ROCKY MOUNTAIN
JOURNAL OF MATHEMATICS
Volume 48, Number 2, 2018

ON GENERALIZED WEAVING FRAMES
IN HILBERT SPACES

LALIT K. VASHISHT, SAAKSHI GARG,
DEEPSHIKHA AND P.K. DAS

ABSTRACT. Generalized frames (in short, g-frames) are
a natural generalization of standard frames in separable
Hilbert spaces. Motivated by the concept of weaving frames
in separable Hilbert spaces by [1] in the context of dis-
tributed signal processing, we study weaving properties of
g-frames. Firstly, we present necessary and sufficient con-
ditions for weaving g-frames in Hilbert spaces. We extend
some results of [1, 6] regarding conversion of standard weav-
ing frames to g-weaving frames. Some Paley-Wiener type
perturbation results for weaving g-frames are obtained. Fi-
nally, we give necessary and sufficient conditions for weaving
g-Riesz bases.

1. Introduction. Frames in Hilbert spaces were originally intro-
duced by Duffin and Schaeffer [13] in 1952 in the context of non-
harmonic Fourier series and popularized in 1986 by Daubechies, Gross-
mann and Meyer [9]. Frames are basis-like building blocks that span
a vector space but allow for linear dependency, which is useful for re-
ducing noise and finding sparse representations, spherical codes, com-
pressed sensing, signal processing, wavelet analysis, etc., see [5]. Mo-
tivated by a problem regarding distributed signal processing where re-
dundant building blocks, e.g., frames, play an important role, Bem-
rose, et al., [1] introduced weaving frames in separable Hilbert spaces.
Weaving frames have potential applications in wireless sensor networks
that require distributed processing under different frames, as well as

2010 AMS Mathematics subject classification. Primary 42C15, 42C30, 42C40.

Keywords and phrases. Frame, generalized frames, weaving frames, Riesz basis,
perturbation.

The first author was supported by the R&D Doctoral Research Programme,
University of Delhi, India, grant No. RC/2015/9677. The third author was sup-
ported by CSIR India vide, file No. 09/045(1352)/2014-EMR-I. The first author is
the corresponding author.

Received by the editors on June 29, 2016, and in revised form on January 26,
2017.

DOI:10.1216 /RMJ-2018-48-2-661 Copyright ©2018 Rocky Mountain Mathematics Consortium

661



662 L.K. VASHISHT, S. GARG, DEEPSHIKHA AND P.K. DAS

preprocessing of signals using Gabor frames. Sun introduced the no-
tion of generalized frames or g-frames in [17]. Tt is well known that
g-frames include standard frames and bounded invertible linear oper-
ators, as well as many recent generalizations of frames, e.g., bounded
quasi-projectors and frames of subspaces. It is of interest to find the
weaving properties of g-frames in separable Hilbert spaces.

1.1. Outline of the paper. The paper is organized as follows. Sec-
tion 2 contains basic definitions and results regarding frames, weaving
frames and g-frames in Hilbert spaces. In Section 3, we study weaving
g-frames. Necessary and sufficient conditions for weaving g-frames in
Hilbert spaces are given. We present sufficient conditions in terms of
lower g-frame bounds for a sequence of operators not to be weaving
g-frames. Some Paley-Wiener type perturbation results for weaving
g-frames are obtained. In Section 4, we discuss weaving properties of
g-Riesz bases.

2. Preliminaries. In this section, we review the concepts of frames,
g-frames and weaving frames. We begin with some notation. The set
of all positive integers is denoted by N, and J denotes a subset of N. As
is standard, ¢?(N) is the space of all square summable complex-valued
sequences indexed by N.

2.1. Frames in Hilbert spaces. A sequence {xj }ren in a separable
Hilbert space H is called a frame (or Hilbert frame) for H if there exist
positive numbers Ay < By < oo such that

(2.1) Aollzl* <> (@, 2x)|* < Bollz||* for all x € H.
keN

The numbers Ay and By are called lower and upper frame bounds,
respectively. If the upper inequality in (2.1) is satisfied, then we say
that {x}ren is a Bessel sequence (or Hilbert Bessel sequence) with
Bessel bound By. The frame {zj }ren is tight if it is possible to choose
Ao = Bp. The frame operator S : H — H for the frame {zy}ren is a
bounded, linear, invertible and positive operator, given by

Sz = Z(x,xk)xk.

keN
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This gives the reconstruction formula for all x € H,

x=S8"1r= Z(S‘lx,x@xk = Z(m,S‘lxkﬂk.

keN keN

The basic theory of frames may be found in Han, et al., [14],
Christensen [7, 8], Casazza and Kutyniok [5], Casazza [2, 3] and Han
and Larson [15].

