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LOCAL EXISTENCE FOR ABSTRACT SEMILINEAR
VOLTERRA INTEGRODIFFERENTIAL EQUATIONS

SERGIU AIZICOVICI AND KENNETH B. HANNSGEN

ABSTRACT. Local existence is proved for mild solutions
of a linear Volterra equation of convolution type in a Banach
space, perturbed by a continuous nonlinear hereditary term.
The linear part, which involves an unbounded linear opera-
tor, has a resolvent kernel with certain compactness properties
that permit one to use Schauder’s theorem to obtain local ex-
istence for the perturbed equation without stronger conditions
on the nonlinearity.

1. Introduction and statement of results. For the Volterra
integrodifferential equation

(1.1)
x′(t) =

∫ t

0

a(t− τ )Lx(τ )dτ + f(t), t > 0

x(0) = x0,

where L is a linear operator in a Banach space X , and f ∈L1
loc([0,∞);X),

a resolvent kernel is an operator-valued function S(t) such that the so-
lution of (1.1) is given by

(1.2) x(t) = S(t)x0 +
∫ t

0

S(t− τ ) f (τ ) dτ.

In what follows, a(t) is a real-valued kernel satisfying

(1.3)
a ∈ L1

loc(R
+) is positive, nonincreasing

and convex on (0,∞) with 0 <a(0+) ≤∞.

Here R+ = [0,∞). The unknown x takes its values in a Banach space
(X , || · ||) and

(1.4)
L is a closed linear operator in X , defined on the dense
domain D, and L is invertible with L−1 compact on X .
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We shall use (1.2), together with certain compactness properties
of S(t) and Schauder’s fixed-point theorem, to prove local existence
theorems for mild solutions of nonlinear perturbations of (1.1) of the
form

(1.5)
x′(t) =

∫ t

0

a(t− τ )Lx(τ )dτ + (Fx)(t), 0 < t < T

x(0) = x0,

where F is a continuous hereditary mapping defined on the space
CT := C([0, T ];O), and where T > 0, the open subset O of X , and
the initial value x0 ∈ O are considered fixed throughout the paper.
More specifically, we assume that there exists a p, 1 ≤ p ≤ ∞, such
that

(i) F : CT → Lp(0, T ;X ) is continuous
(1.6)

(ii) for 0<T ′<T, the formula FT ′(h|T ′)=F(h)|T ′ gives a
(well defined) continuous map from CT ′ to Lp(0, T ′;X ).

(Here |T ′ denotes restriction to [0, T ′]. Lebesgue integral notation
refers to the Bochner integral [10].) For example, we could have
p = ∞,O = X and

(1.7) (Fh)(t) = g1(t,h(t)) +
∫ t

0

b(t− τ )g2(τ,h(τ )) dτ,

with g1 and g2 continuous from [0, T ] ×X to X and b ∈ L1(0, T ; R).

A mild solution of (1.5) on [0, T ] is a function x ∈ CT that satisfies

(1.8) x(t) = x0 + L
∫ t

0

A(t− τ )x(τ )dτ +
∫ t

0

(Fx)(τ ) dτ

on the interval, with A(t) =
∫ t

0
a(τ ) dτ .
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The properties of S(t) that we shall need can be established in two
(overlapping) settings:

(1.9)

(i) − a′ is convex, X is a separable Hilbert space
and L is self-adjoint and strictly negative definite,

or
(ii) a is log-convex, with a′ locally absolutely contin-

uous on (0,∞) in the case where a(0+) <∞, and
L generates a strongly continuous cosine family on X .

Remark. A function a(t) on (0, T ] that satisfies our hypotheses
(convexity, etc.) on that interval can be extended to all of (0,∞) in such
a way that the hypotheses still hold. To enable us to use certain results
concerning S(t), established via transform arguments, we assume that
this extension has already been made.

Our first result relies on compactness of S(t), and the essential
condition for this is

(1.10) a′(0+) = −∞.

Theorem 1.1. Let (1.3), (1.4), (1.6) with p > 1, (1.9) (either (i) or
(ii)) and (1.10) hold. Then there exists T ′, 0 < T ′ ≤ T , such that (1.5)
has a mild solution on [0, T ′].

