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FAST SOLVERS OF INTEGRAL EQUATIONS
OF THE SECOND KIND: QUADRATURE METHODS

GENNADI VAINIKKO

ABSTRACT. For the integral equation u(x) =
∫ 1

0
K(x, y)×

u(y)dy + f(x) with m-smooth f and m′-smooth K, m′ ≥ 2m,
quadrature fast (C, Cm) solvers are designed. The quadra-
ture system is solved by two grid iteration method, in certain
cases simply by the Gauss method. By a fast (C, Cm) solver
we mean a fully discrete method which involves the values of f
and K at O(n�) points and produces at the cost of O(n�) flops
an approximate solution un of the optimal convergence order
‖ u − un ‖0≤ cn−m

� ‖ f ‖m; moreover, we set a requirement
about a fast evaluation of values of the approximate solution.
Here ‖ · ‖0 and ‖ · ‖m are the norms in C[0, 1] and Cm[0, 1],
respectively, n�= n�(n)→∞ as n → ∞.

1. Introduction. Consider the integral equation

(1.1) u(x) =
∫ 1

0

K(x, y)u(y) dy + f(x), 0 ≤ x ≤ 1,

where f ∈ Cm[0, 1], K ∈ Cm′
([0, 1] × [0, 1]), m′ ≥ 2m. Assume that

the homogenous integral equation corresponding to (1.1) has in C[0, 1]
only the trivial solution. Introduce the norms

‖u‖0 = sup
0≤x≤1

|u(x)|, ‖u‖m =
m∑

k=0

‖u(k)‖0.

Our aim is to construct methods that produce approximate solutions
un, n ∈ N, such that
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• given the values of f and K at O(n�) suitably chosen points, where
n� = n�(n) → ∞ as n → ∞, the parameters of un are available at the
cost of O(n�) flops, and the accuracy

(1.2) ‖u − un‖0 ≤ cn−m
� ‖f‖m

is achieved, where u is the solution of (1.1) and c is a constant that is
independent of n and f ;

• having determined the parameters of un, the value of un at any
particular point x ∈ [0, 1] is available with the same accuracy as (1.2)
at the cost of O(1) flops.

We call such methods fast (C, Cm) solvers of equation (1.1) (although
we allow un to be only piecewise continuous). Note that a fast (C, Cm)
solver is a method of optimal accuracy order to solve (1.1): the
convergence speed (1.2) is the best that one can achieve for f ∈ Cm,
K ∈ C2m by a method of O(n�) flops. It is optimal also in the sense
of information: to obtain the convergence speed (1.2) for all f ∈ Cm,
‖f‖m ≤ 1, at least O(n�) values of f and K must be involved. More
precise and general formulations of these statements can be found in
the recent paper by Werschulz [23]; see [23] also for references to earlier
works on the optimality of methods and on the complexity of integral
equations. Forgetting for a moment the requirement m′ ≥ 2m, one
can achieve by an arithmetical work of O(n�) flops, with no restriction
to the amount of the sample points for f and K, as well as by any
arithmetical work using O(n�) sample values of f and K, the accuracy

‖u − un‖0 ≤ cn−m′′
� ‖f‖m, m′′ = min{m, m′/2},

and not more in the worst case when f varies in Cm[0, 1] and K varies in
Cm′

([0, 1]×[0, 1]) so that ‖(I−T )−1‖L(C[′,∞]) ≤ c1, ‖K‖Cm′ ([0,1]×[0,1]) ≤
c2. For instance, in the case m′ = m, the accuracy O(n−m/2

� ) can be
achieved and not more. This result was established already in 1967
by Emelyanov and Ilin [8]; let us mention also that they proposed a
quadrature method with two- and multigrid iterations as examples of
methods of the optimal accuracy ‖u − un‖0≤ cn

−m/2
� ‖f‖m at the cost

of O(n�) flops.

Thus, only in the case m′ ≥ 2m the accuracy (1.2) can be achieved
at the cost of O(n�) flops using O(n�) sample values of f and K.
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In [23], a fast (C, Cm) solver of equation (1.1) has been constructed
on the basis of piecewise polynomial Galerkin method and two grid iter-
ations to solve the Galerkin system in which the kernel K has been ap-
proximated by a suitable piecewise polynomial function. In the present
paper we show how different fast (C, Cm) solvers can be designed on the
basis of the quadrature method (Nyström method); depending on m′

and the method, the quadrature system is solved either directly by the
Gauss elimination or by two grid iterations. See also the paper by Lin
[12] where a quadrature preconditioner is constructed for the quadra-
ture system so that finally the accuracy O(n−m) of the approximate
solution un is achieved in O(n) flops using O(n) units of information.
Implicitly, a fast (C, Cm) solver with n� = n is constructed, but con-
ditions on f and K are not specified in [12]; the argument uses the
existence of the continuous derivative (∂/∂x)2m(∂/∂y)2mK(x, y), but
it seems that the smoothness condition can be reduced to K ∈ C2m

using Lemma 4.1 of the present paper. We quote also [22] where fast
solvers are constructed for integral equations of the second kind on
the real line on the basis of Daubechies orthogonal wavelet Galerkin
method and the Sloan iteration improvement of the Galerkin solution;
due to this improvement, one can use such small Galerkin systems that
no compression, so traditional in wavelet techniques, is needed at all.
Often also methods of the complexity O(n� log n�) flops, instead of the
optimal O(n�) ones, are held for fast solvers. Many of the wavelet
methods for boundary integral equations belong to this class; but re-
cently biorthogonal piecewise polynomial wavelet Galerkin methods of
optimal complexity O(n�) have been developed, see [7]. For possibly
weakly singular, Cauchy singular and hypersingular periodic integral
and pseudodifferential equations methods of complexity O(n� log n�)
have been designed in [14] in the scale of Sobolev norms on the basis
of the trigonometric Galerkin method and two grid iterations. See also
[13].

In the present paper, we confine ourselves to a simplest version of the
two grid iterations when a direct solution of the quadrature system by
the Gauss method is too expensive. Actually different other versions
of two and multi-grid iteration methods, cf., e.g., [2, 3, 6, 8 10],
and other iteration methods could be used, among them GMRES and
conjugate gradients. In the two grid iterations, the optimal accuracy
is achieved in a finite number of iteration steps uniformly with respect
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to n, whereas GMRES and conjugate gradients need O(log n) iteration
steps, hence to keep the computation in O(n) flops, only nested versions
of GMRES and conjugate gradients are acceptable; unfortunately, this
complicates the algorithms. A basis for all iteration methods is a
fast matrix-vector multiplication. We will demonstrate how, with a
suitable accuracy, the n2-matrix of the quadrature system and an n-
vector can be multiplied in O(n) flops; our elementary algorithm is
close to that of [23] and is effective only in case of smooth K, similarly
as the Nyström method itself is. In the literature, many other fast
matrix-vector multiplication algorithms, applicable to more general
problems, e.g., to boundary integral equations with singularities, are
known: the algorithms based on the panel clustering by Hackbusch,
the fast multipole algorithms, wavelet compression algorithms, and
others; they are developed mainly for the Galerkin discretisations and,
moreover, the complexity of many of them is O(n log n) instead of O(n).

