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AN ALGORITHM FOR THE
NUMERICAL RESOLUTION OF A CLASS
OF SINGULAR INTEGRAL EQUATIONS

MARIA ROSARIA CAPOBIANCO

ABSTRACT. We consider a class of integral equations of
Volterra type with constant coefficients containing a logarith-
mic difference kernel. This equation can be transformed into
an equivalent singular equation of Cauchy type which allows
us to give the explicit formula for the solution. The numer-
ical method proposed in this paper consists of applying the
Lagrange interpolation to the inner Cauchy type singular in-
tegral in the latter formula after subtracting the singularity.
For the error of this method weighted norm estimates as well
as estimates on discrete subsets of knots are given. The paper
concludes with some numerical examples.

1. Introduction. In this paper we consider the following integral
equation

» a/z o0 dH%/ g(t)log |z — t| dt = f(),

1 -1
-l<z<l,

under the hypothesis a,b € R, a® +b*> = 1, and f(z) € CP**([-1,1)),
p>1,and 0 < A < 1, where CPT*(A) is the class of the functions
that have p continuous derivatives in A and the p-th derivative is in
the space Lip \ A4, i.e.,

Lip A4 = {f € C°(A): sup w < oo}.
T#YEA |I7y|

In case a = 0 equation (1.1) coincides with Carleman’s equation [1].
The integral equation (1.1) has also been considered in [8] but uses a
different approach.

Here, with the aid of the relation

(1.2) h(z) = / o) dt — ho i
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136 M.R. CAPOBIANCO

with some constant hy € ¢ and the boundary conditions
(1.3) h(—1) =h(1) =0,

we introduce a new unknown function h(z), and the equation (1.1)
becomes

(1.4) ah(z) — b /1 ﬂdt = fo(z), -l<z<1

™ 71t_.'1:

where

2 2
h 1
Lb l+tdt
271' 71t_l‘
1 hob hob
= f(z) — ahg—T 4 100 Boby e )
Vs
hob 1—=z
—(1 1
+ 221 +0) log
1+x b b
—f(m)—ho{a L ) os(1 )

+ (1 +z)log(1+ ac)]}
Thus, f{ is integrable if and only if f’ is integrable. Taking into account
the boundary conditions (1.3) we look for a solution of (1.4) in the form
h(x) = w(z)h(z)

where the Jacobi weight w(z) = (1 — 2)®(1 + )? is defined for index
X := (—a+3) = —1. We obtain that (1.4) is solvable for all fy € L2 _,
satisfying

(1.5) / wL(2) fo(w) dz = 0.

-1

Moreover, we have h(z) = (Afy)(x), where

16 A =a @+ L [ w2

—1 t—x
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See [14] for more details.

The condition (1. 5) determines the constant kg in (1.2), i.e.,

H= /1w1(w){al;x _b %[(1 ~ o) log(1 - z)

+ (14 ) log(1+ x)]} dz.

For the solution of (1.1) we obtain the expression

(1.7)

b d ! h
~afife)+ 2ot fue) [ w0 a2
There exist many methods for the numerical procedure to solve (1.4).
Among others we mention [9,10] and the book [17] and the references
therein. The main idea of this paper is to present a numerical pro-
cedure for formula (1.7) applying the Lagrange interpolation and the
quadrature rule to the inner Cauchy type singular integral after sub-
tracting the singularity. The paper is organized as follows: in Section
2 we describe the numerical procedure, in Section 3 the error estimates
are formulated, in Section 4 we prove the theorem listed in the previous
section. Finally in Section 5 some numerical examples are given.

2. The numerical method. In the following, given two expressions
A and B depending on some variables, we will write A ~ B if and only
if |[AB~!| < const and |A~!B| < const, uniformly in the variables
under consideration.

Consider the case

that means hg = 0. Since A : qu,l — L2 is a singular integral operator
with index 1, we have

(2.1) aw—l(m)+§/ w_l(t)
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With the notation
(2.2) F(f;x) = /1 —f(ti:f(x)w—l(t) dt
-1 T

we obtain from (1.7) (with f instead of fo and with ko = 0) and from
(2.1)

o) =af'0) + 25 [uto) [ il =S a

mdr 1 t—x
o2 [ o @) - orw)
— L w@F(fi0)

which leads to
2 b b , d
(23) P*(@)g(z) = (8- a—2)w(@)F(f;2)+ —*(@)u(a) - F(f;2),

where, here and in the sequel, ¢(z) = V1 — z2.