2.2. Weaving frames. We recall some elementary facts about weav-
ing frames. Let m € N be fixed, and let

[m]={1,2,...,m} and [m]°=N\[m]={m+1,m+2,...}.

Definition 2.1 ([1]). A family of frames {¢;; }ien jem) for a Hilbert
space H is said to be woven if there are universal constants A and B so
that, for every partition {0} ;e[ of N, the family {¢s;}ico, jem) is a
frame for H with lower and upper frame bounds A and B, respectively.

Definition 2.2 ([1]). A family of frames {#;; }ien jem) for a Hilbert
space H is weakly woven if, for every partition {o;};em) of N, the
family {¢i;}ico; jeim) s a frame for H.

It may be observed that weakly woven frames do not require univer-
sal frame bounds for each weaving.

It is proven in [1] that this weaker form of weaving, given in
Definition 2.2, is equivalent to weaving. Bemrose, et al., in [1] proved
necessary and sufficient conditions for weaving frames (which depend
on frame bounds). They classified when Riesz bases and Riesz basic
sequences can be woven and provided a characterization in terms of
distances between subspaces. Furthermore, they proved that, if two
Riesz bases are woven, then every weaving is, in fact, a Riesz basis
and not just a frame. A geometric characterization of woven Riesz
bases in terms of distance between subspaces of a Hilbert space H is
given in [1]. Casazza and Lynch [6] reviewed fundamental properties of
weaving frames. They considered a relation of frames to projections and
gave a better understanding of what it really means for two frames to be
woven. Finally, they discussed a weaving equivalent of an unconditional
basis.
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Casazza, Freeman and Lynch [4] extended the concept of weaving
Hilbert space frames to the Banach space setting. They introduced and
studied weaving Schauder frames in Banach spaces. Deepshikha and
Vashisht [10] studied weaving properties of an infinite family of frames
in separable Hilbert spaces. They also studied vector-valued weaving
frames [11] and weaving frames with respect to measure spaces in [19].
Deepshikha and Vashisht [12] studied weaving properties of K-frames
in separable Hilbert spaces.

2.3. g-frames in Hilbert spaces. Sun [17] introduced g-frames
which are generalized frames and include ordinary frames and many
recent generalizations of frames, e.g., bounded quasi-projectors and
frames of subspaces. For stability of the g-frame, see [18]. Let H and
K be separable Hilbert spaces, and let {#H,, }nen be a sequence of closed
subspaces of K. By B(H,H,) we denote the space of bounded linear
operators from H into H,,.

Definition 2.3. A sequence A = {A,}nen, where A, € B(H,H,)
for each n € N, is a generalized frame (in short, g-frame) for H with
respect to {Hn, }nen if there exist positive constants A < B such that

(2.2) All|? <> l[Anz|® < Bllz|® for all z € H.
neN

As in the case of standard frames, the constants A and B are
called lower and upper g-frame bounds, respectively. If the right-hand
inequality of (2.2) holds, then A is said to be a g-Bessel sequence for A
with respect to {H,}nen. Associated with a g-Bessel sequence A, we
shall denote the representation space as follows:

(Z@H > {{Zn}nEN:ZneHn (neN),Z||Zn|2<+OO}.

neN neN
The operator
< S Pu ) H
neN

defined by
{Zn}neN Z Aj nen,

neN
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is called the pre-frame operator or synthesis operator, and the adjoint
of Ty, given by

TLH (Z@m)
ieN e
Ty oz — {Apatnen, z €H,

is called the analysis operator of A. The frame operator Sp associated
with A is defined as

Sa=T\Tx - H—H
Syt —> ZA,*ZAnx, xE€H.
neN

If A is a g-frame for H, then Sy is a linear, bounded, positive and
invertible operator.

Definition 2.4 ([17]). A sequence A = {A,,}nen, where A, € B(H,
H,) for each n € N, is called a generalized Riesz basis (abbreviated
g-Riesz basis) for H with respect to {H,, }nen, if

(i) A is complete in H, i.e.,
{z: Apz =0, n e N} ={0},
and

(ii) there are positive constants Ay and Bj such that, for any finite
subset J C N,

AnY llzg)* <

jeJ

2
SBAZ||xj||2, z; € Hj, jed
jeJ

> Az

jeJ

The reader is referred to [16, 17, 18] for basic properties about
g-frames and g-Riesz bases.