The rest of the paper is organized as follows. In Section 2 we recall
with short proofs basic results about the convergence speed of the
quadrature method (the Nyström method); the accuracy ‖u − un‖0 ≤
cn−m‖f‖m is achieved at the cost of O(n3) flops if we solve the
quadrature system by the Gauss method. In Section 3 we recall/prove
some convergence results for the two grid iteration method applied to
the quadrature system. This enables us to reduce the computational
cost from O(n3) to O(n2) flops. Finally, in Section 4 we reduce the
computational cost to O(n) flops using instead of K(x, y) its piecewise
polynomial interpolant Kn(x, y). So we obtain a fast (C, Cm) solver
with n� = n (called fast solver 1 in the paper). A further fast
(C, Cm) solver (fast solver 2, with n� � nm′/m) is designed looking
for the solution of (1.1) in the form u = v + f where v is the new
unknown function. Finally, since Kn(x, y) is a degenerate kernel,
it is possible to represent the solution of the approximating integral
equation un(x) =

∫ 1

0
Kn(x, y)un(y)dy + f(x) in a closed form solving a

linear system of equations. In this way we design a third fast (C, Cm)
solver. Each of the fast solvers 1 3 has its algorithmical advantages and
disadvantages. In particular, for sufficiently smooth K (for m′ ≥ 3m),
the quadrature system may be solved directly by the Gauss method in
the fast solver 2; a similar property holds for the fast solver 3 but not
the fast solver 1.
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2. Preliminaries: quadrature method.

2.1 Compact convergence of operators. By c, c′, c1, . . . , we denote
generic constants that may have different values by different occur-
rences. For Banach spaces E and F , L(E, F ) denotes the space of
linear continuous operators from E into F , L(E) = L(E, E),

‖A‖L(E,F ) = sup
u∈E, ‖u‖E=1

‖Au‖F for A ∈ L(E, F ).

The concept of the compact convergence of linear operators has
been introduced in the framework of so called (abstract) discrete
convergence where an operator A ∈ L(E) acting in a Banach space
E is approximated by operators An ∈ L(En) acting in (possibly finite
dimensional) Banach spaces En, see [16 18, 20]. When treating the
Nyström method for an integral equation, it is sufficient to restrict
ourselves to the case where the spaces coincide: E = En, n ∈ N. In
this situation the concept of compact convergence of operators is closely
related to the concept of collectively compact approximation in sense
of Anselone, see [1] and the pioneering paper by Sobolev [15].

Definition 2.1. Let E be a Banach space and T, Tn ∈ L(E), n ∈ N.
We say that Tn converges compactly to T if the following two conditions
are fulfilled:

• ‖Tu − Tnu‖E → 0 as n → ∞ for every u ∈ E;

• (un) ⊂ E, ‖un‖E ≤ 1, n ∈ N ⇒ (Tnun) is relatively compact in E,
i.e., every subsequence of (Tnun) contains a subsequence that converges
in E.

Lemma 2.1. Assume that the operators T, Tn ∈ L(E), n ∈ N, are
compact, Tn converges compactly to T and the homogenous equation
u = Tu has only the trivial solution u = 0. Then there are n0 and a
constant c such that for all n ≥ n0 the inverse operator (I − Tn)−1 ∈
L(E) exists and ‖(I − Tn)−1‖L(E) ≤ c.

Proof. If the assertion fails then there exists a sequence (un),
n ∈ N ′ ⊂ N such that ‖un‖ = 1, ‖un − Tnun‖ → 0, N ′ � n → ∞. By
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Definition 2.1, sequence (Tnun) is relatively compact; let ‖Tnun−v‖ →
0, n ∈ N ′′ ⊂ N ′. Then also ‖un − v‖ → 0, N ′′ � n → ∞, that implies
‖Tn(un−v)‖ → 0 since ‖Tn‖ ≤ const by the Banach-Steinhaus theorem.
Thus ‖v‖ = 1 but ‖v−Tv‖ = limn∈N ′′ ‖un−Tnun‖ = 0 that contradicts
the condition of the lemma.

Actually it is possible to estimate ‖(I −Tn)−1‖ through ‖(I −T )−1‖.

2.2 Quadrature formula. Take a quadrature formula

(2.1)
∫ 1

0

v(y) dy =
n∑

j=1

wj,nv(xj,n) + ϕn(v) ∼=
n∑

j=1

wj,nv(xj,n)

with the weights wj,n ∈ R and knots xj,n, 0 ≤ x1,n < · · · < xn,n ≤ 1;
the rest term ϕn(v) is dropped in computations. We assume that

(2.2)
n∑

j=1

|wj,n| ≤ c, n ∈ N,

and that either

|ϕn(v)| ≤ cn−m‖v‖m, n ∈ N, v ∈ Cm[0, 1],(2.3)

or

|ϕn(v)| ≤ cn−m′‖v‖m′ , n ∈ N, v ∈ Cm′
[0, 1].(2.4)

Here m and m′ are the parameters from the smoothness conditions for f
and K, respectively, see Section 1. For most quadrature formulae in the
practice, wj,n ≥ 0, j=1, . . . , n, n ∈ N, and then (2.2) is a consequence
of (2.3) or (2.4); on the other hand, there are some quadratures, e.g.,
composite Newton-Cotes formulae of high order, that contain negative
weights but (2.2) is still fulfilled.

Since ‖ϕn‖L(C[0,1],K) ≤ 1 +
∑n

j=1 |wj,n|, with K = R or K = C
depending on whether a real or complex space C[0, 1] is considered,
it follows from (2.2) and (2.3)/(2.4) by the Banach-Steinhaus theorem
that ϕn(v) → 0 as n → ∞ for every v∈ C[0, 1]; moreover,

(2.5)

sup
v∈M

|ϕn(v)| → 0 as n → ∞ for relatively compact sets M ⊂C[0, 1].
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2.3 Nyström and quadrature methods. Replacing the integral in
equation (1.1) by the quadrature (2.1) we obtain the approximating
equation

(2.6) un(x) =
n∑

j=1

wj,nK(x, xj,n)un(xj,n) + f(x).

Its solution un(x) is uniquely determined by the grid values un(xj,n),
j = 1, . . . , n; collocating (2.6) at x = xi,n, we arrive at the system of
linear algebraic equations

(2.7)

un(xi,n) =
n∑

j=1

wj,nK(xi,n, xj,n)un(xj,n) + f(xi,n), i = 1, . . . , n,

to determine these grid values. This is the Nyström method: one
solves system (2.7) and extends the solution to all x ∈ [0, 1] using
(2.6). In this paper we distinguish the Nyström method and the
quadrature method. Speaking about the quadrature method we mean
the determination of the grid values un(xi,n), i = 1, . . . , n, from system
(2.7), without the Nyström interpolation (2.6). On a final stage we will
use a cheaper prolongation of the grid solution to [0, 1] based on the
piecewise polynomial interpolation (this procedure remains outside the
quadrature method in its standard meaning).

Let us denote by Tn the Nyström approximation of the operator T ,

(2.8) (Tnv)(x) =
n∑

j=1

wj,nK(x, xj,n)v(xj,n), v ∈ C[0, 1].

