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PROLATE SPHEROIDAL WAVELETS
IN HIGHER DIMENSIONS

GILBERT G. WALTER

ABSTRACT. Prolate spheroidal wavelets (PS wavelets)
based on the first prolate spheroidal wave function (PSWF),
were recently introduced. They were shown to have many
desirable properties lacking in other wavelets. In particular,
the subspaces belonging to the associated MRA were shown to
be closed under differentiation and translation. In this paper,
we introduce prolate spheroidal wavelets in higher dimensions.
They are similar to the one-dimensional versions in that they
are based on an eigenfunction of an integral operator. But
there is not, in general, an associated differential operator
which is helpful in the one dimensional case for construction.
Hence another method of construction must be used.

1. Introduction. The prolate spheroidal wave functions (PSWFs),
{ϕn,σ,τ (t)}n∈Z , constitute an orthonormal basis of the space of σ-
bandlimited functions on the real line. They are the eigenfunctions
of an integral operator with the sinc function, S(t) = sin πt/πt, as its
kernel:

(1)
∫ τ

−τ

ϕn,σ,τ (x)
1
T
S

(
t− x

T

)
dx = λn,σ,τ ϕn,σ,τ (t),

where T = π/σ. They were obtained, in a series of papers by
Slepian, Pollak and Landau at Bell Labs, as the solutions of an energy
concentration problem which led to this integral equation. The problem
was to find the normalized σ-bandlimited function with the maximum
energy concentration on the interval [−τ, τ ]. The solution is the first
PSWF ϕ0,σ,τ ; the function orthogonal to ϕ0,σ,τ which possesses the
maximum energy concentration on [−τ, τ ] is ϕ1,σ,τ , etc. They are
also solutions to a Sturm-Liouville problem arising from the Helmholz
equation on the prolate spheroid. Ergo the name.
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The system carries two parameters, σ and τ, either one of which can
be eliminated by a change of variable. The properties of these PSWFs
were extensively studied and reported in the classic papers [2, 3, 4, 7,
8, 9] during the 1960’s.

Recently, there has been renewed interest in PSWFs in part because
of their sampling [15] and multi-scale properties [14]. A system of
wavelets based on these PSWFs, made possible by their multi-scale
nature, was introduced in an earlier paper [14] (called PS wavelets for
short). The PS wavelets were constructed in such a way as to retain the
energy concentration property and were shown to have many desirable
properties lacking in other wavelet systems. Just as with the PSWFs,
these wavelets are entire functions with finite energy, but by choosing
τ appropriately, can be made arbitrarily small outside of [−τ, τ ].

We organize this paper as follows. This section is followed by Sec-
tion 2, in which we recall some related properties of PS wavelets in one
dimension. This is followed by consideration of the maximization prob-
lem in higher dimensions with a discussion of the associated eigenvalue
problem. The system of wavelets follows as in one dimension for appro-
priate regions Ω, and has similar properties. Unfortunately, the “lucky
accident” in which the PSWFs are simultaneously eigenfunctions of a
differential operator and an integral operator fails to hold in general in
higher dimensions but can be replaced by another remarkable accident.
In special cases such as when Ω consists of a disk, associated differential
operators can be found, but these are not the regions that lead to PS
wavelets. The disk case was already studied by Slepian who developed
it in detail [8].

2. PS wavelets in one dimension. Before constructing the higher
dimensional PS wavelets, we review the PS wavelets in one dimension
introduced in [14]. A scaling function φ = ϕ0,π,τ was defined as the π-
bandlimited function of norm 1 whose energy on [−τ, τ ] is maximized.
The integer translates formed a Riesz basis of the space V0 ⊂ L2 (R).
This space V0 turned out to be the Paley-Wiener space Bπ of π-
bandlimited functions no matter what the choice of τ > 0.

This space then becomes part of the family of nested subspaces {Vm}
of a multi-resolution analysis (MRA). The other spaces are obtained,
as usual, by dilations by factors of two and consist of the Paley-Wiener
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spaces Vm = B2mπ. Because they are entire functions, the bandlimited
functions cannot have compact support in the time domain. The
maximization problem, more precisely, is that of maximizing

(2) α(h, τ ) ≡
(∫ τ

−τ

|h2(t)| dt
)1/2

, h ∈ Bπ, ||h||L2(R) = 1.

and is solved by φ = ϕ0,π,τ . Although α can never be equal to 1, for τ
sufficiently large the energy of φ can be made arbitrarily small outside
of the interval of concentration [−τ, τ ]. For example, for τ = 2, σ = π,
the total energy outside of the interval is of the order of 10−6. Hence
the PS wavelets are not only superior as far as analytic properties are
concerned, but also similar to compactly supported wavelets for most
practical computations.

We recall the following properties proved in [13, 14].