Our numerical procedure consists of approximating the function
F(f;x), defined in (2.2), by using a Lagrange interpolating polynomial
on suitable knots, i.e., of replacing the F' by

(2.4) m(Ff;z) Z i F(f3€5)

where [y j(z) are the fundamental Lagrange polynomials

e H —£k

J#k

Firie) = [ TS g a

J

Since

the real problem is to evaluate F'(f;&;). By this reason, we remember
some interlacing properties of the zeros of orthogonal polynomials.
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Consider the weight w(z) = @?(z)w (z) = (1 — )} ~*(1 + z)'F
and denote by z,, j(W) = c0S T j, j = 1,... ,m, the zeros of the mth

Jacobi polynomial p(l 1-F) orthogonal with respect to the weight w.

Further, denote by @m41,:(w™*) = c0sbpmy1,i, ¢ = 1,...,m + 1, the

zeros of p£n+’ A orthogonal with respect to the weight w™!. It is well

known that [18]
Tnt1,i (W) < Tni (W) < T (w™),  i=1...,m.
Moreover, the relation

(2.5) min |7 j — Omy1,i] ~ m~!

)

holds [3].

We assume now, as interpolation knots ¢;, the following numbers

_1+$m,1u_) _ .
e,
+1+ oy (@
§m+2=—2’ ( ), M=m+2.

This choice of {; allows us to evaluate F' by using a Gaussian quadrature
rule on m + 1 points avoiding the numerical cancellation phenomenon.
Furthermore, we have

F(f;fj)Z/ %wl(ﬂdt
m—+1 1)

(2.6) —Z "”*“ )i§j<f<wm+1,i<w—1>—f<fj>>

mm—i—l z

+em+1(Ff7£j)
= Fm(f:é-]) +€m+1(Ff;fj)

where A,,41,;(w™!) denote the Christoffel numbers of the Gaussian
quadrature rule with respect to the weight w™! and e, 4+1(Ff;&;)
represents the Gaussian quadrature error with respect to the weight
w1 and to the function fil[(f(t)ff(fj))/(tffj)]w’l(t) dt. Neglecting
the error em41(F f;&;), we replace in (2.4) the F(f;&;) by the value
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Fn(f;€;), and we assume, as approximate solution of g, the following
expression

& (@)gn(®) = Z0(@)(B ~ @ = D) Lns(Fuf; 2
(2.7) ,

+ Zw(@)g? (@) S Lz (Fuf3 ).

Remarks. 1) Note that, as can be observed by the numerical examples
given in Section 5, it is possible to evaluate numerically with a stable
procedure the derivative of L, 2(F f; ).

ii) If we need to evaluate the solution g(z) of Equation (1.1) on the
knots £;, then we can apply more directly the following relation

()T () = 2wl&))(B — o~ &)Fu(fi))

(2.8)
+ 2ul6)e6) | 3o Fulfia)]

&5

iii) Equation (1.4) is a classical singular integral equation of Cauchy
type. Applying directly the proposed method to equation (1.6), we
obtain

b
hm(w) = ;w(w)Lm+2(me; m)
as an approximate solution of (1.4).
For this approximation method, we obtain by the estimates (4.7),
(4.8) and (4.9) given in Section 4,
const log? m
e Ee

const log? m
mP+A ’

forp=1,if 1+ X —20 < 0;

b h]| <
for p > 2 and for p =1,

if14+A—27>0;
where 0 = min{«, 8}, 7 = max{«, 5}.

We expressly note that in the second case the result is identical with
the result obtained for the collocation method for the Cauchy singular
integral equations with index x € {0,1} (see [2, Theorem 3.1]).
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3. The error of the numerical method. In this section we give
error estimates for the proposed method that can be used in different
occasions.

Since, as we can deduce from Section 1, the solution g(x) of (1.1)
is not bounded in +1, it does not make sense to estimate the error
uniformly on [—1,1]. Nevertheless, the following theorem provides a
weighted estimate on the whole interval.

