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NONTRIVIAL SOLUTIONS FOR A CLASS
OF NONLINEAR VOLTERRA EQUATIONS

WITH CONVOLUTION KERNEL

W. OKRASIŃSKI

ABSTRACT. We consider the Volterra integral equation

u(x) =

∫ s

0

k(x − s)g(u(s)) ds, x ≥ 0,

where k ≥ 0 is an integrable function and g is an increasing
absolutely continuous function (g(0) = 0) which does not
satisfy a Lipschitz condition. New necessary and sufficient
conditions for the existence of positive nontrivial solutions are
obtained.

1. Introduction. The nonlinear Volterra integral equation with
convolution kernel

(1.1) u(x) =
∫ x

0

k(x− s)g(u(s)) ds, x ≥ 0

has been studied recently in the modeling of problems in nonlinear dif-
fusion and shock-wave propagation [4, 7]. In these problems the kernel
function is nonnegative and g is an increasing continuous function such
that g(0) = 0. Moreover, g does not satisfy a Lipschitz condition in
the vicinity of the origin. A typical example of such a function g is
g(u) = up, p ∈ (0, 1). Obviously, u ≡ 0 is the trivial solution to (1.1).
But the question of physical interest is the existence of nontrivial so-
lutions to (1.1), i.e., continuous functions u such that u(x) > 0 for
x > 0.

Some particular answers concerning the existence of nontrivial solu-
tions can be found in Gripenberg’s work [3]. Under restrictive assump-
tions concerning g, the author has presented there a condition which is
necessary and sufficient for the existence of a nontrivial solution to (1.1)
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with the particular kernel k(x) = xα−1, α > 0. But we must emphasize
that under Gripenberg’s assumptions the case g(u) = up, p ∈ (0, 1),
cannot be considered. In papers [1, 2] and [6] these restrictions are
removed and Gripenberg’s condition can be applied to a wider class of
g including g(u) = up. One can ask if Gripenberg’s condition can be
generalized to other kernels. In fact, in the case of monotonic kernels
we can give some integral sufficient and necessary conditions for the
existence of nontrivial solutions to (1.1) (see [7]). For k(x) = xα−1, all
these conditions are equivalent to that of Gripenberg’s. The range of
application of these generalized Gripenberg’s conditions is sometimes
limited. In the case of g(u) = up, p ∈ (0, 1), these necessary conditions
are fulfilled for all admissible kernels, and, because of this, they are use-
less. Applying the sufficient condition to (1.1) with k(x) = exp(1/xα)
and g(u) = up, p ∈ (0, 1), we can show the existence of nontrivial so-
lutions for α ∈ (0, 1). But in [2] it has been shown that, for k and
g mentioned above, a nontrivial solution exists for all α > 0. These
remarks suggest a search for different kinds of conditions.

The purpose of this paper is to present some new conditions for the
existence of nontrivial solutions to (1.1) which will be widely applicable.
Moreover, the new results can be applied to discontinuous kernels.

2. Statement of Results. We shall study equation (1.1) assuming
that

(k) k : 〈0, δ〉 → 〈0,+∞〉, δ > 0, is an integrable function such that
k > 0 a.e.,

(g) g : 〈0,+∞〉 → 〈0,+∞〉 is a strictly increasing absolutely
continuous function such that g(0) = 0 and u/g(u) → 0 as u→ 0+.

Let K−1 denote the inverse function to K(x) .=
∫ x

0
k(s) ds. For a given

function f , we define the sequence of functions fn, n = 0, 1, . . . , as
follows: f0(x) = x, fn+1(x) = (fn ◦ f)(x), n = 0, 1, . . . . We formulate
the following sufficient condition.

Theorem 2.1. Let (k) and (g) be satisfied. Let ϕ be a continuous
function on 〈0, δ0〉, δ0 > 0, such that x < ϕ(x) < g(x) for x ∈ (0, δ0〉
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and x/ϕ(x) → 0 as x→ 0+. If the series

(2.1)
∞∑

n=0

K−1((g−1 ◦ ϕ)n(x)/ϕ((g−1 ◦ ϕ)n(x)))

converges uniformly on 〈0, δ0〉, then equation (1.1) has a nontrivial
solution on some interval.

Moreover, the following necessary condition is true.