Proposition 1. Let φ(t) = ϕ0,π,τ (t) be a π-bandlimited PSWF with
concentration interval [−τ, τ ]; then {φ(t − k)} is a Riesz basis of Bπ.
The PS mother wavelet, in turn, is given by

(3) ψ(t) := cos
(

3π
2
t

)
ϕ0,π/2,τ/2 (t),

which is orthogonal to all integer translates of φ(t). The translates of
the mother wavelet form a Riesz basis of the orthogonal complement of
V0 in V1.

As usual, we denote the wavelet subspace by W0 = span {ψ(t− n)}
with its dilations denoted by Wm = span {2m/2ψ(2mt− k)}, m ∈ Z.

In most of the standard wavelets, the derivatives of the scaling
function do not belong to the space V0, nor for that matter, to any
of the subspaces Vm. The exceptions are the Meyer wavelets which do
not have compact support, but even in this case the derivatives do not
belong to V0. Furthermore, none of the scaling functions with compact
support belong to C∞, so that they cannot be differentiated arbitrarily
often [1].

For any wavelet system the translation of an f ∈ V0 by an integer
is again in V0, but if it is translated by some other real number, it no
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longer belongs to V0. In fact, in most cases, it no longer belongs to any
of the subspaces Vm. This, of course, becomes a problem when there
are measurements based on an independent variable without a natural
zero, for example if the independent variable is time. In fact, we have
the following [13]:

Proposition 2. Let φ(t) = ϕ0,π,τ (t) be the PS scaling function.
Then

(i) φ(k) ∈ V0, for k = 0, 1, . . . ;

(ii) φ(t− β) ∈ V0 for any β ∈ R; and

(iii) if f ∈ V0 has the expansion

f(t) =
∞∑

n=−∞
αnφ(t− n),

then f ′ ∈ V0 and

(4) f ′(t) =
∞∑

n=−∞
anφ(t− n);

where an =
∑

j �=n((−1)j−n/(j − n))αj ;

(iv) moreover, if β is not an integer, then

(5) f(t− β) =
∞∑

n=−∞
bnφ(t− n),

where bn =
∑∞

j=−∞ αjS(n− j − β).

Formula (4) indicates that differentiation can be reduced to a simple
algebraic operation (discrete convolution) just as with Fourier series.
The same is true for translations. Other operations such as dilation
and convolution were also shown to have simple expressions in terms
of the coefficients.
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3. Maximization in higher dimensions. The scaling function of
the PS wavelets was defined as the first PSWF ϕ0,π,τ (t), the one with
maximum concentration on [−τ, τ ] among normalized π-bandlimited
functions. In Rd in general, we replace the bandlimiting interval [−σ, σ]
in the Fourier transform domain by an arbitrary compact set Ω ⊂ Rd.
In the time domain, we replace the concentration interval [−τ, τ ] by
another compact set Γ ⊂ Rd To avoid pathology, we shall assume that
both sets have positive measure. We denote by BΩ the subspace of
L2(Rd) composed of functions which are the inverse Fourier transform
of a function with compact support in Ω. The maximization problem
(2) is replaced by the problem of finding the function which maximizes
α given by

(6) α(h,Γ) ≡
(∫

Γ

|h2(t)| dt
)1/2

, h ∈ BΩ, ||h||L2(Rd) = 1.

The solution to this problem will be the multi-dimensional analog
of the first PS wave function ϕ0,σ,τ (t). Since this is all we need to
construct the scaling function, we shall not bother with the other PS
wave functions. Later we will specialize our choice of Ω to make possible
a wavelet basis.

This is the same maximization problem considered by Slepian in [8];
his results for the disk are comparable to the one-dimensional case and
give a complete set of prolate spheroidal wave functions.

3.1 An eigenvalue problem. In the one-dimensional case the max-
imization problem is solved by converting it to an eigenvalue problem
for an integral operator. This operator, in turn, is shown to commute
with a differential operator which therefore has the same eigenfunc-
tions. Because of this “lucky accident” the differential operator can
be used for calculation. In higher dimensions, the differential opera-
tor is usually not available (except in the case of a ball), but instead
a new method of calculating the eigenfunctions based directly on the
integral operator is used. This procedure is a generalization of the
one-dimensional procedure introduced in [10].

The following proposition is a straightforward generalization of the
result in one dimension and is given in [8] with a slightly different
approach.
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Proposition 3. Let Ω,Γ be compact sets in Rd of positive measure,
let SΩ(t) be the inverse Fourier transform of χΩ, the characteristic
function of Ω; then the solution to the maximization problem (6) is
given by the solution to the eigenvalue problem

(7)
∫

Γ

SΩ(t− x)f(x) dx = λf(t)

with the largest eigenvalue.