Theorem 3.1. If f(z) € CP*A([-1,1]), p>1,0 < A < 1, then

9 const logm
(3.1) le%lg — gmll| < e

Remark 1. Sometimes it is sufficient to know the values of the solution
in closed subintervals contained in (—1,1). Then, by the previous
theorem, the following estimate holds

const logm

(3.2) l9(z) — gm(z)] < —pa1 0 VTE [a,b] C (=1,1).
Nevertheless, in the case of the closed subintervals, the interpolation
knots can be chosen as §; = =, ;(@), j = 1,... ,m, i.e., without the

additional knots (—1 + @4,,1(@))/2, (1 + Tmm(@))/2. Finally, when it
is sufficient to evaluate the solution g(x) on the points ;, then, as we
have just observed in Remark ii) of the previous section, we use the
form (2.8), and the following theorem gives us estimates of the error in
this case.

Theorem 3.2. If f(z) € CPTA([-1,1]), 0 < A < 1, then
(3.3)

const logm
—— forp=1,

if14+X—20 <0y
o , forp=1,if 1+A-27>0,
19(&5) —Gm (&) < r = min{\, A\ + 20 — 1},
ifA+20—-1>0;

m

const logm

const log m
7g7 fo,rp Z 2’

¢ = min{p+A—1,p+A+20-2}

md
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where o = min{a, B}, 7 = max{a, 8}, g(z) and gm(x) are defined by
(2.3) and (2,8), respectively.

4. Proofs. First of all, we remember some well-known properties
of the Jacobi polynomials p,(n’é) orthogonal with respect to the weight
v(z) = (1—2)7(1+z)°, 7,5 > —1, which will be used in the following.
Denoting by @, k(v) = cosbp i, & = 1,...,m the zeros of p£3"”
and by Ay, x(v), K = 1,...,m the Christoffel constants, the following

equivalences hold (see [15]):

1
em,k: - 9m,k:+1 ~m -,

(4.1) |
uniformly for 0 < k& < m, m € N,

1U7+1/2,6+1/2($m’k(v))’

uniformly for 1 < k& < m, m € N.

(4.2) A s(0) ~ m

We remark that from (4.1) it follows (see [15]) that
(43)  00(@) ~ o (@4 (0),  rpoa(2) < 2 < T (0)

for k=2,3,... ,m—1.

Furthermore, since Z, k4+1(V) = Zm k (V) = (Om,k —Om,k+1)V 1 — cos? §
with @, ;(v) < €080 < Ty k41(v), in view of (3.1) we can state

1—a? (U),

m,k

\/ 1 - xfn,kﬂ(v),

ke{l,2,... ,m— 1}, m € N.

(4.4) T, o4 1 (V) = T,k (V) ~ M

For given z € (—1,1), m € N, we denote by z, .(v) the closest knot
to x, defined by

Zm,a(v) ifz—2ma(v) < 2map1(v) -z,

Tm,a1(0) T = Tm,a(0) > Tm,at1(v) — @,

Tm,e(v) = {

where z,, 4(v) < 2 < @y qt41(v) for some d € {0,1,...,m} with
Tm,0(V) = €8Om0 = —1, Ty mt1(v) = €OSOm my1 = 1.
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Now, for any fixed « € (—1,1), let us consider the set N~ (z) = {m €
N :|0p,c — 0] ~ m~ 1} where, as before, z,, c(v) = o8, ¢, T = cosf.
We know that this set is infinite (see [4, Lemma 3.1, 5, Lemmas 2.1,
2.2]) and, moreover, there exist some values of  such that N~ (z) = N,
(see [11, p. 230]).

For the proofs of the theorems stated in the previous section, the
following lemmas are needed.

Lemma 4.1. Let f(z) € CP([-1,1]). Then, for m > 4p + 5,
there exists a sequence of polynomials {Qm} such that, for |z| < 1
and j=0,...,p,

@) - Q@) < comst (L) (0, )

m

where w(f;x) is the modulus of continuity of the function f and the
constant is independent of f and m.

Lemma 4.1 can be found in [16, p. 307].

S(;tting I = [e—(1+2)/(2mY), 2+ (1 —2)/(2mY)], I, = [1,1]—In,

Lemma 4.2. Let v(z) = (1 — 2)7(1 + )%, 7,6 > —1, be a Jacobi
weight. The inequalities

(4.5) / v(t) i@t < const logm, zf ~v,0 >0,
|t — constv(z)logm, if —1<~,§ <0,

1
m

hold uniformly for x € (—1,1).

