost everywhere.

B) [0 lan(z, N)|2(n!/a™)dI'(\) < oo, du(x) almost everywhere.

C) There exists a p > 0, (d'/dA\)(A) = O(|AP) and [(1/(1 +
[ADPF2) dL(N).

D) [ [k, t, N(t, Nl du(t) = O(AI), s > 0.

For the sake of simplicity it is enough to define

®:={f € L2, /"> f()) € S}

where S is the space of rapidly decreasing functions, or Schwartz space.
Thus
~ 2
Vfe® FeS suchthat f(A)=e ().

The semi-norms associated with ® are defined as follows

®:={f € L2,/ sup |(1L+ APD*(f(N)e)| < oo}.
k<p,x

Under condition C), the space ® C Dpe, is invariant under L and
perfect. This is a simple consequence of the fact S is a perfect space,
see [5]. Finally we recall that V is seen as an operator acting in Lsﬂ(w)

4
L@ — L3y and Dy = 9.
The maximal domain of definition of the operator V in Lgu (@) is denoted

by
Vi=A{f € Liyw)/VF € Lim}

Let us introduce the following Hilbert space indexed by a > 0
H, ={f € Lﬁu(t)/HfHa < oo}

where [|f]|2 := [ e*’| f(A)[2d['()) and a is a fixed constant.
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3. The Operator K. In order to define the operator V, it is
sufficient to define the action of the integral part of the operator V,
which we denote by £, i.e.,

Kf(z) = / k(z,t, L) (t) du(t) = / lim S ()" £ (6) du).

Since the definition of the operator X involves infinite powers of the
self-adjoint operator L, we need to use the spaces H, and ®.

Proposition 1. Let conditions B) and C) hold, then for f € H,,
where a > 0, Kf(z) exists du(z) almost everywhere. If, in addition,

)= \/f | so lan(@,t)2(n!/am)| dp(t) € L2, ,,, then H, C D

Proof.

‘/ (2,4, L) £(2) du(t ‘ ‘/Zan(m,t)L”f(t)du(t)‘

n>0
S /

Zan(m,t)L"f(t)‘ au(t)

\//Z|anxt ()du(t)
\//me ) 200 (6)| ()

1
_\//gan(x,m g 0

\//Zw )[2ba (1) di():
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Therefore, if we choose b, (t) = a"/+/n!, we obtain

IKf ()] < A@)][fla

where by condition B), A(z) < co. It is clear that if A(z) € L7,

then Kf(z) € Lfl“(w) and therefore H, C Dy. Hence Dy is not trivial.
]

The next result is essential for obtaining an equivalent representation,
of the action of V when restricted to a certain space of test functions.
Proposition 2. Assume that conditions A), C), and D) hold. Then

Vied V(@) =f)+ / Rz, £) £ (t) dp(t)

where

(4) R(z, 1) = / k(2. t, Nt V) dT(\)

Proof. Assume that f € ®; then there exists ¥(\) € S such
that f(\) = Exp(—aX?)¥(\) and so L"f = [A"f(N)e(t, \)dD(N).
Therefore

K1) = [ 3 anle 0L 1(0) du(t)

n>0

— [ X anlant) [ A FOPEN ) dutt)

n>0

— [ aulet) [ NExp (~aX) w0 dr () du)

n>0

Recall that since k(z,t,\) is entire, then the series Y -, an(z,t)A\"
converges for all A and by condition A), as A — co and

Z an(z, ) A"Exp (—aA2) v (N)p(t, )| = O(JA|7P72),

n>0
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which means that the Lebesgue dominated convergence theorem is
applicable, and it follows

//Zanmt)\”f NP N () du(t)

n>0

_ / Kz, 6, ) )6, 2) dT(N) dp(t).
Since condition C) holds, Fubini’s theorem is applicable
2) = [ bla,t \RTEN) i) F0) dr ()
= [ R foar)
/ Rz, 6)£(t) du(?).

Hence, the result,

6)  Vied Vi@ =@+ [R5 duct).

This means that when V is restricted to ®, it can be represented as an
integral operator, and V f(z) is defined du(z) almost everywhere. We
now show that X admits closure in Lfl“(w).

Proposition 3. If conditions A), B), and D) hold, then V admits
closure in Egu(t).