The space BΩ is just the multi-dimensional version of a Paley-Wiener
space. Let f ∈ BΩ; then the Fourier transform satisfies f̂ = f̂ ·χΩ since
f̂ has support in Ω. Then, by taking the inverse Fourier transform, and
using the fact that convolution transforms into multiplication, we find
that

f = f ∗ SΩ.

That is, the function SΩ(t− x) is just the reproducing kernel of BΩ.

If we now assume that f has unit norm in the L2(Rd) sense, then the
maximization problem becomes one of maximizing∫

Γ

|f ∗ SΩ(t)|2 dt = 〈SΩ,Γ f, SΩ,Γ f〉Γ = ||SΩ,Γ f ||2Γ

where SΩ,Γ is the operator on BΩ with kernel SΩ(t − x)χΓ(t). This
same formula can also be expressed as∫

Γ

|f ∗ SΩ(t)|2 dt =
∫

Γ

(f ∗ SΩ)(t)f(t) dt = 〈SΩ,Γ f, f〉Γ

by the reproducing property of SΩ(t− x). This shows us the operator
is nonnegative and, in fact, is positive. This follows from the fact that
if it were equal to zero for some nonzero f ∈ BΩ, then f would be zero
on Γ, a distinct impossibility since BΩ is composed of entire functions
in Cd. A similar argument shows it to be self-adjoint. Furthermore, it
is a Hilbert-Schmidt operator since∫

Γ

∫
Rd

|SΩ(t− x)|2 dx dt =
∫

Γ

∫
Rd

|SΩ(x)|2 dx dt =
∫

Γ

1 dt <∞,

i.e., SΩ(t− x)χΓ(t) ∈ L2(R2d).
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Hence there exists a sequence of positive real eigenvalues λ0 ≥ λ1 ≥
λ2 ≥ · · · > 0, with their corresponding normalized eigenfunctions
ϕ0,Ω,Γ, ϕ1,Ω,Γ, ϕ2,Ω,Γ, . . . . Thus the solution to the maximization
problem is given by f = ϕ0,Ω,Γ, and λ0 = 〈SΩ,Γϕ0,Ω,Γ, ϕ0,Ω,Γ〉 is the
maximum value.

In one dimension, the eigenvalues all have multiplicity one, but the
proof of this uses the differential equation of the PSWF as well [9]. This
is also true for very regular regions in higher dimensions, but in general,
we can conclude only that each eigenvalue has finite multiplicity.
These eigenfunctions {ϕn,Ω,Γ} constitute the d-dimensional PSFWs
associated with the sets Ω and Γ; they are orthogonal on Γ, and, in fact,
constitute an orthogonal basis of L2(Γ) since 0 is not an eigenvalue of
such a positive operator. They are also orthogonal on Rd which can
easily be shown as in one dimension.

We shall not pursue this orthonormal system further since we are
mainly interested in the first function ϕ0,Ω,Γ which we shall use to
construct a wavelet system.

Examples of Kernels.

• The standard one-dimensional case is the symmetric interval Ω =
[−σ, σ], for which the kernel can be given in closed form SΩ(t) =
(sinσt/πt). This extends immediately to a d-dimensional interval Ω =
[−σ, σ]d; the kernel is SΩ(t1, t2, . . . , td) = (sinσt1/πt1) · (sinσt2/πt2 ·
. . . · (sinσtd/πtd).
• For the triangular region bounded by ω1 + ω2 = π,−ω1 + ω2 =

π, ω2 = 0, the kernel is SΩ(t1,t2) = [2t1eiπt2 − 2(t1 + t2)eiπt1 +
2(t1 − t2)e−iπt1 ]/4π2(t21 − t22)t1. Similarly for other regions in the plane
bounded by straight lines.

• The ball in three dimensions ω2
1+ω2

2+ω2
3 ≤ 1 gives us SΩ(t1,t2, t3) =

1/(2π2|t|3)[sin |t| − |t| cos |t|] where |t| = (t21 + t22 + t23)
1/2.

• The disk in two dimensions ω2
1 + ω2

2 ≤ 1 leads to the kernel
SΩ(t1,t2) = 1/(2π)

∫ 1

0
J0(|t|r)r dr = (J1(|t|)/2π|t|) where |t| = (t21 +

t22)
1/2 and J0, J1 are the Bessel functions of order 0 and 1 respectively,

[6]. In this example, the PSWFs turn out to be given by eigenfunctions
of the integral operator with the same Bessel function kernel [8].
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3.2 Sampling function. Up to now our regions Ω and Γ are quite
general, but we need some restrictions in order to get a scaling function
whose integer translates from a basis of BΩ. In the one-dimensional case
we used the interval [−π, π] for our region Ω, but could have used others
as well provided they satisfy the conditions we specify later on. We will
also assume Ω to be compact as in one dimension.