The proof of this lemma can be found in [6, Lemma 3.3, p. 453].

Denote by o7, (z) = D" Ap,i(v)/]@m,i(v) — x|, where, here and in
the sequel, the prime denotes a sum in which the term corresponding
to the knot x,, . closest to z is omitted; we have

Lemma 4.3. Let v(z) = (1 —z)(1 +z)%, 7,8 > —1 be a Jacobi
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weight. The inequalities

const logm, ifv,0 >0,
constv(z)logm, if —1<+,6 <0,

@) o <{

hold uniformly for x € (—1,1).
The proof of this lemma can be found in [6, Lemma 3.4, p. 454].

Lemma 4.4. If f(z) € CP*([~1,1]), p > 1, 0 < X < 1, then the
following estimates hold:

(4.7)
const logm
[wF(rm)l| < — 3
(4.8)
const log m
oo forp=1 if 14A-20<0,
WLy, (Fry)|| < t log?
H ( ! coniﬂ#, forp>2, and
forp=1, if 1+A=27>0;
(4.9)

t log?
%, forp=1, if 14+ A—20 <0,
|wLm(em(Ff)I < { const logzm

A forp>2, and
m

forp=1, if 1+X-27>0;
(4.10)

const logm
lwg? F' (rm)]| < ;

mp"r)\—l ’

where 1y (x) = f(2) — Qm(x), Qm(x) denotes the polynomial of Lemma
4.1, e, (Ff) is defined by (2.6), o = min{a, 8}, and 7 = max{a, §}.
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Proof. We can write

|F(r; 7)] = /_11 Mw‘l(t) dt‘

m t)— m -1 t
< / rn®) @1 g g e [ O g
I t—2x I, ‘t_.’,v‘
m (8) w1 (¢
+/ [rm (B)]w”"(t) ()dt:=A1+A2+A3-
I, |t — |
By Lemma 4.1, since 1 +¢ ~ 1 + «, for t,x € I,,,, we have
A< [ e o
(1 _ l,2)(p+)\—1)/2w—1($)
(4.11) < ] ’ dt
(l o ‘,E2)(p+/\71)/2w71($)
- mp+)\+3 :
Also by Lemma 4.1 and by (4.5), we find
(4.12)
4 (1 —2)PtN/2=1(z) logm
2 mptA ’
(4.13)
1 (1 — 2)PHN/2=1(¢)
A3 < dt
3_m1”+)‘// [t — x|
(1—22)(1+XN/2p=1(z) logm
Y , forp=1,
< if 1+A-20<0
B
%, forp>2,and p =1,
m

if 1+A—27>0,

where ¢ = min{a, 8}, 7 = max{a, 8}.
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Then, by (4.11)—(4.13) the relation (4.7) holds. To prove the estimate
(4.8), we observe that, for |z| <1—m 2

£ 1
const 08 - por p=1, if 1+ A—20 <0,

m2+A-T)
4.14)  |F(rm;z)| < £ 1
( ) [E(rm3 )] M, for p > 2, and for p =1,
mp+A
if 1+A—272>0.
Therefore, recalling that |£;] <1—-m™2,j=1,...,m+ 2, we have

||wLum, (Frm)\|<maxw Zu mji(

‘/ ) =) 1)

t — &
const logm||L,|| ‘ 1
m2a+a-r 0 orP= b
< if 1+A—20 <0,
| const logm||Ly,||
sy , for p>2, and for p =1,
if 14 =27 >0,
where || L[| = max_1<z<1 Y- [lm,j()| is the Lebesgue constant cor-

responding to the Lagrange interpolation process. Therefore, remem-
bering [12, Theorem 3.1] the relation (4.8) holds.

Now we observe that, for x = ¢;, j =1,... ,m + 2, we have

-1
en(FF0) < |F(rnia)| + (@ Zm e

—:E‘

m/)\m,- W) | P (T (WL
£y Am (|w )<|(w—(1) —7(x| )|

i=1 m,t
[P (Zm,e(W ™)) = i (2)]

|Zm,c(w™t) — x|
:= B1 + B2 + B3 + By.
B is estimated by (4.14). By Lemma 4.1 and relation (4.6), we have:
— 22) Pt/ 2= (z) logm
mptA :

+ )\m7c(w_1)

(4.15) B, < U
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Again, by Lemma 4.1, relations (4.2) and (4.4), we can write

1 m
!

