
JOURNAL OF INTEGRAL EQUATIONS
AND APPLICATIONS
Volume 14, Number 1, Spring 2002

IMPLICIT INTEGRAL EQUATIONS
WITH DISCONTINUOUS NONLINEARITIES

PASQUALE CANDITO

ABSTRACT. In this paper we establish the existence of at
least one solution for a class of implicit integral equations with
possibly discontinuous nonlinearities, which includes the well-
known Chandrasekhar equation, among others. Our approach
fully depends on a very recent result on fixed points for
increasing, not necessarily continuous, operators in ordered
Banach space due to Bonanno and Marano; see Theorem 1
below.

Very recently, in [6], the following fixed point result has been estab-
lished; see [6, Theorem 2.1].

Theorem 1. Let (E, ‖ · ‖,K) be an ordered Banach space with a
regular cone K, let [a, b] be an order interval in E, and let F : [a, b] →
[a, b] be an increasing function. Then:

A1) The function F has a minimal fixed point v∗ and a maximal fixed
point v∗.

A2) v∗ = min{v ∈ [a, b] : v ≤ F (v)} while v∗ = max{v ∈ [a, b] :
F (v) ≤ v}.
A3) For continuous F one has v∗ = limn→∞ Fn(a) as well as

v∗ = limn→∞ Fn(b).

As pointed out in [6], due to the monotone convergence theorem, a
natural framework where the above result applies successfully is given
by usual Lebesgue spaces (Lp(Ω), ‖ · ‖p), 1 ≤ p < +∞, equipped with
the positive cone

(1) Kp := {u ∈ Lp(Ω) : u(t) ≥ 0 a.e. in Ω}.
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In this direction, the authors obtain an existence result for a semi-linear
elliptic equation in the whole space and with discontinuous nonlinear
terms, see [6, Theorem 3.1]. Here, we investigate the following implicit
integral equation with discontinuous nonlinearities

(2)
h(u(t)) = ϕ0(t) + f(t, u(t))

∫
Ω

g(t, s, u(s)) ds,

u ∈ Lp(Ω),

where Ω is a Lebesgue measurable, not necessarily bounded, subset of
Rn, ϕ0 ∈ Lp(Ω), while f : Ω × R+

0 → R+
0 , g : Ω × Ω × R+

0 → R+
0

and h : R+
0 → R+

0 are three monotone increasing functions. Besides
the Urysohn type integral equations (2) includes as a special case the
well-known Chandrasekhar equation

(3) u(t) = ϕ0(t) + λu(t)
∫

Ω

k(t, s)u(s) ds,

which arises in the kinetic theory of gases and in transport theory, see
for instance [9, 10] and the references therein.

Numerous papers are devoted to investigating (3) through a technical
chiefly based on fixed point results. To be precise, the goal is frequently
achieved gathering the Banach-Caccioppoli contraction principle with
some classical results on bilinear maps, see [2, 3, 9]; we refer also to
Corollary 4 and Remarks 5 7 below.

If h turns out to be the identity mapping on R+
0 , one solution of (2)

is obtained by using the Darbo Fixed Point Theorem. This approach
is prevalently exploited inside the Banach algebra C(Ω), see [4, 5, 14]
and [15].

In this paper we look at (2) from another point of view, which fully
depends on a simple but useful consequence of Theorem 1, namely
Theorem 2 below.

Here is the plan of the paper. After establishing Theorem 2, two
examples and some remarks are presented. In particular, Example 1
shows that the minimal solution v∗ and the maximal solution v∗,
given by Theorem 2, can be different, while Example 2 deals with
an application of this result to two-point boundary value problems
with discontinuous nonlinearities. In Remark 3 we discuss the iterative



IMPLICIT INTEGRAL EQUATIONS 3

method given by A3) of Theorem 1 also in connection with the existing
literature. Next Theorem 3 shows that a meaningful special case of
(2), see Remark 4, admits at least one solution whenever a suitable
assumption is made. Finally, Corollary 4 treats integral equations like
(3).

We start by establishing the following result, which represents our
main tool for investigating (2).

Theorem 2. Let Ω be a nonempty Lebesgue measurable subset of Rn;
let a, b and ϕ0 belong to Lp(Ω), 1 ≤ p < +∞ with a ≤ b and ϕ0 ≥ 0;
let f : Ω × R+

0 → R+
0 , g : Ω × Ω × R+

0 → R+
0 , and let h : R+

0 → R+
0

be three functions. Assume that:

B1) For almost every t ∈ Ω, f(t, ·) is increasing and sup-measurable.

B2) For each measurable u : Ω → R, the function (t, s) → g(t, s, u(s))
is measurable in Ω× Ω.

B3) h is a one-to-one function with h−1 strictly increasing and sup-
measurable.

B4) For almost every (t, s) ∈ Ω × Ω, g(t, s, ·) is increasing and
g(t, ·, b(·)) lies in L1(Ω).