The first two conditions will guarantee that {SΩ(t − k)} for k ∈ Zd

is an orthogonal basis of V0 = BΩ. They are

(S1) Ω ∩ {Ω + 2πk} � ∅ for all k ∈ Zd, k 
= 0,

(S2) ∪k∈Zd{Ω + 2πk} � Rd.

The standard way (in wavelet theory) of showing orthogonality in-
volves the following formula in the Fourier transform domain [1]:

(8)
∑

k∈Zd

|ŜΩ(ω + 2πk)|2 = 1.

That this holds almost everywhere in our case is evident from these
two conditions since ŜΩ(ω) = χΩ(ω), the characteristic function of our
region. We also get another result for free

(9)
∑

k∈Zd

ŜΩ(ω + 2πk) = 1.

which again holds almost everywhere for ω ∈ Rd. This will enable us
to get a sampling theorem for f ∈ BΩ.

Examples of sampling functions.

• In one dimension, we have the interval [−π, π] as our standard
example, but any interval of length 2π could have worked just as well.
In fact, even more complex sets will work, e.g., Ω = [−π/2, π/2] ∪
[5π/2, 7π/2]. See [5] for more examples.

• In two dimensions, the Cartesian product of two of the one dimen-
sional examples will work. Another example is Ω = D ∪ ({S − D +
(2π, 0)}), where D is the unit disk and S = [−π, π]2.

• Another example in two dimensions with an interesting symmetry
is the bow tie set. Let Ξ1 be the set bounded by the lines ω1 +ω2 = 0,
ω1 − ω2 = 0, ω2 = π, ω2 = −π inside the square S of Ξ1, and let Ξ2
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be the complementary set obtained by replacing the last two lines by
ω1 = π, ω1 = −π. Then Ω = Ξ1 ∪ {Ξ2 + (2π, 0)}.

Clearly the function SΩ(t) plays a number of roles in our space BΩ.
It is the reproducing kernel since SΩ ∗ f = f , its integer translates are
orthonormal 〈SΩ, SΩ(·−k)〉 = δ0k, and it satisfies a sampling condition
SΩ(k) = δ0k. In fact, we can even say a little more.

Proposition 4. Let Ω be a set in Rd satisfying conditions (S1) and
(S2), let SΩ(t) be the inverse Fourier transform of the characteristic
function χΩ(ω). Then {SΩ(t− k)} is an orthonormal basis of BΩ and

(10) f(t) =
∑

k∈Zd

f(k)SΩ(t− k)

for each f ∈ BΩ, where the convergence is uniform and in the sense of
L2(Rd).

Although the proofs of these results are quite well known in the one-
dimensional case, we repeat them here for completeness.

(1) Orthogonality. By using (8) we get

∫
Rd

SΩ(t− k)SΩ(t) dt

= (2π)−d

∫
Rd

|ŜΩ(ω)|2e−iω·k dω

= (2π)−d
∑

n∈Zd

∫
[−π,π]d−2πn

|ŜΩ(ω)|2e−iω·k dω

= (2π)−d

∫
[−π,π]d

∑
n∈Zd

|ŜΩ(ω + 2πn)|2e−iω·k dω

= (2π)−d

∫
[−π,π]d

e−iω·k dω = δ0k,

which is the desired orthonormality.
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(2) Sampling condition. By using (9), we get

SΩ(k) = (2π)−d

∫
Rd

ŜΩ(ω)e−iω·k dω

= (2π)−d

∫
[−π,π]d

∑
n∈Zd

ŜΩ(ω + 2πn)e−iω·k dω

= (2π)−d

∫
[−π,π]d

e−iω·k dω = δ0k.

(3) Completeness. We assume f ∈ BΩ with all its coefficients equal
to zero, i.e.,

ak =
∫
Rd

f(t)SΩ(t− k) dt = 0, k ∈ Zd;

then we must show that f = 0. By using the Fourier transform, we see
that these coefficients are given by

(2π)−d

∫
Rd

f̂(ω)ŜΩ(ω)eiω·k dω

= (2π)−d

∫
[−π,π]d

∑
n∈Zd

f̂(ω + 2πn)ŜΩ(ω + 2πn)eiω·k dω = 0.