There is no norm convergence ‖T − Tn‖L(C) to 0, nevertheless, differ-
ent approaches have been proposed to prove the convergence of the
Nyström method, see, e.g., [1 5, 9, 11, 17, 19], especially the works
on collectively compact approximation theory [1] and discrete compact
convergence theory [17, 18, 20]. Namely, it follows from (2.5) and the
continuity of the kernel K that Tn → T compactly in C[0, 1], i.e.,

• ‖Tu − Tnu‖0 → 0 as n → ∞ for every u ∈ C[0, 1];

• (un) ⊂ C[0, 1], ‖un‖0 ≤ 1 ⇒ (Tnun) is relatively compact in C[0, 1].
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By Lemma 2.1, for all sufficiently large n, say for n ≥ n0, the
operators I−Tn are invertible in C[0, 1], and the inverses are uniformly
bounded,

(2.9) ‖(I − Tn)−1‖L(C) ≤ c, n ≥ n0.

We obtain the following well-known result.

Theorem 2.1. Assume (2.1) (2.3). Further, assume that K(x, y)
has for (x, y) ∈ [0, 1] × [0, 1] the continuous derivatives

∂

∂x

i

K(x, y),
∂

∂y

i

K(x, y), i = 0, 1, . . . , m,

and the homogenous integral equation v = Tv has only the trivial
solution. Then, with any f ∈ Cm[0, 1], the quadrature system (2.7) has
for all sufficiently large n a unique solution un(xi), i = 1, . . . , n, and
for the Nyström extension un(x) defined by (2.6), the error estimate

(2.10) ‖u − un‖0 ≤ cn−m‖f‖m, n ≥ n0,

holds where u = (I − T )−1f ∈ Cm[0, 1] is the solution of (1.1) and the
constant c is independent of n and f . In particular, for the quadrature
solution we have

(2.11) max
1≤i≤n

|u(xi,n) − un(xi,n)| ≤ cn−m‖f‖m, n ≥ n0.

Proof. Under formulated conditions on K and f , the solution u = (I−
T )−1f of equation (1.1) belongs to Cm[0, 1], and with un = (I−Tn)−1f ,
we have

(I − Tn)(u − un) = Tu − Tnu.

Together with (2.3), (2.9) and the equality

(2.12) (Tu)(x) − (Tnu)(x) = ϕn(K(x, ·)u(·)), 0 ≤ x ≤ 1,

this yields the estimate ‖u − un‖0 ≤ cn−m‖u‖m ≤ c′n−m‖f‖m.
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Remark 2.1. Assume, in addition to the conditions of Theorem 2.1,
that K(x, y) has continuous derivatives

(2.13)
∂

∂x

i ∂

∂y

j

K(x, y), i ≤ m, j ≤ m, (x, y) ∈ [0, 1] × [0, 1].

Then

(2.14) ‖T − Tn‖L(Cm) ≤ cnm,

and this can be used for an alternative convergence proof of the
Nyström method under the strengthened smoothness conditions on the
kernel; moreover, the error estimate in the Cm norm follows:

‖u − un‖m ≤ cn−m‖f‖m, n ≥ n0.

In the sequel we need the following perturbation result.

Theorem 2.2. Let the conditions of Theorem 2.1 be fulfilled. Con-
sider the perturbed quadrature system
(2.15)

ũn(xi,n) =
n∑

j=1

wj,n (K(xi,n, xj,n) + τi,j,n) ũn(xj,n) + f(xi,n) + σi,n,

i = 1, . . . , n,

where

(2.16) max
1≤i,j≤n

|τi,j,n| ≤ cn−m, max
1≤i≤n

|σi,n| ≤ cn−m‖f‖m.

Then system (2.15) is uniquely solvable for all sufficiently large n, and
for the solutions of (2.7) and (2.15) the following estimate holds

(2.17) max
1≤i≤n

|un(xi,n) − ũn(xi,n)| ≤ cn−m‖f‖m, n ≥ n0.

Proof. Denote by An = (ai,j,n)n
i,j=1, ai,j,n = δi,j − wj,nK(xi,n, xj,n),

the matrix of system (2.7). Introduce the matrix norm ‖An‖ =
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max1≤i≤n

∑n
j=1 |ai,j,n| which is the operator norm with respect to the

vector norm ‖un‖ = max1≤i≤n |ui,n| for un = (u1,n, . . . , un,n). With
these designations, (2.9) implies

(2.18) ‖A−1
n ‖ ≤ c, n ≥ n0.

Having this stability estimate, the assertions of Theorem 2.2 follow by
standard argument omitted here.

Direct addressing of the quadrature method to equation (1.1) creates
n × n system (2.7) which can be solved, e.g., by the Gauss method
in O(n3) flops. In Section 3 we show how the amount of work can
be reduced to O(n2) flops using two grid iterations; in Section 4 we
reduce the computational cost to O(n) flops by using a “cheaper”
approximation of the kernel K which maintains the accuracy order
(2.11). This will be used as the skeleton of a fast (C, Cm) solver with
n� = n.

3. Preliminaries: Quadrature two grid iterations.

3.1 Operator form of the two grid iterations. Two grid iteration
methods involve two approximation levels. On the fine level n, only
the direct Nyström operator Tn is applied, whereas on the coarse level
ν, also the inverse operator (I −Tν)−1 is involved, see [2, 3, 8, 10] for
the Nyström method and [9, 14, 21, 23] for related methods. In this
section we specify to our needs some results of [2, 3, 8].

Let ν ∈ N satisfy n0 ≤ ν ≤ n with n0 from (2.9). Using quadrature
(2.1) on the level ν, introduce the Nyström operator Tν similarly to
(2.8),

(Tνv)(x) =
ν∑

j=1

wj,νK(x, xj,ν)v(xj,ν), v ∈ C[0, 1].

Applying (I − Tν)−1 to both sides of the equation un = Tnun + f (the
Nyström equation (2.6)), we obtain the equivalent equation

(3.1) un = Snun+(I−Tν)−1f with Sn = Sn,ν = (I−Tν)−1(Tn−Tν),

which can be solved by the iteration method

(3.2) u0
n = 0, uk

n = Snuk−1
n + (I − Tν)−1f, k = 1, 2, . . . .
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This is the two grid iteration method for the Nyström equation (2.6)
(method number 1 in [2, 3]).

Lemma 3.1. Let ν ∈ N satisfy n0 ≤ ν ≤ n with n0 from (2.9), and
let the conditions of Theorem 2.1 be fulfilled. Then

(3.3) ‖Sn,ν‖L(C,Cm) ≤ c1, ‖Sn,ν‖L(Cm,C) ≤ c2ν
−m, n0 ≤ ν ≤ n,

(3.4)
‖S2l−1

n,ν ‖L(Cm,C) ≤ cl−1
1 cl

2ν
−lm, ‖S2l

n,ν‖L(Cm) ≤ cl
1c

l
2ν

−lm,

l = 1, 2, . . . ,

where the constants c1 and c2 are independent of n and ν.

Proof. Due to (2.2), ‖Tn‖L(C,Cm) ≤ c, n ∈ N. To obtain the first one
of inequalities (3.3), it remains to notice that, due to (2.9), also

(3.5) ‖(I − Tn)−1‖L(Cm) ≤ c, n ≥ n0.

Indeed, (I − Tn)−1 = I + Tn(I − Tn)−1, and for u ∈ Cm[0, 1] we have

‖(I − Tn)−1u‖m ≤ ‖u‖m + ‖Tn(I − T )−1
n u‖m

≤ ‖u‖m + ‖Tn‖L(C,Cm)‖(I − Tn)−1‖L(C)‖u‖0

≤ c‖u‖m, n ≥ n0.