Our second result concerns equations (1.5) of the special form

(1.11)
x′(t) =

∫ t

0

a(t− τ )[Lx(τ ) + g(τ,x(τ ))] dτ + f(t), t > 0

x(0) = x0;

in other words, we consider (1.5) with

(1.12) (Fx)(t) =
∫ t

0

a(t− τ )g(τ,x(τ )) dτ + f(t)
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where g : (0, T ) ×O → X is given and

(1.13) f ∈ L1(0, T ;X ).

Using the resolvent identity

(1.14) S′(t)L−1x =
∫ t

0

a(t− τ )S(τ )x dτ, x ∈ X

(see (2.1) below) in (1.2), with (Fx) + f in place of f , we see that the
mild version of (1.11) is formally equivalent to

(1.15) x(t) = S(t)x0+
∫ t

0

S′(t−τ )L−1g(τ,x(τ )) dτ+
∫ t

0

S(t−τ ) f (τ ) dτ.

When (1.10) holds we shall prove local existence for (1.11) by extending
the argument for Theorem 1.1 to the case p = 1 for F as in (1.12). If
(1.10) does not hold, then necessarily (cf. (1.3))

(1.16) a(0+) <∞,

and this will imply the required compactness property of S′(t)L−1 in
(1.15). Concerning the nonlinearity, we assume

(1.17) g : (0, T ) ×O → X satisfies

(i) g(t,x) is measurable in t for each x ∈ O,

(ii) g(t,x) is continuous in x, for a.e. t ∈ (0, T ),

(iii) there exist a closed ball B centered at x0, with B ⊂ O and a
function ψ ∈ L1(0, T ; R+) such that ||g(t,x)|| ≤ ψ(t) a.e.
on (0, T ) for all x ∈ B.

In particular, then, F given by (1.12) satisfies (1.6) with p = 1 (in a
ball centered at x0.)

Theorem 1.2. Let (1.3), (1.4), (1.9) (either (i) or (ii)), (1.13) and
(1.17) hold. Then there exists T ′ ∈ (0, T ] such that (1.11) has a mild
solution on [0, T ′].
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Remarks. The substitution Lk = L − kI (k ∈ R) transforms (1.5)
into

x′ = a ∗ Lkx + Fkx,

with Fkx = Fx + ka ∗ x. Thus our results remain valid if we merely
require (1.4) to hold for some Lk.

There is a vast literature on local existence of solutions to classes of
differential and integral equations involving discontinuous nonlineari-
ties, and particularly those involving nonlinear differential operators.
There are, in addition, some results where the nonlinearity is continu-
ous, as in this paper. For the problem

u′(t) = Au(t) + f(t,u(t)),

where A generates a compact C0-semigroup T(t) in X and f is con-
tinuous, see [12, 13], as well as the compactness results for the map-
ping g → T ∗ g given in [3]. For earlier work on the specific case
of (1.11) with L = � and X = L2(Ω) on a bounded domain Ω in
Rn(a ∈W 2,1

loc (R+), a(0) > 0), and with a sign condition on the contin-
uous nonlinearity, see [1]. An integrated version of (1.11) falls within
the scope of [2, 9]; however, the respective results are not applicable
to (1.11), due to restrictions on the convolution kernel.

The plan of the current paper is as follows. In Section 2 we discuss
S(t) and prove a general existence result, based on the Schauder fixed-
point theorem, that identifies the compactness property (2.4) needed
for the proofs of Theorems 1.1 and 1.2. These proofs, including two
compactness lemmas of independent interest, appear in Section 3.
Finally, in Section 4, we give an extension of Theorem 1.2 to cover
multi-valued nonlinearities g.

2. Resolvent kernels and a general existence theorem. In
this section we collect some facts concerning S(t), and we use the
Schauder fixed-point theorem to prove a general result that reduces the
proofs of Theorems 1.1 and 1.2 to an examination of S(t) and S′(t)L−1

respectively.

Throughout the paper, we write || · || for the norm in X , and also
for the uniform operator norm in L(X ) = L(X ,X ), the space of
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bounded linear operators in X . When X is a Hilbert space, its inner
product is denoted 〈·, ·〉. We let X1 denote the Banach space (D, || · ||1),
with ||x||1 = ||Lx|| + ||x||. Convolutions will sometimes be written
f ∗ g(t) =

∫ t

0
f(t− τ )g(τ ) dτ .