Since these are the Fourier coefficients of a periodic function, it follows
that it must be zero as well,

∑
n∈Zd

f̂(ω + 2πn) ŜΩ(ω + 2πn)

=
∑

n∈Zd

f̂(ω + 2πn)χΩ(ω + 2πn)

= f̂(ω)χΩ(ω) = 0 a.e. for ω ∈ Ω.
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(4) Uniform convergence. As with all orthonormal bases, we know
the series expansion of f converges in the sense of L2(Rd). But in this
case it also converges uniformly. Indeed we have that

f(t) −
∑

k∈Zd

k<N

akSΩ(t− k)

= (2π)−d

∫
Rd

[
f̂(ω) −

∑
k<N

akŜΩ(ω)e−iω·k
]
eiω·t dω

= (2π)−d

∫
[−π,π]d

[ ∑
n∈Zd

f̂(ω+2πn) −
∑
k<N

akŜΩ(ω+2πn)e−iω·k
]
eiω·t dω

= (2π)−d

∫
[−π,π]d

[
f̂∗(ω) −

∑
k<N

ake
−iω·k

]
eiω·t dω,

where f̂∗ is the periodic extension of f̂ . We then take absolute values
to get∣∣∣f(t) −

∑
k∈Zd,k<N

akSΩ(t− k)
∣∣∣

≤ (2π)−d

{∫
[−π,π]d

∣∣∣f̂∗(ω) −
∑
k<N

ake
−iω·k

∣∣∣2 dω∫
[−π,π]d

|eiω·t|2 dω
}1/2

=
∥∥∥f̂∗ − ∑

k<N

ake
−iω·k

∥∥∥
2
→ 0 as N → ∞.

since the ak are also the Fourier coefficients of f̂∗. The last bound is
independent of t, and we have the required uniform convergence

(5) Sampling series. The coefficients are given by

ak =
∫
Rd

f(t)SΩ(t− k) dt

= (2π)−d

∫
Rd

f̂(ω)ŜΩ(ω)eiω·k dω

= (2π)−d

∫
Ω

f̂(ω)eiω·k dω = f(k),

and hence the uniform convergence holds for the sampling series as
well.
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4. The PS wavelets. The wavelet system based on the PSWFs
has several components (as do wavelets systems in general). These
components include a scaling function φ, whose d-dimensional integer
translates form a basis of a space V0, the mother wavelet ψ and the
multiresolution analysis {Vm} of dilations of V0. Both the scaling
function and the mother wavelet are defined by PSWFs, but we shall
concentrate on the former.

4.1 Scaling function. As in the one-dimensional case, we choose
the scaling function of the PS wavelet to be the first PSWF, φ(t) =
ϕ0,Ω,Γ(t), and consider the set of translates of φ in Zd, {φ(t−n)}n∈Zd .
We assume that Ω satisfies conditions 1) and 2) needed to obtain a
sampling function. If the concentration set Γ is sufficiently large, the
energy outside of the set will be negligible. This is clear if Γ is the
Cartesian product of intervals by the one-dimensional results. If we
take “sufficiently large” to mean that Γ contains a large d-dimensional
interval centered at the origin, then the statement must be true in
general as well.

We first have to show that {φ(t − n)}n∈Zd , if it is to be a bona fide
scaling function, is a Riesz basis of V0 = BΩ. Again this is clear if Γ is
a d−dimensional interval because in that case φ̂ is positive on Ω. For
the general case we add another condition

(W3) ϕ̂0,Ω,Γ(ω) 
= 0 for ω ∈ Ω.

This is actually a condition on Γ since we know that for some Γ it
does hold, but perhaps not for all. In the one-dimensional case it follows
from the fact that φ is zero free in the interval [−τ, τ ] and is also the
eigenfunction of the Fourier transform (with a change of scale).

Proposition 5. Let φ(t) = ϕ0,Ω,Γ(t), and let Ω and Γ be such that
conditions (S1), (S2) and (W3) hold. Then {φ(t − n)}n∈Zd is a Riesz
basis of V0.

The proof is similar to that in one dimension and is most easily
phrased in terms of a sufficient condition for a Riesz basis involving
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the Fourier transform. This condition is that if the series∑
n∈Zd

|ϕ̂0,Ω,Γ(ω − 2πn)|2

has a positive upper and lower bound, then it is the Riesz basis of its
close linear span [1]. Since ϕ̂0,Ω,Γ has compact support on Ω and by
condition (W3) is positive there, then it follows from condition (S1)
that the lower bound is attained for some ω ∈ Ω provided that ϕ̂0,Ω,Γ

is continuous on Ω. To see that it is, we return to Proposition 3, which
gives us

λ0ϕ0,Ω,Γ(x) =
∫

Γ

SΩ(x− t)ϕ0,Ω,Γ (t) dt

=
∫
Rd

SΩ(x− t)χΓ(t)ϕ0,Ω,Γ (t) dt

= [SΩ ∗ (χΓ ϕ0,Ω,Γ)](x).

Since the Fourier transform takes convolutions into products, we find
that

λ0ϕ̂0,Ω,Γ(ω) = λ0φ̂(ω) = ŜΩ(ω)(χ̂Γφ)(ω)

= (2π)d χΩ(ω)(SΓ ∗ φ̂)(ω)

= (2π)d χΩ(ω)
∫

Ω

SΓ(ω − ξ) φ̂(ξ) dξ

from which it follows by an elementary argument that φ̂ is bounded
and continuous on Ω. The upper bound follows from the same sort of
consideration.