3. Weaving g-frames. We begin with the definition of weaving g-
frames for separable Hilbert spaces.

Definition 3.1. A family of g-frames

{{Am-}neN ie [m]}
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for a separable Hilbert space H with respect to {#H,, : n € N} is said to
be g-woven if there are universal constants A and B so that, for every
partition {o;};cpm) of N, the family {An;i}neq, icim) is @ g-frame for H
with lower and upper g-frame bounds A and B, respectively.

Sun [17] obtained a characterization of g-frames in terms of ordinary
frames in separable Hilbert spaces.

Theorem 3.2 ([17]). Let A,, € B(H,Hn) and {€nm}mey, be an ortho-
normal basis for H,, where J,, C N, n € N. Then, {Ap}nen is a
g-frame for H if and only if {A}en mtmel, nen @5 a frame for H.

As an immediate consequence, we have the following result for
weaving g-frames.

Corollary 3.3. Let A = {A,; }nen and Q = {Q, nen be g-frames for H
with respect to {H, : n € N} and, for every n € N, let {en m}mes, be
an orthonormal basis for H,. Then, A and Q) are g-woven if and only
if {Aen.mmel, nen and {2 en mtmel, .nen are woven frames for H.

Proof. Since A,,,Q, € B(H,H,,) for all n € N, the mappings
z— (Apz,enm) and z— (Quz,enm)

define bounded linear functionals on H for every m € J,, n € N.
Consequently, we can find some v, ,, € ‘H and wy, ., € H such that, for
all x € H,

(@, Unm) = (A, enm)  and (@, Wy m) = (A, €n.m)-
Hence, for all x € H, we have
Az = Z <-T7'Un,m>en,m and Q,r = Z <x7wn,m>en,m-
mel, mel,
Let {0,0°} be any partition of N, and write {I';,}neny = {An}nes U
{Q }neoe. Then,

Iz = An.’I} neo, — ZmGJn <xvvn,m>en,m n € o,
. ne€o Zmeﬂn <$7 wn,7rL>en,m n € o°.
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This gives
Dotz =" > Kz vpm)l
neN neo mel,

+ Z Z (@, wn )| for all z € H.

neo® mej,
Hence, {A;}neo U {Qn}neoe is a g-frame for H with respect to {H,, :
n € N} if and only if
{tnm:melp,neN}t={v,m:mel,,neo}
U{wn,m :m € J,,n € o}

is a frame for H. Furthermore, for any = € H and for any y,, € H,, we
have

<x7A2yn> = <Anxayn> = Z <x7vn,m><en,m7yn>

meln

= <x, Z <yn,en7m>vn’m>,
mel,
and
(2, W) = (Qz,yn) = Z (T, Wn,m) (€n,m» Yn)
meln
= <x, Z (yn,en’m>wn7m>.
meln
This gives
A:Lyn = Z <yn76n,m>vn,m
mel,
and

Oy, = Z (Yns €n,m ) Wh,m for all y, € Hy, n€N.
meln

In particular,

*
Un,m = Anen,m

and
Wn,m = O en.m for any m € J,,, n € N.

This completes the proof. O
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3.1. Application of Corollary 3.3. Let H = (?(N) and {e }xen be
an orthonormal basis of H. Choose H, = Span{e,}>, for n € N.
Then, {enm}oo—17 = {€ntm-1}o—q is an orthonormal basis of H,,
n € N.

(i) Let A = {A,}52, and Q = {Q,}5°,, where A,, € B(H,H,) is
the orthogonal projection of H onto span{e,} and Q, € B(H,H,) is
the orthogonal projection of H onto span{e,,e,+1}. Clearly,

e, m=1
* n 9
Aenm = {

0 m>1,
and
en m=1,
Denm=1€enr1 m=2,
0 m > 2.

Note that {A},en m}nm=1 and {Q,en m}n,—1 are frames for H.

Next, we show that {A} e m}no,—1 and {2 en m}ns,—1 are woven.
Let o C N be any arbitrary subset. We compute

2> <D0 > e Arenm) P+ Y D e, Qrenm)?

ne€o meN nco® meN
=Y N Aren )P+ D [z Qen 1)
neo neoc
+ ) (@, Qen)
neoc
= e P+ Y [ en)?
neo neoc
+ Y [zenr)? <2) {wen))?
neoc neN

=2||z||* for all z € H.
Thus,

{Azenvm} neo U {Qzenﬂn}nEUC
meN meN

is a frame for H for any o C N. Hence, by Corollary 3.3, A and € are
g-woven.
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(i) Let A = {A,}52, and Q = {Q,}52, be the same as in part (i)
except for €y which is the zero mapping. Then, {AXen m}o,—1
and {2,€n.m o m=1 are not woven. Indeed, let {A;en’m}fno’nzlland
{0 enmtnm=1 be woven with universal frame bounds A and B.

