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PERTURBATION OF LINEAR
ABSTRACT VOLTERRA EQUATIONS

C. CORDUNEANU

In their pioneering work on Qualitative Theory of Volterra Equations,
J. J. Levin and J.A. Nohel have dealt with nonlinear perturbations of
Volterra equations of convolution type. Their joint paper [8] on this
topic is, likely, the first in the literature dedicated to this subject.

The author [2] has investigated some perturbation problems, in the
case of nonconvolution equations, mostly related to the concept of
admissibility for integral operators/equations. The role of the resolvent
kernel is particularly emphasized in regard to the behavior of solutions,
and the Volterra equations provide most of the illustrations. The case
of a convolution equation, but not of Volterra type, is also investigated.

In their recent book [6], the authors dedicate a whole chapter to the
perturbation theory of integral/integro-differential equations. Further
references can be found in [6], especially those of a more recent date.

The aim of this paper is to discuss perturbed equations associated
with abstract Volterra equations. We will consider only the case when
the unperturbed equation is linear, namely,

(1) x(t) = (Lx)(t) + (Nx)(t),

or

(2) ẋ(t) = (Lx)(t) + (Nx)(t).

In both equations (1) and (2), L stands for a linear abstract Volterra
operator acting on some function space, while N denotes a nonlinear
operator acting on the same or another function space, not necessarily
of Volterra type. Of course, when N is also a Volterra (abstract)
operator, the equations (1) and (2) are both of Volterra type.

For the definition of Volterra operators and the basic properties of
attached equations we refer the reader to our recent book [5], in which
these topics are discussed in some detail. See also [11].
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It is useful to notice that equation (2), with an initial condition of
the form

(3) x(0) = x0 ∈ Rn,

can be rewritten in the form (1) if we integrate both sides from 0 to
some t > 0:

(4) x(t) = x(0) +
∫ t

0

(Lx)(x) ds +
∫ t

0

(Nx)(s) ds.

As seen in [5], under rather mild assumptions on L (usually, continuity
and linearity), one can always write

∫ t

0

(Lx)(s) ds =
∫ t

0

k(t, s)x(s) ds,

where k(t, s) is a measurable kernel, satisfying various conditions, in
accordance with the nature of the function space under consideration.
Therefore, (4) becomes

(5) x(t) =
∫ t

0

k(t, s)x(s) ds + (N1x)(t),

with

(N1x)(t) =
∫ t

0

(Nx)(s) ds + x0

which shows that the perturbed equation (2) can be reduced to an
integral equation of classical type, perturbed by a nonlinear term which
might involve abstract Volterra operators. Of course, equation (5) is of
the form (1).

It is also worth noticing that the perturbation problem may be more
adequately investigated in case of the functional-differential equation
(2), than in the case of equation (1).

On the other hand, perturbed equations of the form (5) have been
investigated by many authors, under various assumptions on the kernel
k(t, s) and the nonlinearity N1x: [1, 2, 3, 7, 9, 10]. These references
contain more data on these kinds of contributions. A difficulty arising in
connection with the direct application of available results to equations
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of the form (5) consists in the fact that the properties of the kernel
k(t, s) are not easy to describe in terms of the properties of the solution
of the linear equation x = Lx + f .

Let us go back now to equation (1) and assume that we choose the
space C([0, T ],Rn) as an underlying space. The theory of the linear
equation

(6) x(t) = (Lx)(t) + f(t), t ∈ [0, T ],

in which

(7) f ∈ C([0, T ],Rn)

and L is a Volterra linear operator continuous on C([0, T ],Rn), has
been developed in [5, 11]. It is shown in these books that (6) has a
unique solution in C([0, T ],Rn), for any f satisfying (7), if L is also
compact (it is also convenient to assume (L0)(t) ≡ 0). Hence, the map
f → x = Uf is a bijection of C([0, T ],Rn) onto itself. Since the inverse
map x → f is obviously continuous, there results the fact that U is
also continuous from C([0, T ],Rn) onto itself. Therefore, there exists
a positive number A > 0 such that

(8) ||x|| = ||Uf || ≤ A||f ||, ∀ f ∈ C([0, T ],Rn),

where the norm means the sup-norm.

One usually denotes R = U − I with I, the identity mapping of
C([0, T ],Rn), which allows us to write the equation x = Uf as

(9) x = f + Rf, ∀ f ∈ C([0, T ],Rn).

The operator R is called the resolvent operator corresponding to L,
and it is obviously a linear continuous operator on C([0, T ],Rn).