We follow Prüss [14 16] for much of the discussion of equations and
resolvents in X . For comparison, note that we always have A(0) = 0
and that a(t) = A′(t) here corresponds to a∞ + a1(t), e.g. in [16,
Equation (1.1)].

The hypotheses of Theorems 1.1 and 1.2 ensure that (1.1) has a
resolvent S(t) in the sense of [16, Definition 1.3]; thus

(2.1)

(i) {S(t) : t ≥ 0} is a strongly continuous family of
bounded linear operators on X with S(0) = I,

(ii) S(t) commutes with L and satisfies the resolvent
identity S(t)x = x + (A ∗ LS(·)x)(t), t ≥ 0, x ∈ X1.

Note that (1.14) follows from the identity in (2.1) (ii). In addition,
(2.1)(i) and the uniform boundedness principle imply that

σ := sup {||S(t)|| : 0 ≤ t ≤ T} <∞.

To define S(t) when (1.9)(i) holds [4, 5], recall that, since L−1 is
compact and self-adjoint, L has the spectral decomposition

L =
∫
R

λdEλ =
∞∑

k=1

λk < ·,yk > yk,

where 0 > λ1 ≥ λ2 ≥ · · · → −∞ are the eigenvalues of L and {yk} is
an orthonormal eigenvector basis. Then

(2.2) S(t)x =
∞∑

k=1

uk(t) < x,yk > yk,

where uk satisfies the scalar equation

uk(t) = 1 + λk(A ∗ uk)(t).
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Condition (1.9)(ii) leads to S(t) through the general existence theorem
of Da Prato and Iannelli [6] and the estimates of [14].

For our purposes, the map

Φ : Lp(0, T ;X ) → C([0, T ];X )

(1 ≤ p ≤ ∞) defined by

(2.3) Φh(t) = S ∗ h(t)

is central. Since S(t) is strongly continuous, an argument involving
the dominated convergence theorem shows that Φh does indeed belong
to C([0, T ];X ), and an easy estimate establishes that Φ is continuous.
From [16, Proposition 1.2ii] we have

Theorem 2.1. Assume (1.3), (1.4) and (1.6). Then each fixed point
in CT of the map Φ1 given by

Φ1h = S(·)x0 + Φ ◦Fh

is a mild solution of (1.5).

We have, then, the following general criterion for local existence.

Theorem 2.2. Let (1.3), (1.4), (1.6) and (2.1) be satisfied. In
addition, assume

(2.4)

there exists ρ > 0, with
B = Bρ(x0) := {x ∈ X : ||x − x0|| ≤ ρ} ⊂ O
such that {Φ ◦ F(h) : h ∈ C([0, T ];B)}
is precompact in C([0, T ];X ).

Then there exists T ′, 0 < T ′ ≤ T , such that (1.5) has a mild solution
on [0, T ′].

So we reduce the proofs of Theorems 1.1 and 1.2 to establishing (2.4).
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Proof of Theorem 2.2. By (1.6), we can choose M > 0 and ρ in (2.4)
in such a way that

(2.5) ||F(h)||Lp(0,T ;X ) ≤M if h ∈ C([0, T ];B).

Then choose T ′ ∈ (0, T ] such that

(2.6) ||S(t)x0 − x0|| + σM(T ′)1/q ≤ ρ, 0 ≤ t ≤ T ′,

where p−1 + q−1 = 1. Now let Z = C([0, T ′];B). Clearly, Z is a
bounded, closed, convex subset of CT ′ . By (2.5) and (2.6), the map Φ1

restricts to a continuous self map of Z. Moreover, by (1.6) and (2.3),
(Φ ◦ F)|Z inherits the compactness property (2.4), and so the image
of Z under Φ1 is precompact. Our claim now follows from Schauder’s
fixed-point theorem and Theorem 2.1.

3. Proofs of Theorems 1.1 and 1.2. We must show that the
hypotheses of the two theorems imply (2.4). For Theorem 1.1 and the
case of Theorem 1.2 where (1.10) holds, the main step is given by the
following general result.

Lemma 3.1. Let the conditions (1.3), (1.4), (1.9) (either (i) or (ii))
and (1.10) be satisfied. Let Φ : Lp(0, T ;X ) → C([0, T ];X ) be defined
by (2.3), 1 ≤ p ≤ ∞. Then Φ maps every uniformly integrable subset
of L1(0, T ;X ) into a precompact subset of C([0, T ];X ). In particular,
if p > 1, then Φ is a compact operator.