B5) For almost every t ∈ Ω, the following result

h(a(t)) ≤ ϕ0(t) + f(t, a(t))
∫

Ω

g(t, s, a(s)) ds,

ϕ0(t) + f(t, b(t))
∫

Ω

g(t, s, b(s)) ds ≤ h(b(t)).

Then equation (2) admits the minimal solution v∗ and the maximal
solution v∗ belonging to order interval [a, b].

Proof. We first reduce (2) to a fixed point problem through the
function F : [a, b] → [a, b] defined by putting

(4) F (u)(t) := h−1

(
ϕ0(t) + f(t, u(t))

∫
Ω

g(t, s, u(s)) ds
)

for all u ∈ [a, b] and t ∈ Ω. Clearly, each fixed point of F is a solution
to (2) and vice versa. Let us now apply Theorem 1, with E = Lp(Ω),
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K = Kp, whereKp is the cone given by (1) and F as above. To this end,
we note that, because of B1) B4), the function F is well defined and
increasing. Indeed, it is easily seen that F (u) is measurable provided
the function

(5) t −→
∫

Ω

g(t, s, u(s)) ds

enjoys the same property, which immediately follows from Theorem 8.8
(a) of [16]. Moreover, by B5), we have F (a) ≥ a as well as F (b) ≤
b. Since F satisfies all the assumptions of Theorem 1, the proof is
complete.

Remark 1. The monotonicity condition requested in assumptions
B1) B4) doesn’t guarantee the sup-measurability; see, for instance, [1,
page 218].

Remark 2. We explicitly observe that the minimal solution v∗ and
the maximal solution v∗ given by Theorem 2 can be different, as the
following simple example shows.

Example 1. Consider the quadratic integral equation

(6) u(t) =
6
5
+

u(t)
5

∫ 1

0

u(s) ds, u ∈ L1(Ω)

and define, for every t ∈ [0, 1],

a(t) :=
6
5
, b(t) := 3.

It is a simple matter to verify that all the assumptions of Theorem 2 are
satisfied. Furthermore, since the constant functions u ≡ 2 and u ≡ 3
are solutions to (6), v∗ and v∗ must be different.

The following example shows that Theorem 2 can be applied success-
fully in solving two-point boundary value problems with discontinuous
nonlinearities.
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Example 2. Let [β, γ] be a compact real interval. Consider the
following two-point boundary value problem

{
u′′(t) + Ψ(u(t)) = 0 a.e. in ]β, γ[
u(β) = u(γ) = 0,

where Ψ : R+
0 → R+

0 is a possibly discontinuous, increasing and sup-
measurable function with

ess inf
R+

0

Ψ > 0.

Clearly a solution u ∈ W 2,p[β, γ] to this problem is obtained by solving
the nonlinear integral equation

(7) u(t) =
∫ γ

β

k(t, s)Ψ(u(s)) ds,

where k : [β, γ]× [β, γ] → R+
0 denotes the Green function, namely,

(8) k(t, s) :=
{
(γ − t)(s− β)/(γ − β) if β ≤ s ≤ t ≤ γ

(γ − s)(t− β)/(γ − β) if β ≤ t ≤ s ≤ γ.

Now, due to Theorem 2, it is a simple matter to see that (7) has at
least one nontrivial generalized solution provided there exists a positive
constant � such that

Ψ(�)
�

≤ 4
(γ − β)2

.

Remark 3. It is worth noting that if in Theorem 2 we also assume
that h−1 is continuous together with f and g continuous in the second
and third variable, respectively, then, the conclusion of this result can
be improved as follows:

Equation (2) admits the minimal solution v∗ and the maximal solu-
tion v∗ in the order interval [a, b]. Moreover, one has

(9) v∗ = lim
n→∞Fn(a) as well as v∗ = lim

n→∞Fn(b)

where F is given by (4).
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Indeed, let {vn} be a sequence in [a, b] such that vn ≤ vn+1, n ∈ N
and limn→∞ vn = v. Then one has F (vn) ≤ F (v), n ∈ N and, taking
into account both the regularity of the cone Kp and the fact that
{F (vn)} now converges to F (v) almost everywhere in Ω, we obtain
limn→∞ F (vn) = F (v). Arguing in a standard way, it is easy to verify
that the same conclusion still holds when vn ≥ vn+1, n ∈ N, results.
Thus (9) is achieved once we note that, due to Remark 2.3 of [6], the
continuity assumption on F in A3) of Theorem 1 can be replaced by
the less restrictive one:

A∗
3) For each monotone sequence {vn} ⊆ [a, b], one has

lim
n→∞ vn = v =⇒ lim

n→∞F (vn) = F (v).

As classical works on this subject and as general references on mono-
tone operators in partially ordered sets, we refer to [11 13] and [7, 17,
18], respectively. In particular, we point out that, here, in contrast to
[11] and [13], the functions F can be discontinuous.