In view of (2.9), the second one of inequalities (3.3) is a consequence of
the relations Tn−Tν = (T−Tν)−(T−Tn) and ‖T−Tn‖L(Cm,C) ≤ cn−m,
‖T − Tν‖L(Cm,C) ≤ c ν−m that directly follow from (2.3) and (2.12).

Inequalities (3.4) can be easily obtained by induction using (3.3).

Assume the conditions of Lemma 3.1. With un = (I − Tn)−1f , we
have

un − uk
n = Sn(un − uk−1

n ) = S2
n(un − uk−2

n ) = . . .

= Sk
n(un − u0

n) = Sk
nun,
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and due to (3.4) and (3.5),

‖un − u2l−1
n ‖0 ≤ cl−1

1 cl
2ν

−lm‖un‖m

≤ cl−1
1 cl

2c ν−lm‖f‖m, l = 1, 2, . . . .

For ν � nρ, 0 < ρ < 1, l ≥ 1/ρ, this estimate yields

‖un − u2l−1
n ‖0 ≤ cl−1

1 cl
2c

′n−m‖f‖m.

Together with Theorem 2.1, this implies the following result.

Theorem 3.1. Assume the conditions of Theorem 2.1. Further, let
ν � nρ, 0 < ρ < 1. Then for k = k� = 2l − 1 with an l ≥ 1/ρ, the
optimal error estimate

(3.6) ‖u − uk
n‖0 ≤ cn−m‖f‖m

holds true where u = (I − T )−1f is the solution of (1.1) and uk
n is

computed via the two grid iteration method (3.2).

For instance, in the case of ρ = 1/3, one of the most important
values of ρ, estimate (3.6) holds already for k = 5. Moreover, this
number can be reduced to k = 3 if K(x, y) has continuous derivatives
(2.13), see Remark 3.1 below. A general qualitative consequence is that
the accuracy comparable with (2.10) is achieved by uk

n for an iteration
number k which remains to be bounded as n → ∞.

Remark 3.1. If in addition to conditions of Lemma 3.1, K(x, y) has
continuous derivatives (2.13) then due to (2.14)

(3.7) ‖Sn,ν‖L(Cm) ≤ c ν−m, n0 ≤ ν ≤ n.

Remark 3.2. Instead of a priori fixing the number of iterations, the
two grid iterations (3.2) may be stopped on the first k = kn for which

(3.8) max
1≤i≤n

|uk
n(xi,n) − uk−1

n (xi.n)| ≤ δn−m max
1≤i≤n

|f(xi,n)|
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where δ > 0 is a parameter. Under the conditions of Theorem 3.1, (3.8)
implies (3.6). Moreover, kn remains bounded as n → ∞.

Remark 3.3. Let the conditions of Theorem 3.1 be fulfilled. If, in
the two grid iterations (3.2), the operations of the type Tnvn, Tνvn and
(I−Tν)−1vn are applied approximately with an accuracy O(n−m‖vn‖0),
then estimate (3.6) still holds true.

3.2 Matrix form of the two grid iterations. Let us present the matrix
form of the two grid iterations (3.2) and discuss the implementation
cost. On every iteration step we will compute the values of uk

n on two
grids, namely, on the fine grid xi,n, i = 1, . . . , n, and on the coarse
grid xi,ν , i = 1, . . . , ν, and we also compute an auxiliary function
fk

n := f + Tnuk−1
n − Tνuk−1

n on these two grids. For brevity, denote
provisionally

uk
i = uk

n(xi,n), fk
i = fk

n(xi,n),
i = 1, . . . , n (the values on the fine grid),

vk
i = uk

n(xi,ν), gk
i = fk

n(xi,ν),
i = 1, . . . , ν (same for the coarse grid).

The following algorithm is a realization of the two grid iteration
method (3.2); the number of iterations, k�, was defined in Theorem 3.1.

Algorithm 3.1. Given ν, n ∈ N, ν � nρ, 0 < ρ < 1, fix integers
l ≥ 1/ρ, k� = 2l−1, and set u0

i = f0
i = 0, i = 1, . . . , n, v0

i = g0
i = 0,

i = 1, . . . , ν. For k = 1, . . . , k�, do the following:

1. compute

fk
i = fk−1

i + f(xi,n) +
n∑

j=1

wj,nK(xi,n, xj,n)uk−1
j − uk−1

i ,

i = 1, . . . , n,

gk
i = gk−1

i + f(xi,ν) +
n∑

j=1

wj,nK(xi,ν , xj,n)uk−1
j − vk−1

i ,

i = 1, . . . , ν;
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2. compute vk
i , i=1, . . . , ν, by solving the ν × ν system

(3.9) vk
i =

ν∑
j=1

wj,νK(xi,ν , xj,ν)vk
j + gk

i , i = 1, . . . , ν;

3. compute

uk
i = fk

i +
ν∑

j=1

wj,νK(xi,n, xj,ν)vk
j , i = 1, . . . , n;

the output is given by uk�
i = uk�

n (xi,n), i = 1, . . . , n.

The computational cost of Algorithm 3.1 is of the same order as that
for one iteration: O(n2) flops for the application of the n × n, n × ν,
ν × n matrices, plus O(n3ρ) flops for solving the ν × ν system (3.9)
by the Gauss elimination or some other standard method of the same
complexity. The solution of the system reduces to O(n) flops if we take
ρ ≤ 1/3. To obtain a fast solver with n� = n, we need to reduce to O(n)
flops also the cost of the application of the n×n, n×ν, ν×n matrices in
Algorithm 3.1. At first look it may seem impossible since the underlying
matrices are fully populated. Nevertheless, we will succeed due to the
circumstance that an error of order O(n−m) is acceptable in the matrix
applications. Technically, instead of the kernel function K, we will use
a suitable piecewise polynomial interpolant of K; at this stage, we are
forced to strengthen the smoothness condition on K assuming that
K ∈ Cm′

, m′ ≥ 2m. By this approximation the information we need
about K is reduced to O(n) sample values as required in the definition
of the fast (C, Cm) solver with n� = n.

4. Fast solvers.

4.1 Approximation of the kernel function. Let ξλ, λ = 1, . . . , m′, be
some interpolation nodes in [−1, 1]:

−1 ≤ ξ1 < ξ2 < · · · < ξm′ ≤ 1.

Denote by

�λ(ξ) =
(ξ − ξ1) . . . (ξ − ξλ−1)(ξ − ξλ+1) . . . (ξ − ξm′)

(ξλ − ξ1) . . . (ξλ − ξλ−1)(ξλ − ξλ+1) . . . (ξλ − ξm′)
,

λ = 1, . . . , m′,
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the corresponding Lagrange fundamental polynomials of degree m′ − 1
that satisfy

�λ(ξμ) = δλ,μ (Kronecker symbol), λ, μ = 1, . . . , m′.

Take a number n′ ∈ N (later we will assume that either n′ � nm/m′

or n′ � n). Introduce subintervals Ip = Ip,n′ , p = 1, . . . , n′, such
that the closure of Ip is [(p − 1)/n′, p/n′], Ip ∩ Iq = ∅ for p �= q and
∪n′

p=1Ip = [0, 1]. To be concrete, we adopt the following agreement: if
ξ1 = −1, ξm′ < 1, then

Ip = [(p − 1)/n′, p/n′), p = 1, . . . , n′ − 1, In′ = [(n′ − 1)/n′, 1];

otherwise

I1 = [0, 1/n′], Ip = ((p − 1)/n′, p/n′], p = 2, . . . , n′.