Proof of Lemma 3.1. Let H ⊂ L1 = L1(0, T ;X ) be uniformly
integrable, i.e.,

∫
E
||h(t)||dt → 0 as m(E) → 0 (for all measurable

E,m = Lebesgue measure), uniformly for h ∈ H. Then there exists
r < ∞ with ||h||L1 < r, h ∈ H. We shall show that Φ(H) is
equicontinuous at each t in [0, T ] and that Φ(H)(t) = {(Φh)(t) : h ∈ H}
is precompact in X (0 ≤ t ≤ T ). By the Arzèla-Ascoli theorem, this will
establish that Φ(H) is precompact in C([0, T ];X ). The final assertion of
the Lemma follows because balls in Lp, p > 1, are uniformly integrable
subsets of L1:∫

E

|ψ| dt ≤ m(E)1/q||ψ||p, 1/q + 1/p = 1.
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We know that ||S(t)|| ≤ σ, 0 ≤ t ≤ T . Under our hypotheses,
moreover, S(t) is continuous on (0, T ] in the uniform operator topology.
This fact is given in [14, Theorem 7II(i)] for the case where (1.9)(ii)
holds. Under hypothesis (1.9)(i), it is a consequence of (2.2) and

(3.1) uk(t) → 0 (k → ∞), uniformly for 0 < t0 ≤ t <∞

(cf. [8, Theorem 1]), since

||S(t1) − S(t2)|| = sup
k

|uk(t1) − uk(t2)|

and each uk is continuous. (In the theorems from [8] and [14] cited
here, (1.10) is used.)

Let 0 < t0 < T . For t0 ≤ t1 ≤ t2 ≤ T,h ∈ H, 0 < μ < t0/2, we have

||(Φh)(t2) − (Φh)(t1)|| ≤
∫ t1−μ

0

||S(t2−τ ) − S(t1−τ )|| ||h(τ )|| dτ

+
∫ t1

t1−μ

||S(t2−τ ) − S(t1−τ )|| ||h(τ )|| dτ

+
∫ t2

t1

||S(t2−τ )|| ||h(τ )|| dτ

≤ max
μ≤s≤t1

||S(s+ t2 − t1) − S(s)||r,

+ 2σ
∫ t2

t1−μ

||h(t)|| dt

Given ε > 0, we can choose μ and then δ > 0 so that the last
expression is less than ε whenever t0 ≤ t1 ≤ t2 ≤ t1 + δ, uniformly
for h ∈ H. This gives us equicontinuity at any t ∈ (0, T ], and the
argument for t = 0 is similar.

Precompactness of Φ(H)(0) = {0} is trivial. For 0 < t ≤ T we have
(3.2)∥∥∥∥Φh(t)−

∫ t

δ

S(τ )h(t−τ ) dτ
∥∥∥∥ =

∥∥∥∥
∫ δ

0

S(τ )h(t−τ ) dτ
∥∥∥∥

≤ σ sup
h∈H

{ ∫ t

t−δ

||h(t)|| dt
}
, 0 < δ < t.
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Given ε > 0, we shall find an operator Sε(τ ) = QεTε(τ ) with Qε

compact, Tε(τ ) uniformly bounded and ||S(τ )−Sε(τ )|| < ε, δ ≤ τ ≤ t.
Then ∥∥∥∥

∫ t

δ

S(τ )h(t−τ ) dτ − Qε

∫ t

δ

Tε(τ )h(t−τ ) dτ
∥∥∥∥ ≤ εr.

On the other hand,
∥∥∥∥

∫ t

δ

Tε(τ )h(t− τ ) dτ
∥∥∥∥ ≤ sup

δ≤τ≤t

∥∥∥∥Tε(τ )
∥∥∥∥r

so {Qε

∫ t

δ
Tε(τ )h(t−τ ) dτ : h ∈ H} is contained in a fixed compact

K = K(δ, ε) of X with dist (K,Φ(H)(t)) → 0 as δ, ε → 0 (cf. (3.2)).
Thus Φ(H)(t) is totally bounded and therefore precompact.