Theorem 2.2. Let (k) and (g) be satisfied. Let ψ be a continuous
function such that ψ(x) > 0 for x > 0 and limx→0+ g(x)/ψ(x) < 1. If
equation (1.1) has a nontrivial solution on an interval, then the series

(2.2)
∞∑

n=0

K−1((g−1)n(x)/ψ((g−1)n(x)))

is convergent on 〈0, δ0〉, δ0 > 0.

In the next section we present corollaries and examples based on the
above theorems.

3. Some consequences and comments. We can formulate two
corollaries:

Corollary 3.1. If functions ϕ(x) and x/ϕ(x) are increasing, then
the convergence of (2.1) at one of the points of (0, δ0〉 is sufficient for
the existence of nontrivial solutions to (1.1).

Corollary 3.2. Assume additionally that k and u/g(u) are nonde-
creasing. If the series

(3.1)
∞∑

n=0

K−1((x/2n)/g(x/2n))

is convergent at one point x0 > 0, then equation (1.1) has a nontrivial
solution.
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In fact, if we put ϕ(x) ≡ g(x/2), then the series (2.1) reduces to

∞∑
n=1

K−1((x/2n−1)/g(x/2n)).

Since K−1 is concave, then the last series is dominated by the series

2
∞∑

n=1

K−1((x/2n)/g(x/2n)).

By (3.1) and Corollary 3.1 we obtain Corollary 3.2.

Remark 3.1. Suppose assumptions of Corollary 3.2 are satisfied. In
this case the Gripenberg’s generalized sufficient condition has the form

(3.2)
∫ δ

0

K−1(s/g(s))/s ds <∞ [7].

Since the functionK−1(x/g(x))/x is decreasing, we obtain the estimate

∞∑
n=1

K−1((x/2n)/g(x/2n)) ≤ 2
∫ x

0

K−1(s/g(s))/s ds.

Hence, by Corollary 3.2, we infer that Theorem 2.1 is a generalization
of condition (3.2).

Now we give some corollaries concerning the necessary condition.

Corollary 3.3. The function ψ(x) ≡ 1 satisfies assumptions of
Theorem 2.2. In this case the series (2.2) is equal to

(3.3)
∞∑

n=0

K−1((g−1)n(x)).

The convergence of this last series is a necessary condition for the
existence of nontrivial solutions to (1.1).
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Corollary 3.4. Assume additionally that k is nondecreasing. If
equation (1.1) has a nontrivial solution, then the series

(3.4)
∞∑

n=0

K−1((g−1)n(x)/(g−1)n−1(x))

is convergent on an interval 〈0, δ0〉, δ0 > 0.

In fact, we can put ψ(x) ≡ g(x)/(1 − ε). In this case the series (2.2)
is ∞∑

n=0

K−1((1 − ε)(g−1)n(x)/(g−1)n−1(x)).

Since K−1 is concave, then K−1((1 − ε)x) ≥ (1 − ε)K−1(x), and
Corollary 3.4 is proved.

Example. We consider the equation

(3.5) u(x) =
∫ x

0

k(x− s){u(s)}p ds, p ∈ (0, 1),

with k(x) = K ′(x), where K(x) = exp(− exp(1/xα)), α > 0. In this
case K−1(x) = 1/(ln ln(1/x))1/α and g−1(x) = x1/p. We calculate that
the series (3.3) becomes

∞∑
n=0

1/(ln ln(1/x) + n ln(1/p))1/α.

If α ≥ 1, then this series is divergent on an interval. This means that
equation (3.5) has no nontrivial solutions for α ≥ 1. Now we shall try
to apply Theorem 2.1. Let ϕ(x) = xq, where p < q < 1. In this case
the series (2.1) becomes

∞∑
n=0

1/(ln ln(1/x) + ln(1 − q) + n ln(q/p))1/α.

If α ∈ (0, 1), then this last series is convergent for small x. This implies
that equation (3.5) has nontrivial solutions for α ∈ (0, 1).
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We formulate two remarks concerning kernels which do not satisfy
(k).

Remark 3.2. Let k ≥ 0 be an integrable function such that K(x) > 0
for x > 0. Let K−1(y) .= max{x ∈ 〈0, 1〉 : K(x) = y}. If we substitute
K−1 instead of K−1 in (2.1), then Theorem 2.1 will still be true.