With the help of the affine transformation [−1, 1] �→ [(p − 1)/n′, p/n′]
we transfer ξλ into the points ξp,λ of the intervals [(p − 1)/n′, p/n′]:

ξp,λ = ξp,λ,n′ =
p − 1

n′ +
ξλ + 1
2n′ , λ = 1, . . . , m′, : p = 1, . . . , n′.

With the help of the inverse affine transformation [(p − 1)/n′, p/n′] �→
[−1, 1] we transfer �λ into Lagrange fundamental polynomials �λ(−1 +
2(n′x − p + 1)) of degree m′ − 1 corresponding to the nodes ξp,λ,
λ = 1, . . . , m′; denote

Lp,λ(x) = Lp,λ,n′(x) =
{

�λ(−1 + 2(n′x − p + 1)) x ∈ Ip

0 x ∈ [0, 1] \ Ip

}
,

λ = 1, . . . , m′,

where p = 1, . . . , n′. Let us approximate the kernel K(x, y) by the
piecewise polynomial function Kn′(x, y) defined on every square Ip×Iq,
p, q = 1, . . . , n′, independently as the interpolation polynomial of
degree m′ − 1 with respect to x and y:

Kn′(x, y) =
m′∑

λ,μ=1

K(ξp,λ, ξq,μ)Lp,λ(x)Lq,μ(y), (x, y) ∈ Ip × Iq.
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Respectively, on whole [0, 1] × [0, 1], Kn′(x, y) is given by

(4.1)

Kn′(x, y) =
n′∑

p,q=1

m′∑
λ,μ=1

K(ξp,λ, ξq,μ)Lp,λ(x)Lq,μ(y), 0 ≤ x, y ≤ 1.

In general, Kn′(x, y) may have jumps as x crosses an inner line x = ξλ,p

or y crosses an inner line y = ξμ,q; under the conditions of Lemma 4.1
below, the jumps are of the order O((n′)−m′

). If ξ1 = −1, ξm′ = 1 then
Kn′(x, y) is continuous on [0, 1] × [0, 1].

Lemma 4.1. Assume that K(x, y) has for (x, y) ∈ [0, 1] × [0, 1]
continuous derivatives

(4.2)
∂

∂x

l

K(x, y),
∂

∂y

l

K(x, y), l = 0, 1, . . . , m′.

Then

(4.3) sup
0≤x,y≤1

|K(x, y) − Kn′(x, y)| ≤ c(n′)−m′
.

In particular,

(4.4) sup
0≤x,y≤1

|K(x, y) − Kn′(x, y)| ≤ cn−m if n′ � nm/m′
.

Proof. Introduce the constants

ωm′ = max
−1≤ξ≤1

|(ξ − ξ1) . . . (ξ − ξm′)|

= (2n′)m′
sup
x∈Ip

|(x − ξp,1) . . . (x − ξp,m′)|,

γm′ = max
−1≤ξ≤1

m′∑
λ=1

|�λ(ξ)| = sup
x∈Ip

m′∑
λ=1

|Lp,λ(x)|, p = 1, . . . , n′,

which characterize the quality of the interpolation nodes ξ1, . . . , ξm′ .
For the one-dimensional interpolant

Kn′(x, y) =
m′∑

λ=1

K(ξp,λ, y)Lp,λ(x), x ∈ Ip,
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with y as a parameter, the well-known error estimate yields

sup
x∈Ip

|K(x, y) − Kn′(x, y)|

≤ 1
m′!

sup
x∈Ip

∣∣∣∣ ∂

∂x

m′

K(x, y)
∣∣∣∣ sup

x∈Ip

|(x − ξp,1) . . . (x − ξp,m′)|,

sup
(x,y)∈Ip×Iq

|K(x, y) − Kn′(x, y)|

≤ ωm′

m′!
sup

(x,y)∈Ip×Iq

∣∣∣∣ ∂

∂x

m′

K(x, y)
∣∣∣∣(2n′)−m′

.

Further, for (x, y) ∈ Ip × Iq,

Kn′(x, y) − Kn′(x, y)

=
m′∑

λ=1

(
K(ξp,λ, y) −

m′∑
μ=1

K(ξp,λ, ξq,μ)Lq,μ(y)
)

Lp,λ(x),

and using again the one-dimensional interpolation error estimate we
obtain∣∣∣∣K(ξp,λ, y) −

m′∑
μ=1

K(ξp,λ, ξq,μ)Lq,μ(y)
∣∣∣∣

≤ ωm′

m′!
sup
y∈Iq

∣∣∣∣ ∂

∂y

m′

K(ξp,λ, y)
∣∣∣∣(2n′)−m′

,

sup
(x,y)∈Ip×Iq

|Kn′(x, y) − Kn′(x, y)|

≤ ωm′

m′!
sup

(x,y)∈Ip×Iq

∣∣∣∣ ∂

∂y

m′

K(x, y)
∣∣∣∣(2n′)−m′

γm′ .

Combining the estimates of |K(x, y) − Kn′(x, y)| and |Kn′(x, y) −
Kn′(x, y)| we obtain (4.3) with

c =
2−m′

ωm′

m′!

(
max

0≤x,y≤1

∣∣∣∣ ∂

∂x

m′

K(x, y)
∣∣∣∣ + γm′ max

0≤x,y≤1

∣∣∣∣ ∂

∂y

m′

K(x, y)
∣∣∣∣
)

.
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By the symmetry argument (4.3) also holds with

c =
2−m′

ωm′

m′!

(
γm′ max

0≤x,y≤1

∣∣∣∣ ∂

∂x

m′

K(x, y)
∣∣∣∣ + max

0≤x,y≤1

∣∣∣∣ ∂

∂y

m′

K(x, y)
∣∣∣∣
)

and with the minimum of these two constants.

As a consequence of (2.2) and (4.4) we obtain that, in case n′ �
nm/m′

,

(4.5)
max

1≤i≤n

∣∣∣∣
n∑

j=1

wj,nK(xi,n, xj,n)uj −
n∑

j=1

wj,nKn′(xi,n, xj,n)uj

∣∣∣∣
≤ cn−m max

1≤i≤n
|ui|,

and similar estimates hold for other matrix applications in Algo-
rithm 3.1. Replacing in Algorithm 3.1 K(x, y) by Kn′(x, y), we still
solve system (2.7) with the accuracy (3.6), see Theorem 2.2 and Re-
mark 3.3. In particular, stability estimate (2.18) guarantees that the
application of (I−Tν)−1, i.e., the solution of system (3.9), is performed
with the accuracy O(n−m) when K is replaced by Kn′ .

Designing fast (C, Cm) solvers 1 3 in subsections 4.2 4.4, we assume
that m′ ≥ 2m and K(x, y) has continuous derivatives (4.2). Of course,
we always assume also that the homogenous integral equation u = Tu
has only the trivial solution.