For the construction of Sε(τ ), we take the two cases of (1.9) sepa-
rately. For (1.9)(i), return to (2.2) and recall (3.1). Let

PNx =
N∑

k=1

< x,yk > yk

and Tε(τ ) = S(τ ). Then

||PNTε(τ ) − S(τ )|| = sup
k>N

|uk(τ )| → 0, N → ∞,

uniformly for δ ≤ τ ≤ T , {Tε(τ )} is uniformly bounded, and PN is
compact. We take Qε = PN with N = N(ε, δ) sufficiently large.

Finally, assume (1.9)(ii). Since S(t) is continuous on (0,∞) in the
uniform operator topology, we know from [10, Theorem 6.3.2] that
S(t) = limN→∞ SN,γ(t), with

SN,γ(t) =
eγt

2π

∫ N

−N

(
1 − |ω|

N

)
eiωtŜ(γ + iω) dω

for sufficiently large γ, uniformly for δ ≤ t ≤ T . Now by [14],
Ŝ(λ) = −L−1R(λ), where

R(λ) =
[
I − λ

â(λ)

(
λ

â(λ)
I− L

)−1]/
â(λ).
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We set Sε = SN,γ ,Qε = −L−1,

Tε(t) =
eγt

2π

∫ N

−N

(
1 − |ω|

N

)
eiωtR(γ + iω) dω

with N = N(ε, σ) sufficiently large and get the required decomposition.
This completes the proof of Lemma 3.1.

Theorem 1.1 now follows immediately since by (1.6), there is a ball
B as in (2.4) such that F maps B into a bounded subset of Lp(0, T ;X ).

For Theorem 1.2, if (1.10) holds, we can again establish (2.4), with
B given by (1.17) (iii), since F(CT ) is then uniformly integrable.

When (1.10) fails, we must have (1.16). We write Φ ◦ F(h) =

Φ(a∗Gh+f) with Gh(t) = g(t,h(t)). By (1.17), {Gh : h ∈ C([0, T ];B)}
is a bounded set in L1(0, T ;X ). Then (2.4), and hence the remaining
part of Theorem 2.1, is a consequence of the following general result.

Lemma 3.2. Let (1.3), (1.4), (1.9) (either (i) or (ii)) and (1.16)
hold. Then the mapping G → Φ(a ∗ G) = S ∗ a ∗ G from L1(0, T ;X )
to C([0, T ];X ) is compact.

Proof of Lemma 3.2. By (1.14),

(3.3) Φ(a ∗ G) = S′L−1 ∗ G.

Let C(t) be the cosine family generated by L and define the Banach
space

Y = {x ∈ X : C(·)x ∈ C1(R;X )}
with norm ||x||Y = ||x|| + sup{||C′(t)x|| : 0 ≤ t ≤ 1}. In the Hilbert
space case (1.9)(i), Y can be identified with the domain of (−L)1/2

with the graph norm (see [17, Proposition 3.4]), and it is clear that
the injection J : Y → X is compact. The same thing is true if
(1.9)(ii) holds: we can approximate J in L(Y ,X ) with the operators
t−1L−1C′(t) = t−1

∫ t

0
C(τ ) dτ , t→ 0+, and these are compact because

C′(t) ∈ L(Y ,X ) and L−1 is compact.
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By [5, Theorem 3.1 ii], S′(·)L−1 : R+ → L(X ,Y) is strongly
continuous when (1.9)(i) holds. If (1.9)(ii) holds, the same is true by
[15, Equation (3.7)] (see Remark below). Then S′L−1 ∗G exists in Y ,
and by (3.3),

sup
0≤t≤T

||Φ(a ∗ G) (t)||Y ≤ σ′||G||L1(0,T ;X )

where σ′ = sup {||S′(t)L−1||L(X ,Y) : 0 ≤ t ≤ T} < ∞. In particular,
if G is a bounded subset of L1(0, T ;X ), then {Φ(a ∗ G)(t) : G ∈ G} is
precompact in X . Since S(t) is uniformly bounded, standard estimates
show that {Φ(a∗G) : G ∈ G)} is equicontinuous at each point of [0,T].
This proves Lemma 2.2 and completes the proof of Theorem 1.2.