Since equation (1) can be written as (I − L)x = f , one has U =
(I − L)−1, whence

(10) R = (I − L)−1 − I = L(L − I)−1.

Formula (10) shows that R is also a Volterra operator on C([0, T ],Rn),
as well as its compactness. Indeed, it is sufficient to notice that, under



396 C. CORDUNEANU

our conditions, the inverse of a Volterra operator is also of Volterra
type (this follows rather easily from the definition).

From the discussion conducted above one derives that both operators
U and R are bijections of C([0, T ],Rn) onto itself. This fact has an
important implication in regard to equation (1). Namely, (1) can be
rewritten in the equivalent form

(11) x(t) = (Nx)(t) + (RNx)(t),

where RN stands for the product (superposition) of the operators N
and R, i.e., RNx = R(Nx), ∀x ∈ C([0, T ],Rn).

Equation (11) can be dealt with by using various fixed point theorems.
For instance, due to the boundedness of R on the space C([0, T ],Rn),
it suffices to assume that N satisfies a Lipschitz condition

(12) ||Nx − Ny|| ≤ λ||x − y||, ∀ x, y ∈ C([0, T ],Rn),

where the constant λ is small enough (to be precise, λ < (1 + |R|)−1).
Then the operator

(13) V x = Nx + RNx

is a contraction of C([0, T ],Rn), which implies the existence and
uniqueness for (11), and hence for (1), in C([0, T ],Rn).

As mentioned above, N need not be of Volterra type. The only
conditions on N are to act on C([0, T ],Rn), and to satisfy (12).

Special cases of the result stated above can be obtained for integral
equations of the form

(14) x(t) =
∫ t

0

k(t, s)x(s) ds +
∫ T

0

K(t, s, x(s)) ds,

provided k(t, s) is a continuous kernel for 0 ≤ s ≤ t ≤ T , or even a
measurable kernel which generates a continuous integral operator on
C([0, T ],Rn), while the Urysohn operator

(15) x →
∫ T

0

K(t, s, x(s)) ds
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is acting on C([0, T ],Rn), with K satisfying a Lipschitz-type condition
of the form

(16) |K(t, s, x) − K(t, x, y)| ≤ k0(t, s)|x − y|,
where k0(t, s) ≥ 0 a.e. on [0, T ] × [0, T ] is a measurable function such
that

(17) ess-sup
t

∫ T

0

k0(t, s) ds ≤ λ = small enough.

Another standard result for the existence of solutions to equation
(11) in C([0, T ],Rn) is obtained by using the Schauder fixed point
theorem, instead of the Banach Contraction Principle. In this case,
the perturbation N has to be assumed compact. We notice that the
product RN will be compact because R is compact, which means that
the operator in the right-hand side of (11) is compact.

The following result can be stated:

THEOREM 1. Consider the perturbed equation (1) under the following
assumptions:

(a) The Volterra operator L is linear, continuous and compact on the
space C([0, T ],Rn), with (L0)(t) ≡ 0.

(b) The operator N is a compact operator on the space C([0, T ],Rn)
such that, for any r > 0,

(18) Φ(r) = sup{||Nx||; x ∈ C, ||x|| ≤ r}
satisfies

(19) lim sup
r→∞

φ(r)
r

= l

with small enough l.

Then equation (1) has at least one solution in C([0, T ],Rn).

PROOF. As mentioned above, it suffices to prove the existence of a
solution to equation (11), which can be written as x(t) = (V x)(t), with
V given by (13).
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Since V is a compact operator on the space C([0, T ],Rn), it is
sufficient to show that it takes a ball of this space, say

Br = {x; x ∈ C, ||x|| ≤ r},

into itself, i.e., V Br ⊂ Br for some r > 0.

From (13) and (18) one derives

(20) ||V x|| ≤ (1 + |R|)φ(r), x ∈ Br,

where |R| is the norm of R on the space C([0, T ],Rn). Therefore, the
inclusion V Br ⊂ Br is assured by the inequality

(21) φ(r) ≤ (1 + |R|)−1r,

if this inequality has at least one positive solution.

But condition (19) guarantees the existence of a sufficiently large
r > 0 such that (21) is satisfied, as soon as we assume

(22) lim sup
r→∞

φ(r)
r

= l < (1 + |R|)−1.

The Schauder fixed point theorem applied to the operator V , in the
space C([0, T ],Rn), leads to the existence of at least one solution of
equation (1) in the ball Br, with r satisfying (21).