4.2 Fast solver 1. Set n� = n, n′ � nm/m′
. After replacing K(x, y)

by Kn′(x, y), the number of sample points for K(x, y) we need in the
quadrature system (2.7) reduces to O((n′)2) = O(n2m/m′

). Moreover,
the matrix-vector multiplications

n∑
j=1

wj,nKn′(xi,n, xj,n)uj ,

ν∑
j=1

wj,νKn′(xi,n, xj,ν)vj , i = 1, . . . , n,

n∑
j=1

wj,nKn′(xi,ν , xj,n)uj , i = 1, . . . , ν,

can be performed in O(n) flops. Indeed, consider the first of them
which is most laborious. Denoting

Jp = Jp,n,n′ = {j ∈ N : xj,n ∈ Ip}, p = 1, . . . , n′,
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we have

n∑
j=1

wj,nKn′(xi,n, xj,n)uj

=
n∑

j=1

wj,n

n′∑
p,q=1

m′∑
λ,μ=1

K(ξp,λ, ξq,μ)Lλ,p(xi,n)Lμ,q(xj,n)uj

=
m′∑

λ=1

Lλ,p(xi,n)
n′∑

q=1

m′∑
μ=1

K(ξp,λ, ξq,μ)
∑
j∈Jq

Lμ,q(xj,n)wj,nuj ,

i ∈ Jp, p = 1, . . . , n′.

The computation of the quantities

u′
μ,q :=

∑
j∈Jq

Lμ,q(xj,n)wj,nuj , μ = 1, . . . , m′, q = 1, . . . , n′,

costs O(
∑n′

q=1(�Jq)) = O(n) flops. Further, the computation of

u′′
λ,p :=

n′∑
q=1

m′∑
μ=1

K(ξp,λ, ξq,μ)u′
μ,q, λ = 1, . . . , m′, p = 1, . . . , n′,

costs O((n′)2) = O(n) flops (recall that m′ ≥ 2m, n′ � nm/m′
). Finally,

the computation of

m′∑
λ=1

Lp,λ(xi,n)u′′
λ,p =

n∑
j=1

wj,nKn′(xi,n, xj,n)uj ,

i ∈ Jp, p = 1, . . . , n′,

costs again O(n).

Algorithm 3.1 contains also the solution of ν × ν-systems (3.9).
Applying the Gauss elimination method, we remain in O(n) flops for
ν � nρ, 0 < ρ ≤ 1/3. We see that with Kn′(x, y) in the role of
K(x, y), the two grid iteration Algorithm 3.1 can be realized in O(n)
flops. Together with the accuracy (3.6) achieved by uk�

n , this means
that we have a good basis for a fast (C, Cm) solver. We only have
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to specify how the values of uk�
n are computed between the quadrature

knots xi,n, i = 1, . . . , n, at the cost of O(1) flops per value, maintaining
the accuracy order (3.6). A local interpolation by polynomials of
degree m − 1 using m neighboring knots xi,n is suitable: due to (2.3),
max2≤i≤n(xi,n − xi−1,n) ≤ cn−1, and together with (2.11), (3.6) we
obtain that the error of the local interpolant Πm,nuk�

n is estimated by

sup
0≤x≤1

|u(x) − (Πm,nuk�
n )(x)| ≤ cn−m‖u‖m ≤ c′n−m‖f‖m.

Thus, Algorithm 3.1 based on quadrature formula (2.1) (2.3), with
ν � nρ, 0 < ρ ≤ 1/3, and Kn′(x, y) in the role of K(x, y), n′ � nm/m′

,
together with the local interpolation of the computed iteration solution
uk�

n (xi,n), i = 1, . . . , n, by polynomials of degree m − 1, constitute a
fast (C, Cm) solver of integral equation (1.1) with n� = n. We quote it
as fast solver 1.

4.3 Fast solver 2. Looking for the solution of integral equation (1.1)
in the form u = v + f , the function v satisfies the equation

(4.6) v = Tv + g, g = Tf.

It follows from the existence and continuity on [0, 1]×[0, 1] of derivatives
(4.2) that g ∈ Cm′

[0, 1] and v ∈ Cm′
[0, 1] for the solution of (4.6).

Solving (4.6) by the quadrature method it is reasonable to apply
a quadrature of order (2.4). So we assume in this subsection that
quadrature formula (2.1) satisfies conditions (2.2) and (2.4). Then
the quadrature method and two grid iteration Algorithm 3.1 applied
to integral equation (4.6) are of accuracy O(n−m′

) provided that
the values g(xi,n) =

∫ 1

0
K(xi,n, y)f(y) dy, i = 1, . . . , n, have been

computed with an accuracy O(n−m′
), see Theorems 2.2 and 3.1. Note

that O(n−m′
) = O(n−m

� ) with n� � nm′/m. Respectively, we may
spend O(n�) = O(nm′/m) flops to compute g(xi,n), i = 1, . . . , n, and
solve the quadrature n × n system. This time we use the exact values
K(x, y) in the matrix of the system; the interpolation approximation of
K(x, y) is delegated to compute the righthand terms of the quadrature
system. Put n′ � n and define

K̃n(xi,n, y) =
n′∑

q=1

m′∑
μ=1

K(xi,n, ξq,μ)Lq,μ(y), 0 ≤ y ≤ 1, i = 1, . . . , n,
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gn(xi,n) =
∫ 1

0

K̃n(xi,n, y)f(y) dy

=
n′∑

q=1

m′∑
μ=1

K(xi,n, ξq,μ)
∫
Iq

Lq,μ(y)f(y) dy, i = 1, . . . , n,

with ξq,μ and Lq,μ introduced in Section 4.1. Then

max
1≤i≤n

|g(xi,n) − gn(xi,n)| ≤ max
1≤i≤n

∫ 1

0

|K(xi,n, y) − K̃n(xi,n, y)| dy‖f‖0

≤ cn−m′‖f‖0.

Moreover, gn(xi,n), i = 1, . . . , n, can be computed with the accuracy
O(n−m′

) in O(nm′/m) flops. Indeed, divide Iq, q = 1, . . . , n′, into
subintervals of the length h � n−m′/m, then we have all together
O(nm′/m) subintervals of [0, 1]. On those subintervals we approximate
the integrals of Lq,μ(y)f(y) by an O(1) point quadrature formula that
is sharp for polynomials of degree m′ + m − 2. Then the computation
of all integrals

fq,μ :=
∫
Iq

Lq,μ(y)f(y) dy ≈ f̃q,μ, μ = 1, . . . , m′, q = 1, . . . , n′,

costs O(nm′/m) flops, and we achieve an accuracy comparable with the
accuracy of the best approximation of f by polynomials of degree m−1
on subintervals of the length h. For f ∈ Cm[0, 1],

(4.7) |fq,μ − f̃q,μ| ≤ c
1
n′ hm‖f‖m ≤ c′n−m′−1‖f‖m

where 1/n′ is the length of Iq. Other operations in the computation
of gn(xi,n), i = 1, . . . , n, cost O(n2) flops that is also O(nm′/m) since
m′ ≥ 2m.