We still have to show that the closed linear span of {φ(t−n)} is equal
to V0. Indeed, let f ∈ V0 = BΩ, then f̂ has compact support on Ω and
is in L2(Ω) and so is f̂/φ̂. Therefore it has a Fourier series∑

n

ane
−iω·n

convergent in the sense of L2(Ω) to f̂/φ̂, and

f̂(ω) =
∑

n

ane
−iω·nφ̂(ω).
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By taking the inverse Fourier transform we get

(11) f(t) =
∑

n

anφ(t− n),

which gives us our conclusion.

These formulae also give us a way of finding the coefficients in the
scaling function series (11). Indeed the dual scaling function φ̃ is given
by the well known construction in wavelet theory

̂̃
φ(ω) =

φ̂(ω)∑
n∈Zd |φ̂(ω − 2πn)|2

.

From this, it follows that

an = 〈f, φ̃(· − n)〉, f ∈ BΩ.

Because of the localization property of wavelets, it is often possible
to replace the integral in this last formula by f(n)/φ̂(0). The resulting
series does not converge to f but it will give a good approximation
when we change scales in the next subsection.

4.2 Change of scale. In one dimension, a multiresolution analysis
usually involves a scale change by a factor of two as was mentioned in
Section 2. That is, the spaces {Vm} are related to each other by the
condition that f ∈ Vm if and only if f(2·) ∈ Vm+1. In higher dimensions
many other options are open to us a dilation may still be by a factor
of 2, but can, in general, involve a linear transformation A on Rd with
certain properties. These are [5]:

(M4) A is nonsingular and AZd ⊂ Zd,

(M5) The eigenvalues of A satisfy |λj(A)| > 1.

The associated dilation subspaces {Vm} then are related by f(x) ∈
Vm if and only if f(Ax) ∈ Vm+1. We still need more conditions to
ensure that {Vm} is an MRA. These involve the relation between A
and the set Ω in the Fourier transformed space. Let B = A∗, the
adjoint of A; we require that

(M6) Ω ⊂ BΩ and ∪m(BmΩ) � Rd.
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The following was proved by Madych [5]:

Proposition 6. Let Ω satisfy the conditions (S1) and (S2) in
subsection 3.2, let A satisfy the conditions (M4) and (M5) above, let
Ω, A satisfy condition (M6); then

(1) Vm is the Paley-Wiener space of L2(Rd)functions whose Fourier
transforms vanish outside of BmΩ and

(2) {Vm} is a multiresolution analysis of L2(Rd).

The corresponding Riesz basis of Vm is given by {φ(Amx − n)}
provided condition (W3) is also satisfied. Hence every f ∈ Vm has a
convergent expansion in terms of this system. An alternate expansion,
as mentioned in the previous subsection, is given by

(12) fm(x) =
∑

n

[f(A−mn)/φ̂(0)]φ(Amx− n).

While this series does not converge to f(x) necessarily for fixed m, it
does converge to fm(x), which then converges to it as m→ ∞. In fact,
we have the same conclusion holding for a larger class of functions, those
satisfying a certain differentiability condition independent of m. This
differentiability condition is the one associated with Sobolev spacesHα,
which, in turn, are characterized in terms of their Fourier transforms
as f ∈ Hα whenever

∫ |f̂(ω)|2(|ω|2 + 1)α dω <∞ [11]. This turns out
to be a Hilbert space with the norm given by this expression and the
obvious inner product. For α = 1 and d = 1, it corresponds to functions
which, together with their (weak) derivatives, belong to L2(R).

Proposition 7. Let f ∈ Hα(Rd), let fm ∈ Vm be given by (12) and
let α > β > d/2; then

||fm − f ||∞ = O((detB)−m(α−β)).

Note that since the eigenvalues of A and hence of B are larger than 1
in magnitude, this difference must converge to 0 as m→ ∞. The proof
of both is similar, and involves the Poisson summation formula applied
to (12). We assume for the moment that f = Pmf ∈ Vm (Pmf is the
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projection of f onto Vm) and compare its Fourier transform to that of
fm which is

f̂m(ω) =
∑

n

[f(A−mn)/φ̂(0)] φ̂(B−mω)e−iB−mω·n(detA)−m

=
∑

k

[f̂(ω + 2πBmk)] φ̂(B−mω)/φ̂(0).

Since both f̂ and f̂m have support in BmΩ, the difference between the
two is merely

(13) f̂(ω) − f̂m(ω) = f̂(ω)[1 − φ̂(B−mω)/φ̂(0)].

Supposing now that f only satisfies the hypothesis, we look for a bound
on the pointwise difference of f and fm. By the Fourier integral theorem
we find that

(14)
|fm(x) − f(x)| ≤ (2π)−d||f̂m − f̂ ||1

≤ 1
(2π)d

(||f̂m − P̂mf ||1 + ||P̂mf − f̂ ||1).