Remark. For strong continuity of S′(·)L−1 when (1.9)(ii) holds, one
can use the representation

(3.4) Ŝ′(λ) = α(λ)
∫ ∞

0

C′(τ )
β(λ)
λ

e−β(λ)τ dτ

with α(λ) = (a(0+)+â′(λ))1/2, β(λ) = λ/α(λ) (cf. [15, Equations (2.6),
(3.7)]). A transform argument based on the Wiener-Lévy theorem
shows that α(λ) − a(0+)1/2 is the Laplace transform of a locally
integrable function b on R+, while the arguments of [14, Section 4],
together with the standard estimate

||C′(τ )||L(X ,Y) ≤ Keωt

(for some K,ω > 0), show that the integral factor in (3.4) is the
transform of a strongly continuous function T : R+ → L(X ,Y). Now
S′(t)L−1 = (a(0+)1/2T(t) + (b ∗ T)(t))L−1 and we are done.

4. A multivalued nonlinearity. We outline here an extension of
Theorem 1.2 to the case of multivalued nonlinearities. The approach
is an adaptation of that in [2]; see [18, Chapter 3] for a discussion of
multivalued perturbations for abstract differential equations and [19]
for preliminaries on multivalued mappings.

Throughout this section we assume that X is separable. Consider the
Volterra integrodifferential inclusion (cf. (1.11))

(4.1)
x′(t)−

∫ t

0

a(t−τ )[Lx(τ )+G(τ,x(τ ))] dτ  f(t), 0 < t < T

x(0) = x0,
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where (1.3), (1.4), (1.9) ((i) or (ii)) and (1.13) hold, x0 ∈ X , and
G : [0, T ] × B → 2X\{φ} (B = Bρ(x0), ρ > 0), is a multivalued
perturbation satisfying

(i) G is closed valued and measurable,
(4.2)

(ii) x→G(t,x) is lower semicontinuous (l.s.c.), for a.e. t∈(0, T ),
(iii) there exists φ ∈ L1(0, T ; R+) such that

sup
x∈B

( sup
y∈G(t,x)

||y||) ≤ φ(t) a.e. on (0, T ).

By a mild solution to (4.1) on [0, T ] we mean a function x ∈ C([0, T ];B)
satisfying

(4.3) x(t) = x0 +L
∫ t

0

A(t−τ )x(τ ) dτ+
∫ t

0

A(t−τ )g(τ ) dτ+
∫ t

0

f(τ ) dτ

for some g ∈ L1(0, T ;X ) with g(t) ∈ G(t,x(t)), a.e. on (0, T ).

Theorem 4.1. Let (1.3), (1.4), (1.9) (either (i) or (ii)), (1.13) and
(4.2) hold. Then there is a T ′ in (0, T ] such that (4.1) has a mild
solution on [0, T ′].

Proof (Outline). As in Sections 2 and 3, we find T ′ ∈ (0, T ] such that
the map Φ1h defined by

Φ1h(t) = S(t)x0 + S ∗ f(t) + S ∗ a ∗ h(t)

takes the set K = {h ∈ L1(0, T ′;X ) : ||h(t)|| ≤ φ(t) a.e.} into a
compact subset F of C([0, T ′];B). Let Ψ be the map defined on F by

(4.4) Ψ(y) = {g ∈ �L1(0, T ′;X ) : g(t) ∈ G(t,y(t)) a.e.},
and taking its values in the space P of all closed subsets of L1(0, T ′; X).
It is easily seen that (4.4) makes sense. By [11, Theorem 4.1], it follows
that Ψ is l.s.c., and it is obvious that Ψ is decomposable. Applying
Fryszkowski’s selection theorem [7], we find a continuous, single-valued
map η : F → L1(0, T ′;X ) such that η(y) ∈ Ψ(y), for all y in F . By
(4.4), we then have

(4.5) η(y)(t) ∈ G(t,y(t)), a.e.,
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so that

(4.6) η(F) ⊂ K.

On account of the continuity of η and Mazur’s theorem, we also de-
duce that Q = conv η(F) is a compact, convex subset of L1(0, T ′;X ).
By (4.6), it follows that Q ⊂ K, since the latter set is closed and convex
in L1(0, T ′;X ). Now define γ : Q → L1(0, T ′,X ) by

(4.7) γ(h) = η(Φ1h), h ∈ Q.

We see that γ is a continuous self-map of Q. Applying Schauder’s
fixed-point theorem we now conclude that γ has a fixed point g ∈ Q.
By (4.5) and (4.7) this means we have found g ∈ L1(0, T ′;X ) with
g(t) ∈ G(t,Φ1g(t)) a.e. As in Theorem 2.1, y = Φ1g is the desired
mild solution of (4.1) in the sense of (4.3).
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