Thus we are in the position to compute the approximations

gi,n :=
n′∑

q=1

m′∑
μ=1

K(xi,n, ξq,μ)f̃q,μ, i = 1, . . . , n,
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with the accuracy

max
1≤i≤n

|g(xi,n) − gi,n| ≤ cn−m′‖f‖m

at the cost of O(nm′/m) flops. After that we solve the quadrature
system

(4.8) vn(xi,n) =
n∑

j=1

wj,nK(xi,n, xj,n)vn(xj,n) + gi,n, i = 1, . . . , n,

either directly by the Gauss method (case m′ ≥ 3m, then O(n3) =
O(nm′/m)) or by the two grid iteration Algorithm 3.1 (case 2m ≤ m′ <
3m) with ν � nρ, 0 < ρ ≤ m′/(3m). All this costs O(nm′/m) flops and
we obtain approximations vi,n ≈ v(xi,n), i = 1, . . . , n, of the accuracy

max
1≤i≤n

|v(xi,n) − vi,n| ≤ cn−m′‖f‖m.

Using the local interpolation by polynomials of degree m′ − 1, we
extend the grid solution vi,n, i = 1, . . . , n, up to a piecewise polynomial
function Πm′,nvn of the accuracy

sup
0≤x≤1

|v(x) − (Πm′,nvn)(x)| ≤ cn−m′
(‖v‖m′ + ‖f‖m) ≤ c′n−m′‖f‖m.

The function un = Πm′,nvn + f satisfies the conditions of the fast
(C, Cm) solver of equation (1.1) with n� � nm′/m; if the computation
of a value of f costs more than O(1) flops, we replace f by its piecewise
polynomial interpolant of degree m − 1 exploiting once more the grid
values of f which already have been used when the integrals fq,μ on
subintervals of the length h � n−m′/m were computed. We quote the
described fast (C, Cm) solver as fast solver 2.

Compared with fast solver 1, the main advantage of fast solver 2 is
that in the case m′ ≥ 3m we may solve (4.8) directly by the Gauss
method, without two grid iterations. Further, only the computation of
gi,n, i = 1, . . . , n, needs the interpolation approximation of K, whereas
in the matrix of the quadrature system (4.8) we now use the values of K
itself. On the other hand, fast solver 1 does not need the computation
of integrals fq,μ.
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4.4 Fast solver 3. Introduce the equation

(4.9) un(x) =
∫ 1

0

Kn(x, y)un(y) dy + f(x), 0 ≤ x ≤ 1,

where Kn(x, y) is defined by (4.1) with n′ = n:

Kn(x, y) =
n∑

p,q=1

m′∑
λ,μ=1

K(ξp,λ,n, ξq,μ,n)Lp,λ,n(x)Lq,μ,n(y),

0 ≤ x, y ≤ 1.

Since

(4.10)

sup
0≤x≤1

∫ 1

0

|K(x, y)−Kn(x, y)| dy ≤ sup
0≤x,y≤1

|K(x, y)−Kn(x, y)| ≤ cn−m′

the estimate

(4.11) sup
0≤x≤1

|u(x) − un(x)| ≤ cn−m′‖f‖0

holds for the solutions of equations (1.1) and (4.9). To obtain a fast
(C, Cm) solver with n� � nm′/m, we have to solve equation (4.9) with
an accuracy cn−m′‖f‖m at the cost of O(nm′/m)flops.

The kernel Kn(x, y) is degenerate, and the solution of equation (4.9)
has the form

un(x) = f(x) +
n∑

p=1

m′∑
λ=1

vp,λ,nLp,λ,n(x);

the coefficients vp,λ,n can be determined as the solution of the system
of linear equations

(4.12)

vp,λ,n =
1
n

n∑
q=1

m′∑
μ=1

⎧⎨
⎩

m′∑
μ′=1

K(ξp,λ,n, ξq,μ,n)γμ,μ′

⎫⎬
⎭ vq,μ,n + gp,λ,n,

λ = 1, . . . , m′, p = 1, . . . , n,
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where

gp,λ,n =
n∑

q=1

m′∑
μ=1

K(ξp,λ,n, ξq,μ,n)fq,μ,n,

γμ,μ′ =
∫ 1

−1

�μ(ξ)�μ′(ξ) dξ, μ, μ′ = 1, . . . , m′,

fq,μ,n =
∫
Iq

Lq,μ,n(y)f(y) dy, μ = 1, . . . , m′, q = 1, . . . , n.

The integrals fq,μ,n were arrived at in Section 4.3, and we compute
their quadrature approximations f̃q,μ,n of accuracy (4.7) at the cost of
O(nm′/m) flops in a similar way as we did there. The integrals γμ,μ′ can
be computed analytically, but the exact values of those can be obtained
also numerically by applying a quadrature formula which is sharp for
polynomials of degree 2m′−2. An example of such a quadrature formula
is given by the m′ point Gauss formula

∫ 1

−1

v(ξ)dξ ≈
m′∑

λ=1

wλv(ξλ)

where ξλ, λ = 1, . . . , m′, are the Gauss nodes on [−1, 1] (the zeros
of the Legendre polynomial of degree m′) and wλ are corresponding
Gauss weights. Moreover, if we use in the constructions of Section 4.1
from the very beginning the Gauss nodes ξλ, λ = 1, . . . , m′, then
γμ,μ′ = wμδμ,μ′ , μ, μ′ = 1, . . . , m′, and system (4.12) simplifies to the
form

vp,λ,n =
1
n

n∑
q=1

m′∑
μ=1

wμK(ξp,λ,n, ξq.μ,n)vq,μ,n

+
n∑

q=1

m′∑
μ=1

K(ξp,λ,n, ξq.μ,n)fq,μ,n,

λ = 1, . . . , m′, p = 1, . . . , n.

System (4.12), with fq,μ,n approximated by f̃q,μ,n, can be solved by
the same strategy as system (4.8) in Section 4.3: by the Gauss method
in the case m′ ≥ 3m and by the two grid iteration method with
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ν � nρ, 0 < ρ ≤ m′/(3m), k� ≥ 1/ρ, in the case 2m ≤ m′ < 3m,
see Appendix A for algorithmical details. By this strategy, the solving
of system (4.12) costs O(nm′/m) flops, and we obtain an approximate
solution ṽp,λ,n ≈ vp,λ,n, λ = 1, . . . , m′, p = 1, . . . , n, of accuracy

max
1≤λ≤m′
1≤p≤n

|ṽp,λ,n − vp,λ,n| ≤ cn−m′‖f‖m.

For

(4.13) ũn(x) = f(x) +
n∑

p=1

m′∑
λ=1

ṽp,λ,nLp,λ,n(x)

this implies
sup

0≤x≤1
|un(x) − ũn(x)| ≤ cn−m′‖f‖m

and, together with (4.11),

sup
0≤x≤1

|u(x) − ũn(x)| ≤ cn−m′‖f‖m.

Notice that, for any x, the series in (4.13) contains maximally m′

nonvanishing terms. Thus ũn(x) satisfies the requirements on the fast
(C, Cm) solver; again, if the computation of one value of f costs more
than O(1) flops, we replace in (4.13) f by its piecewise polynomial
interpolant of degree m−1 exploiting the grid values of f already used
during the calculation of integrals fp,λ,n. We quote the designed fast
(C, Cm) solver as fast solver 3.

It can be expected that fast solver 3 is more precise than fast solvers
1 and 2 (in the sense of a smaller constant in (1.2) at the same amount
of arithmetical work). Unfortunately, the two grid iterations in fast
solver 3 have a more complicated matrix form than those in fast solvers
1 and 2, cf. Section 3.2 and Appendix A.