L2
Proof We need to show that if y, € ® such that yg 290 and

Vg di; ' ¢, then ¢ = 0. Since y; € ®, then (5) holds, and by Cauchy
Schwartz
Vyr(@)] < |yl + [|R(z, )] |lywl|

So that as k — oo we should have c(z) = 0 du(z) almost everywhere
as k — oo.

We shall denote the closure of the operator V in Lfm(w) by V.
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Remark. V admits closure in ® if and only if Dy N ® is dense in P,
see [3]. This provides a sufficient condition for V' to admit closure in
L?iu(t)‘ Recall that a Carleman operator may have an empty domain.

4. Boundedness of K in L?-lu(z)' Let us find conditions such that

K is a Hilbert-Schmidt operator. From (4) follows

Proposition 4. Let conditions A), B), and D) hold; then K is a
Hilbert-Schmidt operator in L?iu(t) if and only if

//Ik(w,X,A)FdF(A) du(z) < oo.

Proof. If f € ®, then it follows from (4) and Parseval that

(@) = [ 3 anla N FO) ()

n>0

since the ¢-transform is a bounded operator, it follows that I s a
Hilbert Schmidt operator if and only if its kernel is square integrable,
that is, k(z, A\, \) € Lfm(z) du(t)? S€€ [2]. |

The next proposition will help us express R(z,t) in terms of the
coefficients a,(z,t).

Proposition 5. If a,(z,t) € Dy for all n, and conditions A), B)
and D) hold, then

R(z,t) = Z L}a,(z,t)

n>0

Vre® Vi@ =f@+ [ 3 L@ ni0du)

n>0
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Proof. Recall that

R(z,t) = / S an (2, DAR(E N dT(V)

n>0

- / S Lran (@, 1ot ) dU(A).

n>0

The representation (4) will help us obtain sufficient conditions for K to
be a Calerman operator. ]

Proposition 6. Assume that conditions A), B), and C) hold and
[ 1RG0 dute) = [ ke AN P < o,
then K is a Carleman operator.

The representation provides an alternative definition for V, in case
condition A) holds and f € ®

(6) Vi(z) = f(x)+/k(x,5\, NFO) dr(N).
(7) Vi) i= f(e) + [ Rla, 050 du).
where R(z,t) :== [ k(z, A, \)p(t, \) dT'(\).

5. Extension to ®'. We would like to see how V' can be defined
on the set {¢(z,A)}rco € ®'. Let us denote by V the extension of V'
to the space ®'.

Proposition 7. Assume that V admits closure in ® and Vp(z, A) €
@' for all A € 0. Then

Vo(z,A) = p(z,\) + R(z, 5\)
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Proof. Recall that if f(z )E‘I)CLdH(z) then f(z)= [ f(\)p(x, \)dl'(N).
Since V admits closure and V(z, A) is deﬁned in @, it follows that

:/fgwﬂ%m@uy

On the other hand, from (4) and Parseval equality, we know that

Vi(z) = f@) + [ Rz, ) f(N)dr())

/f /RxA dr())

where e®’ f()\) € S. Hence the result, since the space S is dense in

L(er( Nt o

In what follows we obtain sufficient conditions such that V(z, \)
is defined for all A € o by obtaining sufficient conditions for V to
extend as a continuous operator in ®'. This is equivalent to requiring
boundedness of the operator V' in the space ®. Observe that, instead
of working in LZH(Z), it will be easier to work in L?ll" \ by using the ¢
transform. In this way we do not have to deal with L directly. From
equation (4) we can set

W:="V",

which is defined in Lgr( ") by

(8) mezwﬁyg/Huwwwmmm

where

It follows
W)= 70+ [ FGa NS () dT ()

By using the semi-norms of the space S, we shall obtain sufficient
conditions for the boundedness of the operator W'in the space S.
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Denote by

Spi={F(N) € O/ fllp = sup M(WID"e SN},

then

W' Flly < [1£1lp
o My )| DF [ e HG Xe e ) dr(m\
sp
< £l
ak T N2 17/ —an? an?
+sup M| [ e N e e ar )
sp
<1 fl
ok e*** H(n, \)