BS S mp+)\ Z
i=1

(L= i (™)) PV 2w (@ i (W) (@i (W) =T i (W)

[Zm,i(w™t) —z|

Since relation (2.5) holds, we can consider the sum in the righthand
side of the estimate written before, as a Riemann sum. Thus, again by

(4.5),

(4.16)
1 (1—2)PtN/2=1(¢)

B3 < dt
3_mP+)‘/I [t — z|
1—22)(1H0/20-1(2)]
(1-2%) - (@)logm 1 if 1+ A—20 <0
mitA
<4 logm

—m§+)\a forp>2,andp=1

if 1+A—-272>0,

with, as before, o = min{«, 8}, 7 = max{«, 8}. By applying Lemma
4.1, relations (4.2) and (4.3), we have

By < |7 (ye) 0™ (@, e (w™ 1)) (A = a7, (w™))/?

4.17 m
(4.17) const (1 — z2) P+ /2= (z)
< .

= merA

Therefore, by relations (4.14)—(4.17), we obtain, for |z| <1 —m™2:

const logm
(4.18)  |em(Ff;2)| < < const logm
mptA

forp=1,if 1+A—20<0,
, forp>2 and forp=1
if 1+A—-27>0.

Following the same procedure used for the estimate (4.8), we can
deduce relation (4.9) taking into account relation (4.18) and again [12,
Theorem 3.1] for the interpolation process. In order to obtain estimate
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(4.10), we consider the two cases p =1 and p > 2. For p = 1, we have
(see [7, Lemma 9, p. 146])

" const w1 (z M)\oi
| (ryus )| < comst ()(m)lgm).

Therefore

const 2T (z
|w(x)p?(x)F' (rm; )| < const p**(z)

[logm + log

so(lﬂf)]

Py
(4.19) m
< const logm

mA

For p > 2, setting I/ = [z — (1 + z)/(2m),z + (1 — z)/(2m)],
I = [-1,1] = I}, we have

d ! rm(t) - 7"m(x)w—l

[F (rms @) = | B (t)dt‘
= /zéwwl(ﬂdt‘
_ /11 —rm () (t (xt)_+wg,2n(t) (@) Lo ar
< /,m rin(:c)(té)ng,;(t)rm(x) w0 dt
@l [ T
ol f i [ e

=C1 +Cy +Cs+C4.
by Lemma 4.1, since 1 +¢ ~ 1+ z, for ¢,z € I, we have

¢ < / 1P () [ (£) dt
I

"
m

(1 _ x2)(p+/\—2)/2w—1(x)
(4.20) < ——— . dt

;;L
const w1 (z)
T 5
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By Lemma 4.1, we have

(1—g2)(P+A-1)/2 W z—(1+=)/(2m) (14t)=°
0, < I . p— (1-z) ) ﬁdt
1 1—¢)~«
+(1+a:)—f3/ idt}.
et(1-a)/(2m) LT

Using the two linear transformations (1 +¢) = (1 + z)y and (1 —¢) =
(1 — 2)y, respectively, in the two integrals in the righthand side of the
previous expression, we obtain

o < (1—22)(PHA=1)/2¢=1 () 1=1/@2m) -8 dy
2 = mp+)\—1 0 —y
1-1/(2m) , o
(4.21) +/ y dy}
0 I-y

 const w~t(z) logm
- mp‘l')\—l

Again, by Lemma 4.1 and by the same transformations written before,
we have

o, < 1=z TV 2Tl a) f 1 /”/(2’”) v
- mptA 1+z /o (1—y)2

]_ 1—1/(2m) y—a
— g
+1—96/0 (1-y)? y}

(4.22) < (1 — 2)PTN/2(1 4 2)PHA=2)/24y=1 ()
- mp+>\71
(1-— x)(p+/\—2)/2(1 + x)(p-l—)\)/Zw—l(w)
+ mp+>\71

const w™*(z)
D .
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1 (1 _ t2)(p+>\)/2w71(t)
Cy < dt
4= mp+)‘ ‘/I:YILI (t — 3;')2

(1 + z)PTA=2)/24=1(z) /1—1/(2m) y=8 4
0 (1-y)? Y

N (1 — ) PHA=2/24y=1(g) /11/(2m) Y
mP 0 (1-y)?