From Theorem 1 one can obtain as special cases various results
regarding perturbed integral equations of Volterra type such as

(23) x(t) =
∫ t

0

k(t, s)x(s) ds +
∫ t

0

K(t, s, x(s)) ds,

in which k(t, s) is a continuous kernel for 0 ≤ s ≤ t ≤ T . It remains to
impose adequate conditions on K such that the nonlinear part in (23)
represents a compact operator on C([0, T ],Rn). Such conditions can be
easily obtained if we assume, for instance, that K(t, s, x) is continuous
for 0 ≤ s ≤ t ≤ T, |x| ≤ M, M > 0. But continuity is not necessary at
all to assure the fact K : C → C. It is sufficient to deal with a K(t, s, x)
measurable in (t, s) and continuous in x (Carathéodory condition), such
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that K(t, s, x) is essentially bounded on any set 0 ≤ s ≤ t ≤ T, |x| ≤ r.
Moreover, to secure compactness of the integral operator generated by
K(t, s, x), one can assume

(24) lim
t→t0

∫ t

0

|K(t, s, x(s)) − K(t0, s, x(s))| ds = 0,

uniformly with respect to x ∈ Br ⊂ C, for any r > 0.

In the remaining part of this paper we shall deal with perturbed
equations of the form (2), which can be brought to the form (5), under
adequate conditions. As shown in our book [5], the linear equation
associated with (2),

(25) ẋ(t) = (Lx)(t) + f(t),

under initial condition (3), has a unique solution on [0, T ] which is
absolutely continuous and satisfies the equation a.e., provided L is a
linear continuous operator on L2([0, T ],Rn) of Volterra type and f
belongs to the same space.

Since the solution of the problem (25), (3) can be expressed by means
of the variation of parameters formula

(26) x(t) = X(t, 0)x0 +
∫ t

0

X(t, s)f(s) ds,

with X(t, s) constructed as shown in [5], there results that the problem
(2), (3) can be reduced to the functional integral equation

(27) x(t) = X(t, 0)x0 +
∫ t

0

X(t, s)(Nx)(s) ds.

In [5], we have used this method of transformation of the differential
problem into an integral one, mentioning some properties of the kernel
X(t, s). To be more specific, X(t, s) is defined by the formula

(28) X(t, s) = I +
∫ t

s

k̃(t, u) du,

where k̃ stands for the resolvent kernel associated to the Volterra kernel
k(t, s) from (5).
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From (26) it follows that the operator

(29) f →
∫ t

0

X(t, s)f(s) ds,

which is defined for any f ∈ L2([0, T ],Rn), takes its values in the space
of absolutely continuous functions on [0, T ]. Actually, the operator
(29) is completely continuous from L2([0, T ),Rn) into C([0, T ],Rn),
because when f belongs to a bounded set in L2([0, T ],Rn), ẋ from (25)
also belongs to a bounded set of the same space.

The above mentioned properties of the operator (29) allow us to deal
with the functional-integral equation in the space C([0, T ],Rn). It
is adequate to assume that the operator N is acting from the space
C([0, T ],Rn) into L2([0, T ],Rn). If we assume N : C → C, then it
is obvious that a result similar to Theorem 1 can be obtained for the
problem (2), (3).

THEOREM 2. Consider the problem (2), (3), under the following
hypotheses.

(a) The operator L is linear, continuous, and of Volterra type on the
space L2([0, T ],Rn).

(b) N is an operator taking the space C([0, T ],Rn) into the space
L2([0, T ],Rn), such that

(30) |Nx − Ny|L2 ≤ λ||x − y||,
where λ is a sufficiently small constant.

Then there exists a unique solution in C([0, T ],Rn) of the problem
(2), (3), which is absolutely continuous.

The proof is straightforward and is based on Banach contraction
mapping in the space C([0, T ],Rn), applied to the operator appearing
in the right-hand side of equation (27). We omit the details.

REMARK. If condition (a) of Theorem 2 is verified and condition (b) is
replaced by the continuity of N from C([0, T ],Rn) into L2([0, T ],Rn),
plus a growth condition for N similar to (22), then the existence of a
solution to the problem (2), (3) is guaranteed.
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Indeed, the Schauder fixed point theorem is applicable to the operator
appearing in the right-hand side of equation (27), which takes a ball Br

of C([0, T ],Rn) into itself. The compactness of this operator guarantees
the existence of a fixed point, which is a solution of (2), (3).

We notice that these results can be easily applied to integro-
differential equations such as

ẋ(t) =
∫ a(t)

0

k(t, s)x(s) ds +
∫ b(t)

0

K(t, s, x(s)) ds,

where 0 ≤ a(t), b(t) ≤ t on [0, T ] are given functions with convenient
properties.
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