Choose 0 =N\ {1}. Then, compute

Z Z |<617A26n,m>|2 + Z Z |<elaQ;en7m>|2

n€o meN neo meN
= Y len, Apena)” + [(er, 0)?
neN\{1}
= > lenen) +1(er, 0
neN\{1}
=0 < Alles®.

This is a contradiction. Hence, by Corollary 3.3, A and € are not
g-woven.

Inspired by [1, Lemma 4.3], the next theorem provides sufficient
conditions for a sequence of operators not to be woven g-frames for H.

Theorem 3.4. Suppose that A = {A,}nen and Q = {Q, }nen are g-
frames for H with respect to {H, : n € N}. Assume that, for every
two disjoint finite sets I,J C N and every ¢ > 0, there are subsets
0,0 CN\ (JUJ) with § =N\ (IUJUo) such that the lower g-frame
bound of

{An}nGIUU ) {Qn}ne.fué

is less than €. Then, there exists a subset M C N so that

{An}neM U {Qn}nGMC

is not a g-frame. Hence, A and © are not g-woven.

Proof. Let € > 0 be arbitrary. By hypothesis, for Iy = Jy = &, we
can choose o1 C N such that, if §; = of, then a lower g-frame bound
of {An}neoy U{Qn}nes, is less than e. Thus, there exists an 7 € H
with ||z1]] = 1 such that

D a4 Y (120 <

neo; ned;
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Since
oo o0
S Az P+ 19021 [|* < oo,
n=1 n=1

there is a positive integer k1 such that

oo o0

Yo MAazlP+ D ] <

n=ky+1 n=ki+1
Let Il = alﬂ[kl] and Jl = (Slﬂ[kﬂ Then, Ilﬁjl = @ and 11UJ1 = [kl]

By assumption, there are subsets oa,do C [k1]¢ with do = [k1]¢ \ 02
such that a lower g-frame bound of

{An}nEhUUz ) {Qn}nEJlLJcSz

is less than €/2, that is, there exists a vector zo € H with [jza]| = 1
such that .
S el + Y 2l < 5.
nel;Uos neJiUds

Similar to the above, there is a kg > ky such that

o0 o0 €
n=ko+1 n=ko+1

Set L, =1L U (0’2 N Ufg]) and Jo = J; U ((52 N [kig]) Note that bNJy = @
and Iy U Jo = [kg]. Thus, by the induction method, we obtain:

(i) a sequence of positive integers {ky}nen C N with k,, < kp4q for

alln € N;
(i) a sequence of vectors {x,, }nen C H with ||x,|| =1 for all n € N;
(iii) subsets o, C [kn—-1]%, 0n = [kn-1]°\ on, n € N; and

(iv) In = In—1 U (on N[kn])y Jn = Jn_1 U (0 N [kn]), n €N,
which satisfy both

€
(3.1) Sl Y Il < 5

i€l 1Uoy 1€y —1Udy

and

oo o0

€
(3.2) Yo e+ Y 1nl* < —.

i=knp+1 i=knp+1
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By construction, I, NJ, = @ and I,,UJ,, = [k,] for all n € N such that
() 0(Q)
i=1 j=1
where LI represents disjoint union. Choose M = U2, I;. Note that
Mme={]J;.
j=1

We compute

Z HAianQ + Z ||Qi33n||2

1EM iEMe
(T 1wl + 3 Ieal?)
i€l i€Jn
H X Ml T i)
i€ AN[ky]c i€ ANlkyn]e
(X malPr ¥ o)
€1, _1Uo, 1€ S _1Udy,
o0 o0
F(X Il 3 10
i=kn,+1 i=kn,+1

€ € 2e

n n n

This shows that a lower g-frame bound of {A,, } e mU{Q } e pme is zero,
a contradiction. Hence, the g-frames A and Q2 are not g-woven. O

Theorem 3.4 gives a necessary condition for weaving g-frames in
terms of lower frame bounds.

Proposition 3.5. Suppose that the family of g-frames
{{Anitnen i € [m]}

for H with respect to {H, : n € N} is g-woven. Then, there exists a
partition {T;}icim) of some finite subset of N and A > 0 such that, for
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any partition {0;}icpm) of N\ {Ti}icm), the family

U {Ain}"EmUn

i€[m]

has a lower g-frame bound A.