Remark 3.3. Let k ≥ 0 be a locally bounded measurable function.
Let k1 =

∑∞
n=1 k

∗n, where k∗1 = k and k∗(n+1) = k∗n ∗ k, n = 1, 2, . . . ;
here ∗ denotes the convolution. It can be shown (see [2]) that (1.1) has
a nontrivial solution if and only if

(3.6) u(x) =
∫ x

0

k1(x− s)g1(u(s)) ds,

where g1(u)
.= g(u)−u, has a nontrivial solution. Suppose assumption

(k) is not fulfilled for k but is satisfied for k1 (see the example in [2]).
Let g1 satisfy (g). In such cases, one can try to apply results of this
paper to (3.6).

4. Proofs of the theorems. Throughout this part, we assume that
(k) and (g) are satisfied. On the basis of results presented in [5], we
can formulate the following remarks:

Remark 4.1. If there exists a nontrivial solution to (1.1), then it is a
unique nontrivial solution on an interval 〈0, δ1〉, δ1 > 0. Moreover, it
is a strictly increasing absolutely continuous function. We shall denote
this solution by u0.

Remark 4.2. For every ε ∈ (0, 1) the equation

(4.1) uε(x) = εx+
∫ x

0

k(x− s)g(uε(s)) ds

has a unique strictly increasing, absolutely continuous solution uε on an
interval 〈0, δ1〉, where δ1 > 0 is independent of ε. Moreover, uε1 ≤ uε2

for ε1 ≤ ε2.

We formulate the following lemma.
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Lemma 4.1. Let ε ∈ 〈0, 1). If uε is the nontrivial solution to (4.1),
then the inverse function u−1

ε satisfies the equation

(4.2) x = εu−1
ε (x) +

∫ g(x)

0

K(u−1
ε (x) − u−1

ε (g−1(s))) ds

for x ∈ 〈0, uε(δ1)〉.

Proof. Let ε ≥ 0 and uε be the solution to (4.1) mentioned in Remarks
4.1 and 4.2. Since uε is absolutely continuous, then

(4.3) u′ε(x) = ε+
∫ x

0

k(x− s)g′(uε(s))u′ε(s) ds a.e.

on 〈0, δ1〉. By the assumptions and (4.3), we have uε > 0 a.e. We infer
u−1

ε is an absolutely continuous function. From (4.3) we get

(4.4) u′ε(x) = ε+
∫ uε(x)

0

k(x− u−1
ε (s))g′(s) ds a.e.

Substituting u−1
ε (x) for x gives

(4.5) u′ε(u
−1
ε (x)) = ε+

∫ x

0

k(u−1
ε (x) − u−1

ε (s))g′(s) ds a.e.

But (u−1
ε )′ = 1/u′ε ◦ u−1

ε a.e. Hence, by (4.5),

(4.6) (u−1
ε )′(x)

[
ε+

∫ x

0

k(u−1
ε (x) − u−1

ε (s))g′(s) ds = 1 a.e.

Integrating (4.6) with respect to x obtains

(4.7) εu−1
ε (x) +

∫ x

0

K(u−1
ε (x) − u−1

ε (s))g′(s) ds = x

on 〈0, uε(δ1)〉, and (4.7) yields (4.2).

Remark 4.3. The function Gε(x, s)
.= K(u−1

ε (x) − u−1
ε (g−1(s))) is

decreasing with respect to s. Moreover, Gε(x, 0) = K(u−1
ε (x)) and

Gε(x, g(x)) = 0.
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Now we prove

Lemma 4.2. Let ϕ be a continuous function on 〈0, δ0〉, δ0 > 0 such
that x < ϕ(x) < g(x) for x ∈ (0, δ0〉 and x/ϕ(x) → 0 as x → 0+. Let
ε > 0. If uε is the solution to (4.1), then

(4.8) u−1
ε (x) ≤ K−1(x/ϕ(x)) + u−1

ε ((g−1 ◦ ϕ)(x))

for x ∈ 〈0, uε(δ1)〉.

Remark 4.4. Without loss of generality, we can assume uε(δ1) < δ0
for any ε ∈ (0, 1).

Proof of Lemma 4.2. On the basis of (4.2) we have

(4.9) x ≥
∫ g(x)

0

Gε(x, s) ds,

where Gε is defined in Remark 4.3. By Remark 4.3 and the assumptions
concerning ϕ,

(4.10)
∫ g(x)

0

Gε(x, s) ds ≥ ϕ(x)Gε(x, ϕ(x)).

Using (4.9) and (4.10) gives

(4.11) x/ϕ(x) ≥ Gε(x, ϕ(x)),

and from (4.11) we obtain (4.8).