+ sup My(N)| | 537 WMq(n)f(n) dF(n)‘

ok e’ H(n, \)
< M. () _- - b7
< el + 50030, [ 3“5

q(n)
sup My ()| D7e” f(n)|
i<q

e“”ZdF(n)

oF e H(n,\) _,.2
< {Cpq +§lépMp()‘)‘ /Wﬁe ! dF(U)}||f|q
o q9

where M,(A) = (1 + |A|)’. Hence if sup,c, Mp(A\)| [(0%/ONF)
(ea?* H (), )\)/Mq(n))e_“”2 dl'(n) < oo, then V is bounded in ®'. Also
if {¢(x,\)} € @, then Vip(z, ) € &, and

Vo(z,\) = p(z, \) +/Zan(w,t)L"<p(t,)\)du(t), in @'
together with the identity L"p(z,\) = A"p(z,A) in ® would imply
the following

Proposition 8. Let {¢(z,\)} € @), and supycp Mp(N)| [(9%/ONF)

((e*¥ H (n, X))/ (My(n)e®)) dL(n)| < oo where q > p; then V&' — &'
is continuous and

) = N+ [ Kot ol ) dt) i @
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Remark. In case du(t) = dt we do not need to use the space LZF(A).
Indeed the growth of eigenfunctionals of any self adjoint operator in
the Hilbert space L%, is known; they are precisely in ®] where

@, := {f/sup(L+ [2[*"/2+) Df (a)| < oo},

see [5]. This is simply due to the fact that ¢(v,A) = 8(v — A) has a
simple representation. Once a space containing all eigenfunctionals has
been obtained, we can proceed in a similar way.

6. The Operator T)\. Iffor X € o, the operator [ k(z,t, \)f(t) du(t)
is compact, then one can use the existing theory of analytic Fredholm
theory, see [8]. This is easily achieved if k(x,t, \) is a square integrable
function of z and t. Now if we assume that V is bounded in &', then
it is defined on the set p(x,\) which is outside L?iu( ) and, as shown

previously, the following holds in &’

€T

o) @A) = plz ) + [ et ot ) du)

The question then is under what conditions would there exist a kernel
h(z,t,\) such that

o, ) = y(@, ) + / B, t, N)y(t, N) dpt)

holds also in @' for all A € 0. The idea is to fix the parameter \ and
then restrict the operator to Lflﬂ(t). This allows us to compute the
inverse and then extend the operator back to ®'. The final operation
would be to exchange the A with a certain self-adjoint operator, P.
Now looking at A as a fixed parameter, let us define

Ty (@) — f(e)+ [ ot V@ dut) in Ly,

Clearly V' can be seen as an extension of the whole family Ty to the
space ®'. During the extension the kernel will remain unchanged and
(9) will hold in the weak sense, i.e., in ®'. Hence the question becomes,
when would the inverse of T be of the same nature as T and have an
extension to ® or at least be defined on the set of V(z,A)? In some
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cases we can answer the question in a precise manner. For example, if
T) is a family of Fredholm operators then it is known, see [7], that the
resolvent either exists and is a rational function of A or does not exist
at all. It is clear that, in the event of the existence of a resolvent

b (z, )N
> ep A

where Y ¢, A" is the Fredholm determinant. Thus, even if one succeeds
in extending 7' to ®', then it follows from (10)

ST bn(z, )"
> e A?

(10) Tt f(a) — flz) + £(t) dp(t)

(1) @(z,A) =V ly(z,N) = y(z,)) + y(t: A) du(t).

Thus, at first sight the inverse is not of the same type as V. It is readily
seen that we need the Fredholm determinant, Y ¢, A", to have no zeros
in o, see [8]. We now obtain a sufficient condition for the existence of
V~lin Lzu(z).

Proposition 9. Assume that V is closed in . Then V is invertible
n L?iu(z) if and only if

[fenaw =0 = f=o.

Proof. The inverse of V exists if and only if

Vf=0 = f=0.

Since f € L?i“(z) , fx) = [ f(N\)p(z,\)dl'(\), and V is a closed
operator,

V=T / HNEEREINeY
:/f()\)Vgo(x,)\)dI‘()\)
_ / FOVg(@ N dr(N).
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Proposition 10 (Existence of the operator P).

i) If v exists, then there exists a self-adjoint operator P acting
n L () and defined by P := VLV 1, and

i) If V and V! are bounded operators in @', then P:=VLV 1
is an extension of P to ®, and Py(z,\) = Ay(z,\) in @ where
y(@,A) = Ve(z, ).