We now apply (13) (with f replaced by Pmf) to the first term on the
right to get

(15) (2π)−d||f̂m − P̂mf ||1

≤ (2π)−d||P̂mf ||2
{ ∫

BmΩ

∣∣∣ φ̂(0) − φ̂(B−mω)

φ̂(0)

∣∣∣2 dω}1/2

≤ (2π)−d||f̂ ||2
{∫

Ω

∣∣∣ φ̂(0) − φ̂(ω)

φ̂(0)

∣∣∣2 dω}1/2

det(B)−m/2.

Since P̂mf and f̂ agree on BmΩ, and the former has support on this
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set, the second term obeys

1
(2π)d

||P̂mf − f̂ ||1

=
1

(2π)d

∫
Rd−BmΩ

|f̂(ω)| dω

=
1

(2π)d

∫
Rd−BmΩ

|f̂(ω)|(|ω|2 + 1)α/2(|ω|2 + 1)−α/2 dω

≤ 1
(2π)d

{∫
Rd

|f̂(ω)|2(|ω|2 + 1)α dω

∫
Rd−BmΩ

(|ω|2 + 1)−α dω

}1/2

=
1

(2π)d
||f ||Hα

{∫
Rd−BmΩ

(|ω|2 + 1)−α dω

}1/2

.

Here ||f ||Hα denotes the norm of f in the Sobolev space. We finish off
the proof by observing that∫

Rd−BmΩ

(|ω|2 + 1)−α dω

≤ sup
Rd−BmΩ

(|ω|2 + 1)−α+β

∫
Rd−BmΩ

(|ω|2 + 1)−β dω

and that ω /∈ BmΩ implies that B−mω /∈ Ω. Since Ω contains a
neighborhood of 0, it follows that |B−mω| > c > 0. Hence, we find
that

sup
Rd−BmΩ

(|ω|2 + 1)−α+β < (detB)−2m(α−β)c,

which gives us our conclusion.

The most commonly used case is that of dyadic dilation in which
A = B = 2I. Then detB = 2d; but in all cases we have detB ≥ 2,
by the conditions on the eigenvalues. Hence we always get uniform
convergence.

4.3 Mother wavelet. The mother wavelet can be defined in a
number of different ways. It should be orthogonal to V0 and belong to
V1; it should be a basis of the orthogonal complement W0 of V0 in V1.
It is even possible to make it an orthogonal basis. The orthogonality
property of W0 is easy to come by since any function whose Fourier
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transform has support in the set BΩ − Ω will be orthogonal to V0 and
belongs to V1.

In the one-dimensional case we used the a pair of PSWFs, one
of which had support in [−2π,−π] and the other in [π, 2π]. Then
ψ̂(ω) := (ϕ̂0,π/2,τ (ω− 3π/2) + ϕ̂0,π/2,τ (ω+ 3π/2))/2, and it was shown
that translates of ψ constituted a Riesz basis of W0.

In the two-dimensional case where Ω is a square and B = 2I, we can
split the set 2Ω − Ω into eight congruent squares and find the shifted
Fourier transform of a PSWF on each of the squares. This is then
combined into the Fourier transform of the mother wavelet. Since this
is just a repetition of the arguments in the one-dimensional case, we
shall not pursue it further. In fact, since we are primarily concerned
with approximation rather than with decomposition, we shall not use
the mother wavelet in the remainder of this work.

4.4 Computation of PS scaling functions. The maximization
problem of Section 3 consists of maximizing the ratio

(16) ρ =
∫

Γ

|f(t)|2 dt
/ ∫

Rd

|f(t)|2 dt

for functions f whose Fourier transforms have support on Ω. Such
functions may be represented by Proposition 4 as

f(t) =
∑

n∈Zd

f(n)SΩ(t− n),

where SΩ(t) is the generalization of the sinc function. This sequence
of functions {SΩ(t− n)} is also an orthonormal basis of BΩ and hence
the coefficients {f(n)} ∈ l2(Zd). We then can substitute this series
into both integrals in (16) to get, after an interchange of integrals and
summations,

∑
n

f(n)
∑

k

f(k)
∫

Γ

SΩ(t− n)SΩ(t− k) dt

in the numerator and∑
n

f(n)
∑

k

f(k)
∫
Rd

SΩ(t− n)SΩ(t− k) dt =
∑

n

|f(n)|2
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in the denominator. The former is valid because of the dominated
convergence theorem, while the latter is a result of Parseval’s equality.

We now denote by AΓ,Ω the function on Z2d given by

(17) AΓ,Ω(n, k) =
∫

Γ

SΩ(t− n)SΩ(t− k) dt.