Acknowledgments. The author expresses his gratitude to K.E.
Atkinson and three anonymous referees for encouragement and useful
comments.
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Appendix

A. Two grid iterations for equation (4.9). Let ν � nρ,
0 < ρ < 1; we assume now that l := n/ν ∈ N. For simplicity of
formulae we also assume that ξ1, . . . , ξm′ are the nodes of the m′ point
Gauss quadrature formula on [−1, 1]; corresponding Gauss weights are
denoted by w1, . . . , wm′ . In this subsection we use the designations Tn

and Tν for the integral operators

(Tnu)(x) =
∫ 1

0

Kn(x, y)u(y) dy, (Tνu)(x) =
∫ 1

0

Kν(x, y)u(y) dy

(rather than for the Nyström operators in Sections 2 and 3; no Nyström
operators will be involved in the sequel). Looking for the solution of
equation (4.9) in the form un = vn + f , the unknown function vn is
determined from the equation vn = Tnvn + Tnf equivalent to

(4.14) vn = (I − Tν)−1(Tnvn − Tνvn + Tnf).

Due to (4.10),

‖(I − Tν)−1(Tn − Tν)‖L(L∞[0,1]) ≤ c(n−m′
+ ν−m′

) ≤ c′n−ρm′
,

hence (4.14) can be solved by the iteration method

(4.15)
v0

n = 0, vk
n = (I − Tν)−1(Tnvk−1

n − Tνvk−1
n + Tnf),

k = 1, . . . , k�;

the number of iteration steps k� ≥ 1/ρ is sufficient for the accuracy
‖vn−vk

n‖0 ≤ cn−m′ ‖f‖0, n ≥ n0. Since (I−Tν)−1 = I +(I−Tν)−1Tν ,
we can represent the two grid iterations (4.15) in the form

(4.16)
v0

n = 0, zk
n = Tnvk−1

n − Tνvk−1
n + Tnf,

vk
n = zk

n + (I − Tν)−1Tνzk
n, k = 1, . . . , k�.

Denote

En = span {Lp,λ,n : λ = 1, . . . , m′, p = 1, . . . , n},
Eν = span {Lp,λ,ν : λ = 1, . . . , m′, p = 1, . . . , ν} ⊂ En.
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Observe that vk
n, zk

n ∈ En, Tn maps L∞[0, 1] into En, Tν maps En into
Eν , and (I −Tν)−1 maps Eν into Eν . The (approximate) computation
of

Tnf =
n∑

p=1

m′∑
λ=1

gp,λ,nLp,λ,n,

gp,λ,n =
n∑

q=1

m′∑
μ=1

K(ξp,λ,n, ξq.μ,n)fq,μ,n ∈ En

has been already discussed in details. The rest of the operations
preserve the elements in En and can be reduced to linear procedures
over the coefficients of vk

n with respect to the basis {Lp,λ,n : λ =
1, . . . , m′, p = 1, . . . , n}. To perform a two-grid iteration step (4.16),
it is sufficient to explain how the following operations are realized
algebraically: (i) the computation of Tnvn ∈ En for vn ∈ En; (ii) the
computation of Tνvn ∈ Eν for vn ∈ En; (iii) the computation of
(I−Tν)−1vν ∈ Eν for vν ∈ Eν ; (iv) the representation of vν ∈ Eν ⊂ En

in the basis {Lp,λ,n : λ = 1, . . . , m′, p = 1, . . . , n} of En.

(i) For vn =
∑n

p=1

∑m′

λ=1 vp,λ,nLp,λ,n, we easily obtain

Tnvn =
n∑

p=1

m′∑
λ=1

v′p,λ,nLp,λ,n,

v′p,λ,n =
1
n

n∑
q=1

m′∑
μ=1

wλK(ξp,λ,n, ξq,μ,n)vq,μ,n

(recall that ξ1, . . . , ξm′ are the knots of the m′ point Gauss quadrature
formula on [−1, 1]; for other ξλ, in general, the formula is more
complicated).

(ii) For vn =
∑n

p=1

∑m′

λ=1 vp,λ,nLp,λ,n, we have

Tνvn =
ν∑

p,q=1

m′∑
λ,μ=1

K(ξp,λ,ν , ξq,μ,ν)
n∑

q′=1

m′∑
μ′=1

vq′,μ′,nϑq,μ,ν,q′,μ′,nLp,λ,ν
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where

ϑq,μ,ν,q′,μ′,n =
∫ 1

0

Lq,μ,ν(y)Lq′,μ′,n(y) dy = (1/n)wμ′Lq,μ,ν(ξq′,μ′,n)

(the integral actually extends to [(q′ − 1/n), (q′/n)] and the Gauss
quadrature is sharp). Notice that Lq,μ,ν(ξq′,μ′,n) = 0 if the inclusion
[(q′ − 1/n), (q′/n)] ⊂ [(q − 1/ν), (q/ν)] is violated. We obtain Tνvn =∑ν

p=1

∑m′

λ=1 v′p,λ,νLp,λ,v, where

v′p,λ,ν =
1
n

ν∑
q=1

m′∑
μ=1

K(ξp,λ,ν , ξq,μ,ν)

×
ql∑

q′=(q−1)l+1

m′∑
μ′=1

wμ′Lq,μ,ν(ξq′,μ′,n)vq′,μ′,n.

(iii) For vν =
∑ν

p=1

∑m′

λ=1 vp,λ,νLp,λ,ν , we have

uν := (I − Tν)−1vν =
ν∑

p=1

m′∑
λ=1

up,λ,νLp,λ,ν

where up,λ,ν , λ = 1, . . . , m′, p = 1, . . . , ν, is the solution of the
m′ν × m′ν system

up,λ,ν =
1
ν

ν∑
q=1

m′∑
μ=1

wμK(ξp,λ,ν , ξq,μ,ν)uq,μ,n + vp,λ,ν ,

λ = 1, . . . , m′, p = 1, . . . , ν.

(iv) Since Lp,λ,ν is a polynomial of degree ≤ m′ − 1 on every
subinterval Iq,n (in particular, the zero polynomial if the inclusion
[(q − 1/n), (q/n)] ⊂ [(p − 1/ν), (p/ν)] is violated), then Lp,λ,ν coincides
with its interpolant,

Lp,λ,ν =
n∑

q=1

m′∑
μ=1

Lp,λ,ν(ξq,μ,ν)Lq,μ,n.
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For vν =
∑ν

p=1

∑m′

λ=1 vp,λ,νLp,λ,ν ∈ Eν , we obtain the representations
in the basis of En:

vν =
n∑

q=1

m′∑
μ=1

( m′∑
λ=1

Lp(q),λ,ν(ξq,μ,ν)vp(q),λ,v

)
Lq,μ,n

where p(q) = min{p ∈ N : p ≥ ν/n}. On the last step we took
into account that for fixed q, only one of numbers Lp,λ,ν(ξq,μ,ν),
p = 1, . . . , ν, does not vanish, namely the one with ξq,μ,ν ∈ Ip,ν .

Let us return to the iterations (4.16). We compute Tnvk−1
n with the

help of (i), Tνvk−1
n with the help of (ii) and (iv), Tνzk

n with the help of
(ii) and (I − Tν)−1Tνzk

n with the help of (iii) and (iv). All this costs
O(n2 + ν3) flops, hence O(nm′/m) flops for 2m ≤ m′ < 3m, ν � nρ,
0 < ρ ≤ m′/(3m).
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