Proof. The existence of 771 allows us to consider the operator
P = VL771 in L du(z)" For the second part it is sufficient to observe

that, since the inverse V! exists in @', it follows that
P VIV
Indeed, we obviously have
Py(z,\) = VLo(z,\) = \We(z,\) = \y(z,\) in @'

The following properties can easily be shown.

a) if V" is bounded in L?iu’ then P is densely defined in L?iu’
b) P has a simple spectrum
c) y(z, ) form a complete set of eigenfunctionals

d) there exists a spectral function I'2()) such that

/f2 y(z, ) dla(N)

where f2(\) := [ f(z)y(z, \) du(z).

Hence we can replace (9) by
Pl ) 5= Tty ) =y, )+ [ Bt P ) dut).

We now can examine the case when T is a Fredholm operator.
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Theorem. Assume that
(i) V and V! are bounded in ®', and
(i) [ [ |k(z,t, N))? du(z) du(t) < oo, dT'(X) almost everywhere.

That is, Ty is a Fredholm operator for all A € o. Then there ezists a
function h(z,t,\) and a self-adjoint operator P such that

V(@)= f(e)+ [ byt PIP - ) (0 dult)
where h(z,t,\)/TI(\ — X\;)™ is the resolvent kernel of Ty '.

Proof. The assumption on the existence of V! and its boundedness
in ® will help simplify the proof. From (ii) we know from the classical
Fredholm theory, see [7], that the inverse T, ' exists and its kernel will
be a rational function of A.

1010 = 10 + [ = o F0) duto).

From (i) we have y(z, A) = T (¢(z, A)), and it follows

73 ) = oo ) =) + [ GBS V). o

Lemma. V~'bounded = \; € .

Proof. Observe that T ! does not exist since its kernel is not even
defined. We shall show that if A € o then 7', !'is defined. Indeed, since
V and V! are bounded then y(z,\) # 0. In other words, op = o,
where op is the spectrum of P. Indeed, if A € o — o0, then it follows
y(xz,\) =0, and in @' this leads to y(z,A) =0 = Vp(x, ) # 0. Hence
V=10 # 0. Thus a contradiction, i.e., y(z,\) # 0 for all A € 0. On the
other hand, we know from the previous section that Vo(z, ) = y(z, \)
is equivalent to Thyo(z, A) = y(z, \), and so it follows that

p(z,\) = TA_ly(l'v A).-
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Hence, if A € o, then Ty ! is well defined and so the Lemma is proven.
A simple consequence of the Lemma is that \; ¢ o. Therefore

<p(ac, )‘) = T)le(wv )‘)

—ue )+ [ By o)

Then use the fact that

1

my(t, A) = (P = X\)iy(t, \),

and since \; ¢ o then (P — X\;)™™ is a bounded operator. Also
h(z,t, N)y(t, \) = bu(z, ) A"y(t, A) = h(z,t, P)y(t, N).

%y(t, A) = D ba (@, OAMTIA = Ag) ™y, )

= ba(a, I — X;) T A" y(t, A)
= an(m,t)ﬂ(/\ = Ai) MPy(t,A)
- Z b (2, t) PMII(N — X)) " ™y(t, A)

= bn(x, ) P"II(P — X;) ™y(t, A)
= h(x, t, P)H(P — /\i)iniy(ta )‘)

where
(12) B(P) =TI(P — X) ™

is a bounded operator.

It remains to show that

V(@) = flz) + / h(z,t, P)B(p) £ (t) dpu(t).
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It is easily verified that

VVlf V4 V/h(x,t, P)B(p)f(t) du(?)
_V/f { @+ /ha:tP (t)\)du()}dl“g()\)
v [ PO R ()

One simple answer is provided by Volterra operators, since > ¢, A" = 1.
Let us recall that if

||

Ty f(z) = f(z) + / K, NV (1) du(2)

—l=|

where k(z,t,\) € szuti)cdu(z) < oo then T " exists and

||

T () = fo) + / B, t, M) £(1) du(2)

—l=|

where h(z,t, ) is an entire function of A . o

Remark. The interval of integration can be chosen according to the
support of du(t). Recall that the space of continuous functions provides
a simple and easy to use space of functionals, see [5] and [4].