Proof of Theorem 2.1. Let ϕ be given on 〈0, δ0〉. Let {uε}, ε ∈ (0, 1),
denote the family of solutions to (4.1) on 〈0, δ1〉 mentioned in Remark
4.2. Fixing ε, we can iterate the inequality (4.8). After n iterations we
get
(4.12)

u−1
ε (x) ≤

n∑
i=0

K−1((g−1◦ϕ)i(x)/ϕ((g−1◦ϕ)i(x)))+u−1
ε ((g−1◦ϕ)n+1(x))
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on 〈0, uε(δ1)〉. Since (g−1 ◦ ϕ)(x) < x for x > 0, then u−1
ε ((g−1 ◦

ϕ)n+1(x)) tends uniformly to 0 on 〈0, uε(δ1)〉 as n → ∞. This means
that the right side of (4.12) tends uniformly to

F (x) .=
∞∑

i=0

K−1((g−1 ◦ ϕ)i(x)/ϕ((g−1 ◦ ϕ)i(x))) on 〈0, uε(δ1)〉.

Let us note that F is a continuous function. Inequality (4.12) implies

(4.13) u−1
ε (x) ≤ F (x).

Let F (x) .= sups∈〈0,x〉 F (s) + x. It is a strictly increasing continuous
function such that

(4.14) u−1
ε (x) ≤ F (x)

on 〈0, uε(δ1)〉. From (4.14), we get

(4.15) uε(x) ≥ F
−1

(x)

for x ∈ 〈0, δ1〉, where F
−1

is the inverse function to F . Let ε ↘ 0+.
Since the sequence uε is decreasing with respect to ε, we infer u(x) .=
limε↘0+ uε(x), x ∈ 〈0, δ1〉, is a continuous solution to (1.1). But with
respect to (4.15), u(x) ≥ F

−1
(x), and we have constructed a nontrivial

solution to (1.1).

To prove the necessary condition, we need the following lemma

Lemma 4.3. Let ψ be a continuous function such that ψ(x) > 0 for
x > 0 and limx→0+ g(x)/ψ(x) < 1. If equation (1.1) has the nontrivial
solution u0, then

(4.16) u−1
0 (x) ≥ K−1(x/ψ(x)) + u−1

0 (g−1(x))

on an interval 〈0, δ0〉, δ0 > 0.

Proof. Let us note that (4.16) is equivalent to

(4.17) G0(x, x) ≥ x/ψ(x)
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for x ∈ 〈0, δ0〉, where G0 is defined in Remark 4.3 for ε = 0. Suppose
(4.17) does not hold. This means that there exists a sequence xn → 0
as n→ ∞ such that

(4.18) G0(xn, xn) < xn/ψ(xn).

Lemma 4.1 gives

(4.19) xn =
∫ xn

0

G0(xn, s) ds+
∫ g(xn)

xn

G0(xn, s) ds.

Since G0 is decreasing wtih respect to s, we get

(4.20) xn ≤ K−1(u−1
0 (xn))xn + g(xn)G0(xn, xn).

By (4.18) and (4.20),

xn < K−1(u−1
0 (xn))xn + xng(xn)/ψ(xn),

and, hence,

(4.21) 1 < K−1(u−1
0 (xn)) + g(xn)/ψ(xn).

Since limx→0+ g(x)/ψ(x) < 1, then g(x)/ψ(x) < 1 − η, η ∈ (0, 1), on
〈0, δη〉. Since xn ∈ 〈0, δη〉 for n ≥ n0, then (4.21) implies

(4.22) 1 < K−1(u−1
0 (xn)) + 1 − η

for n ≥ n0. If n → ∞, then K−1(u−1
0 (xn)) → 0, and (4.22) yields the

contradiction.

Proof of Theorem 2.2. Let ψ satisfy the assumptions of the theorem.
If u0 is the nontrivial solution to (1.1), inequality (4.16) holds. We can
iterate (4.16). After n iterations, we get
(4.23)

u−1
0 (x) ≥

n∑
i=0

K−1((g−1)i(x)/ψ((g−1)i(x))) + u−1
0 ((g−1)n+1(x))
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on 〈0, δ0〉. Without loss of generality, we can assume that g−1(x) < x
for x ∈ (0, δ0〉. Hence, u−1

0 ((g−1)n+1(x)) tends uniformly to 0 on 〈0, δ0〉
as n→ ∞. Let n→ ∞. From (4.23) we obtain

(4.24) u−1
0 (x) ≥

∞∑
i=0

K−1((g−1)i(x))/ψ((g−1)i(x))),

and the theorem is proved.
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