Thus the ratio in (16) can be expressed as

(18) ρ =
〈f , AΓ,Ωf〉

〈f , f〉 ,

where f now denotes the multi-sequence {f(n)} and the inner product is
just the l2(Zd) inner product. This may be considered as an operator
on l2(Zd) which again is nonnegative and self-adjoint. In fact, it is
positive definite since the inner product in the numerator of (18) is

〈f , AΓ,Ωf〉 =
∫

Γ

|f(t)|2 dt

and cannot be zero for nonzero f , as discussed in Section 3. The
operator is also compact by the same consideration as the operator
SΩ,Γ on BΩ.

Such operators have eigenvalue, eigenfunction pairs in which the
eigenvalues are all positive and between 0 and 1. In fact these eigen-
values are identical to those of SΩ,Γ because of the equivalence of (16)
and (18).

The problem of maximizing the quotient in (18) is solved by finding
the maximum eigenvalue of the operator AΓ,Ω and its associated eigen-
function. This is carried out by first truncating AΓ,Ω(n, k) to some
bounded set in Z2d and then ordering the d-tuples n and k in some
convenient way. This converts the operator into a matrix A whose
eigenvalues and eigenvectors approximate those of AΓ,Ω. The finite
sequence �φ = {φn} and number λ such that A�φ = λ�φ where λ is max-
imum value of the ratio is used to approximate the solution to (18).
This then is used to solve the original maximization problem by using
the associated sampling theorem.

(19) φ(t) =
∑

n

φnSΩ(t− n).
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The function φ(t) is the scaling function for the PS wavelets and is the
first prolate spheroidal wave function.

We may extend this result to other eigenvalues and eigenvectors but
do not do so since we are interested only in the dominant one for our
PS wavelet. The calculations just described have been carried out for
certain cases in which the eigenvalues and eigenvectors were found by
MAPLE. The results were promising, but no systematic error analysis
has as yet been carried out.

REFERENCES

1. I. Daubechies, Ten lectures on wavelets, SIAM, Philadelphia, 1992.

2. H.J. Landau and H.O. Pollak, Prolate spheroidal wave functions, Fourier
analysis and uncertainty, II, Bell System Tech. J. 40 (1961), 65 84.

3. , Prolate spheroidal wave functions, Fourier analysis and uncertainty,
III, Bell System Tech. J. 41 (1962), 1295 1336.

4. H.J. Landau and H. Widom, Eigenvalue distribution of time and frequency
limiting, J. Math. Anal. Appl. 77 (1980), 469 481.

5. W.R. Madych, Some elementary properties of multiresolution analysis of
L2(Rn), in Wavelets A tutorial in theory and applications (C. Chui, ed.),
Academic Press, Boston, 1992.

6. A. Papoulis, Signal analysis, McGraw Hill, New York, 1977.

7. D. Slepian, Some comments on Fourier analysis, uncertainty, and modeling,
SIAM Review 25 (1983), 379 393.

8. , Prolate spheroidal wave functions, Fourier analysis and uncertainty,
IV, Bell System Tech. J. 43 (1964), 3009 3058.

9. D. Slepian and H.O. Pollak, Prolate spheroidal wave functions, Fourier
analysis and uncertainty, I, Bell System Tech. J. 40 (1961), 43 64.

10. T. Soleski and G.G. Walter, A new friendly method of computing prolate
spheroidal wave functions and wavelets, Appl. Comp. Harmonic Anal. 19 (2005),
432 443.

11. I. Stakgold, Green’s functions and boundary value problems, John Wiley and
Sons, New York, 1979.

12. G. Szego, Orthogonal polynomials, AMS Colloq. Publ. 23, Amer. Math. Soc.,
Providence, 1974.

13. G.G. Walter, Prolate spheroidal wavelets: Differentiation, translation, and
convolution made easy, J. Fourier Anal. Appl. 11 (2005), 73 84.

14. G.G. Walter and X. Shen, Wavelets based on prolate spheroidal wave func-
tions, J. Fourier Anal. Appl. 10 (2004), 1 25.



PROLATE SPHEROIDAL WAVELETS 435

15. , Sampling with prolate spheroidal functions, J. Sampling Theory
Signal Image Processing 2 (2003), 25 52.

16. G.G. Walter and X. Shen, Wavelets and other orthogonal systems, 2nd ed.,
CRC Press, Boca Raton, Florida, 2001.

17. A. Zayed, Advances in Shannon’s sampling theory, CRC Press, Boca Raton,
Florida, 1993.

18. S. Zhang and J.M. Jin, Computation of special functions, Wiley, New York,
1996.

19. S. Zygmund, Trigonometric series, Cambridge, 1959.

Department of Mathematical Sciences, University of Wisconsin-
Milwaukee, Milwaukee, WI 53201
E-mail address: ggw@uwm.edu