Proposition 11. Let
(i) k(z,t,\) be a continuous function of x,t for X € o.
(ii) ¢(z,A) are continuous in x.
(i) Tap(e, ) = y(z,A) = @(@,\) + [ k(z,t, )e(t, ) dut).
Then there exists h(x,t, \) such that

||

(13) oz, A) := le(w,A)Zy(w,A)+/ h(z,t, N)y(t, A) du(t).

— ||
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Proof. The first condition ensures that 7T’ is a Volterra operator in
the space of continuous functions. o

We then extend each Ty ! to ® and then replace the \ appearing in
h(z,t,\), see (13), by an operator, for which y(x, \) are eigenfunction-
als.

Remark. In practice the main difficulty one encounters is the choice of
rigged spaces ®. This question has been investigated by several authors.
In fact it is possible to use Hilbert spaces only, H; — H — H_ with
compact embedding. In case the solution is known to be smooth then
spaces of continuous functions can be used. The operator B(P) defined
by (12) and may be unbounded, in case lim, o, A\, € 0.

7. Conclusion. By studying the inverse operator we came up with
a new technique for constructing the inverse of an integral operator
of “Carleman type of the second kind.” The main idea is to expand
the Carleman kernel H(z,t) = Y, -, Lian(x,t) whose action, under
certain conditions, reduces to -

/ H (a0 (1) dia(t) = / Bz, t, L) (1) du(t),

and then use the operators 7' ! and P to reconstruct V1. The idea
of generalizing the Taylor expansion to arbitrary operators goes back
to Delsatres, where it was used to define the generalized translation
operators.

8. Examples.

Ezample 1. Consider the following operator

Vf(z) = f(z)+ /Of ch(x)a(x,t)L"f(t) dt, >0

where
a(x,t) = {EXP (—1/((z—t)*?) O0<t<z
0 otherwise
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and
{Lf(t) = (-@[d)f(t), t>0,
f(0)=0
since a(z,t) is smooth and is an exponential
L"a(z,t) = (=1)"D*"a(z,t) = p,(z,t)a(z, 1),
where p(z,t) is a polynomial in 1/(x — t) and 1/t.
We then choose ¢, (t) such that

a(z,t) ch z)pn(z,t) is smooth.
n>0

Since condition C) holds, Proposition 3 implies that the operator V'
can be written as

V()= f(z)+ /0 ’ [Z cn(x)pn(w,t)] a(z,t)f(t) dt.

n>0
The operator T would be defined by
y(z, \) = Ty cos(xV/A)
= cos(zV\) + / a(x,t) [Z cn(x))\”] cos(tV/ ) dt
0

If the set y(x,\) is complete, i.e., V! exists, then there exists an

operator P such that Py(z,\) = Ay(z, A) and

V) = o)+ [ (e t, P)I(1) dt.
0

Ezxzample 2. Let
VI = f@)+ [ -t —idfan 0 e
where

k(x —t,A) Zant—m

n>0
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The operator V is therefore given by Vf := f + onzo a%n) (t —

x)(—i)" f(t) dt where we assume that a, () € C§° and . alf (z) € L},
Clearly, the functionals

y(z,\) i= Vet = [1 4 k(A A\)]e?
are multiples of e,

On the other hand, T\ f := f + [ k(z —t, ) f(t) dt. We assume k(z —
t,\) € L', for all A € R. Clearly, since we have a convolution equation
we can compute the inverse. By Wiener’s theorem, if 1 + k(f,A) # 0
then there exists a function h(j, A) € L, such that

1

(14) 1+ (i, \) = TGN

and using the Fourier transform, we end up with

T (0) = 6(e) = f(@) + [ e~ Nf(0)at

The extension of the operator to the eigenfunctionals, follows simply
from (14),

eiz)\ — T;l[ (5\ )] iz
= [L+ k(X N)]e™?
+ /h(a: — £, \)[1 + k(X \)]e™ dt.
Since the operator V! exists, we obviously obtain an operator P,

whose elgenfunctlonals are [1 + k(A \)]e®* P := —id/dt. Hence, the
inverse operator V1is given by

eiw)\ :T/\_ [ (5\ )] iz
= [1+ k(A N)]e™
+ / h(x —t, —id/dt)[1 + k() \)]e™™ dt

Vo if(z) = f(=) +/h(:c—t, —id/dt)f(t) dt.
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In general the operator P is different from the operator L.
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