<
- mp"r)\

(4.23)

dy

const w™(z)
mp+)\71

Then, by (4.20)—(4.23), relation (4.10) easily follows. Thus, Lemma 4.4
is completely proved. ]

Proof of Theorem 3.1. By (2.3) and (2.7) we obtain
(4.24)

F@)]o(@) g (@)] = “(z) (B—a—2)[F(f;2) ~ Lo (F f;2)]
+ Dw(@)g? (@) P (f52)~ L2 (Fi f32)]

= 2u(@)(8-a-2) A () + Su(@)e (@) A (2).

Denote by Qm41(z) the m + 1-th polynomial defined by Lemma 4.1,
recall that

F(Qmi157) = Fin(Qm41; %) = Lint2(FmQm+1;2) = L 2(FQm+1; )
and that

Lyio(Fnf;2) = Lypyo(Ff;2) — Linyo(emi1 F f; ).
Adding and subtracting F(Qm+1;2) in Aj(z) and also recalling the

relation r,41(z) = f(z) — Qm+1(x), we obtain for A (z), defined by
(4.24), the following expression:

Ai(z) = F(rm+152) — Lin2(Frim115 %) + L2 (€m+1(F f); 2)).
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Therefore, also by applying the Markov-Bernstein inequality, we obtain

(9 = gmlll < lWF ()|l + WLy (Frmga)l|
+ [[wLm+2(em+1(F£))]
+ [|wg® ' (1 1) || + ml[wp L g2 (From 1)
+ m||wpLpta(em+1(Ff))|].

Then, by Lemma 4.4, the estimate (3.1) follows and the theorem is
completely proved. a

Proof of Theorem 3.2. By (2.3) and (2.8), we obtain

9(0) = @) < constw(o){ PLELD L i),

z =, j=1m+2.

Therefore, remembering our choice of the §;, i.e., [§;| <1 — m~2, by
relations (4.11)—(4.13) and (4.15)—(4.17), we have

(4.25)
t 1
M, for p=1,if 1+A—20<0;
m
const logm
————, forp=1,if 1+A-272>0,
w(@)lem(Ffiz)] _ m* P =

1— 22 = s = min{2\, A\ + 20 — 1},
ifA+20—-1>0;

const logm

mptA+20-2"

for p > 2,

with o = min{a, 8}, 7 = max{«, B}. Moreover, we have

0(e) e f2)| <w(z)| = 1 1%101@) dt‘
d m')\miw_l Ton( T (W™ )) =7 (2
d AW D) (rm(Zm.c(w™ 1)) —rm(z
fu(e)| & Amel )m(m,f(w’l)(_m)) ()

=Dy + Dy + Ds.
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Again, we consider the two cases p =1 and p > 2.

For p = 1, by [7, Lemma 9, p. 146] and [7, Lemma 8, p. 146], we

have, for |z] <1 —m™2

const logm
S U

const logm

(427) D2 by

IN

m

w(@)Am,e (W) |y, (2))]
|Zm,c(w™t) — 2|
w(x))\mﬁ(w*l)|7‘m(xm70(w*1)) — ()|
(@m,c(w™!) — z)?
w(@) Am,e (W) |y, (2)]
=7 ome(w ) — gl
w(@) Am,e (W) | (ye)|
Tme (W) — '

Now
D;

IN

By Lemma 4.1, relations (4.2) and (4.3) and recalling relation (2.5), we

obtain

const

For p > 2, by relations (4.20)—(4.23), we have

const logm

(429) Dl < mp+A—1

Moreover,

m

1)
Dy < w(z |Z|x x|

Do) Y el

xmz

f (@) 3 2Dl (W)

24" (@ma(w 1) 2)?

= F + Fy + Fs.
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Recalling relation (4.6) and by Lemma 4.1,

const logm
F, < oAl

Again, by Lemma 4.1, relations (4.2) and (4.4), we can write

w(w)(l-x2)(p+>‘)/2

<
F2 - mp'l')\

_ i W @i (W) @i (W) ~Tmi(w )

(@m,i(w™t) — z)?