Let us now investigate some special cases of the nonlinear integral
equations (2) under continuity assumptions. As usual, we denote by p′

the conjugate exponent of p.

Theorem 3. Let Ω be a nonempty Lebesgue measurable subset of Rn

with m(Ω) < +∞; let c, d, r and q be four real nonnegative constants
with c, d positive; let k : Ω×Ω → R+

0 and ω0 ∈ Lp(Ω) be two functions
such that k �= 0 and ω0 ≥ 0. Assume that:

C1) For almost every t ∈ Ω, k(t, ·) is measurable and lies in Lp′
(Ω).

C2)
α = ess sup

t∈Ω
‖k(t, ·)‖p′ < +∞.

C3) There exists � ∈ (c∗,+∞) such that

α‖ω0‖p ≤ �d − c∗

�r+q

where c∗ = max{c, c1/d}.
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Then the integral equation

(10) u(t)d = c+ u(t)r
∫

Ω

k(t, s)ω0(s)u(s)q ds, u ∈ Lp(Ω),

admits the minimal solution v∗ and the maximal solution v∗ in the
order interval [c1/d, �].

Proof. Without loss of generality, we can assume ω0 �= 0. Now, using
the notation of Theorem 2, put




h(t) := td ∀t ∈ R+
0 ,

f(t, u) := ur if (t, u) ∈ Ω× R+
0 ,

g(t, s, u) := k(t, s)ω0(s)uq, if (t, s, u) ∈ Ω× Ω× R+
0 ,

.

We claim that all the assumptions of Theorem 2 are satisfied. Indeed
B1), B2) and B3) are obviously true. Write, for almost every t ∈ Ω,

a(t) := c1/d as well as b(t) := ρ.

Due to C2) one has
∫

Ω

g(t, s, b(s)) ds ≤ �q

∫
Ω

k(t, s)ω0(s) ds ≤ �qα‖ω0‖p < +∞.

Therefore, B4) holds. Moreover,

h(a(t)) = c ≤ c+ c(r+q)/d

∫
Ω

k(t, s)ω0(s) ds,

results, while bearing in mind C3), we have

c+ �r+q

∫
Ω

k(t, s)ω0(s) ds ≤ c+ �r+qα‖ω0‖p ≤ �d = h(b(t))

for every t ∈ Ω. So also B5) is verified. At this point, the conclusion
follows from Theorem 2.

Remark 4. It is worthwhile to note that assumption C3) of Theo-
rem 3 is satisfied by every nonnegative function ω0 belonging to Lp(Ω)
whenever one has
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C′
3) d > r + q.

Arguing as in Theorem 3 it is possible to prove the following result
regarding (3), which is an immediate consequence of Theorem 2.

Corollary 4. Let Ω be a nonempty Lebesgue measurable subset of
Rn; let k : Ω × Ω → R+

0 and ϕ0 ∈ Lp(Ω) be two functions such that
k �= 0 and ϕ0 ≥ 0. Assume that C1) and C2) hold and, moreover,

C∗
3) α‖ϕ0‖p ≤ 1/4.

Then equation (3) admits the minimal solution v∗ and the maximal
solution v∗ belonging to order interval [ϕ0, �ϕ0] where

(11)
1− √

1− 4α‖ϕ0‖p

2α‖ϕ0‖p
≤ � ≤ 1 +

√
1− 4α‖ϕ0‖p

2α‖ϕ0‖p
.

Proof. We first note that C∗
3) allows us to write (11). Since �

satisfies (11), Theorem 2 can be applied to equation (3) by choosing
a(t) = ϕ0(t), b(t) = �ϕ0(t), t ∈ Ω and h ≡ id.

Remark 5. We explicitly observe that in Corollary 4 it is neither
assumed that Ω is of finite measure nor that the solution given by the
same result is bounded or unbounded according to whether ϕ0 is.

Remark 6. As pointed out in [9], equation (3) admits a unique
solution in a certain sphere of L1(0, 1) whenever the kernel k(t, s) and
ϕ0 satisfy the assumptions:

i) 0 < k(t, s) < 1,

ii) k(t+ s) + k(s, t) = 1, for all (t, s) ∈ Ω× Ω,

iii) ‖ϕ0‖1 ≤ 1/2.

Instead, here, the same conclusion is achieved by requiring that the
kernel be non-negative and iii) replaced with C∗

3 . Moreover, it is a
simple matter to prove that if 1 < � < 2, then the operator B is
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defined by putting

B(u)(t) := ϕ0(t) + u(t)
∫

Ω

k(t, s)u(s) ds ∀u ∈ [ϕ0, �ϕ0],

is a contraction on the complete metric space [ϕ0, �ϕ0]. Thus, due to
the Banach-Caccioppoli contraction principle, there exists at most one
solution in the order interval

[
ϕ0,

1− √
1− 4α‖ϕ0‖1

2α‖ϕ0‖1
ϕ0

]

provided α‖ϕ0‖1 < 1/4.
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