=0

Recalling relation (2.5), we can consider the sum in the righthand side
of the previous expression as a Riemann sum. Therefore, recalling also
estimate (4.22), we obtain

R < w(z)(1 —$2)(1’+’\)/2/ w™L(t) dt < const
mp+)\ I (t — m)z mp+>\_1
Similarly, by estimate (4.23), we have
_ $2)(pHN) /2,1
P < w(z) (1-1¢%) w™H(t) dt < const ‘
mp+>‘ I (t — l‘)2 mp+>‘71
Then
const

(4.30) D, < AT

By Lemma 4.1 and by relations (4.2) and (4.3), we have
(4.31)
D3 < w(@) A c(w™)
. (T, (W ) (@ (W) =) 10 (@i, (W) =T (2)
(@m,c(w™t) — x)?

_ const
S w(@)Am,e(w™)|rm (ye)| < AT

Thus, by (4.26)—(4.28) for p = 1 and by (4.29)—(4.31) for p > 2, we
have

const logm

d
(4.32) w(w)@|em(Ff;x)| < AT
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Therefore, by (4.25) and (4.32) we easily obtain estimate (3.3). Thus,
the theorem is completely proved. ]

5. Numerical examples. Let us consider the integral equation

a/w o(t) dt + % /ﬂg(t) log |z — t| dt = w(z)(1 — 22),

-1
-l<z<l,

where w(z) = (1 — 2)*(1+ z)? and « and b are defined in Sectionl.

In this case the analytical solution is

(1~ 2)g(e) = aw(@)(1 — )42 + (8 — a)e + 1]
+ Zua) (ot B-a) ol1-a") log 1 20"+ |
+ Zue)1 - )|~ 60+ (1 - 307 log 2.

We consider the approximate solution (1 — x2)g,,(z), defined by (2.7)
of Section 2, and evaluate this by choosing various classes of points.

In Table 1 we evaluate the approximate solution and the maximum
error on the points §;, j = 1,... ,m + 2, defined in Section 2. In Table
2 we consider the class of points z, ;(w), ¢ = 1,... ,m, ie., the zeros
of the m-th orthogonal polynomial pgff #) (z). In Table 3 we consider
the equispaced points +2j/m, j =1,...,[m/2] — 1 and the point 0. In
Table 4 the points are (§; +§;41)/2,j =1,... ,m+1, i.e., the class of
the midpoints of the ¢;.

TABLE 1. z=¢;,j=1,m+2.

m_[I(1 = 2*)(9 — gm)lloo
25 0.129594D-02
50 0.550330D-03
100 0.159134D-03
150 0.773219D-04
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TABLE 2. z =z, ,;(w), i = 1,m.

m_ (1= 2*)(g = gm)llo
25 0.914160D-03
50 0.391249D-03
100 0.112876D-03
150  0.547938D-04

TABLE 3. @ ==42j/m, j=1,[m/2] -1, z = 0.

m_[I(1 = 2*)(9 — gm)lloo
25 0.120603D-02
50 0.546662D-03

100 0.158775D-03
150 0.772006D-04

TABLE 4. z=(§+&41)/2,j=1,m+ L.

m_ (1= 2*)(g = gm)llo
25 0.124798D-03
50 0.235395D-04
100 0.432316D-05
150  0.158661D-05

All of these numerical results confirm the theoretical result given by
Theorem 3.1. Moreover, it seems that, for the class of the midpoints of
the ;, as we show in Table 4, the numerical result is better than the
analytical one.

Moreover, for calculating the approximate solution (1 — z?)g,,(z) at
the points §;, 7 = 1,...,m + 2, the relation (2.8) can be used. The
numerical results in this case are shown in Table 5. They are also in
accordance to the theoretical result given by Theorem 3.2. Finally,
in Table 6 we also consider the approximate solution (1 — x2)g,,(z)
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given by relation (2.8), evaluated on the point z,,;(w). In this case
we can obtain the same numerial results as that in Table 5. Therefore,
we think that also the points x,, ;(w) verify the interlacing properties.
(For the interlacing properties of the zeros of orthogonal polynomials,
see also [3, 13, 18].)

TABLE 5. z=¢;,j=1,m+ L.

m_[I(1 = 2*)(9 — gm)lloo
25 0.113792D-04
50 0.211094D-05

100 0.382438D-06
150 0.139931D-06

TABLE 6. z =z, ,(w), { = 1,m.

m_ (1= 2*)(g = gm)llo
25 0.113030D-04
50 0.209717D-05
100 0.379960D-06
150  0.139025D-06
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