The next proposition gives a universal g-Bessel bound for a family
of g-Bessel sequences. This is an adaptation of [1, Proposition 3.1].

Proposition 3.6. For each i € [m], let {An;}nen be a g-Bessel
sequence for H with respect to {H, : n € N} and with g-Bessel
bounds B;. Then, every weaving is a g-Bessel sequence with

as a g-Bessel bound.

Proof. Let {Ani}neo,, icim) be a weaving for any partition {o;}icm
of N. Then,

S5 Al < 305 An?

i=1 n€o; i=1 neN
< (ZBZ) |z||? for all z € H.
i=1
The proof is complete. O

As in the case of standard weaving frames [6, Proposition 15], it is
enough to check g-weaving on smaller sets than the original.

Proposition 3.7. Let A = {A,}neny and Q = {Q, }nen be g-Bessel
sequences in H with respect to {H,, : n € N} with g-Bessel bounds By
and Bag, respectively. If J C N, and Ay = {A;}ics and Q5 = {Qitics

are g-woven frames, then A and Q are g-woven frames for H.
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Proof. Let A be a lower universal g-frame bound for A; and 2,
and let ¢ C N be an arbitrary subset. Then,

Allel® < Y0 AP+ Y lIe]?

iconJ icocnJ
<D Az + ) Qe
i€0 i€0C

< (By + Bo)||z||* for all z € H

(by Proposition 3.6). Hence, A and 2 are g-woven frames for H. [

Recall that, after removal of a vector from a discrete frame, the
resultant family is either a frame or an incomplete set, see [8, Theo-
rem 5.4.7]. Casazza and Lynch [6] proved that removal of vectors from
woven frames leaves them woven. In the direction of g-frames we have
following result.

Proposition 3.8. Let A = {A,}nen and Q = {Q,}nen be g-woven
frames for H with respect to {H, : n € N} with universal g-frame
bounds A and B. If J C N and

> lAial® < Doll|?
ieJ

for all x € H and for some 0 < Dy < A, then Ao = {Ai}iem\s
and Qo = {Q;}ien\g are g-woven frames for H with universal g-frame
bounds A — Dy and B.

Proof. Let o C N\ J be arbitrary. We compute

Z Az ]|* + Z Q|

ico i€(N\J)\o

_< > ||Aix||22||Aix||2> + 0> lua)?

icoUJ ieJ i€(N\J)\o
(T el Y j0elR) - X
i€ocUJ i€(N\J)\o icJ
> (A— Do)l|z||* forall z € H.
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On the other hand, for all z € H, we have

DolAlP+ Y0 ualP< Y Al + Y Iz < Bl

i€o i€(N\J)\o icoUJ i€(N\J)\o

Hence, Ay and Qg are g-woven frames for H with the required universal
g-frame bounds. O

4. Perturbation of weaving g-frames. It is well known that
perturbation theory is an important area in applied mathematics. For
applications of perturbation theory for frames in various directions, the
reader is referred to [2, 5, 7, 8] and the references therein. Bemrose,
et al., [1] proved sufficient conditions for weaving frames by means
of perturbation theory and diagonal dominance. We begin this section
with the following Paley-Wiener type perturbation of weaving g-frames.

Theorem 4.1. Let A = {A;}ien and Q = {Q;}ien be g-frames for H
with respect to {H; : i € N} with g-frame bounds Ay, By and As, Ba,
respectively. Assume that there are constants 0 < A1, Ao, u < 1 such

that
Ay
MVBr+XvVB+p < ————
2(v/By +/B2)
and
(4.1)
D Az — Q)| < M| D AT+ Xo|| D Qwi|| + pll{wibienl,
i€N ieN ieN
for all

[wi}ien € (Z@Hl)ﬂ.

€N

Then, A and Q are g-woven with universal g-frame bounds Ay/2,
B + Bs.

Proof. Let T and R be the synthesis operators for the frames {A;};en
and {£; };en, respectively. For each o C N, define bounded operators

T, R, : (Z@Hl) — M,
22

€N
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{xz ZGN ZA* 1'1

€0

and

{l'z}zeN ZQ* 1’1

i€o

Note that |T5[| < [T, R || < [|B]| and [|T; — R || < [T — Rl

By using (4.1), we have

M| Tz ien)ll + Ael|[R({zi bien) | + pl{zi }ien]|

> | Yo - an @)
i€N
~ I = Bl {nhene (X DH)

1€EN

This gives ||T — R|| < M||T|| + A2||R|| + p- Using this, for any o C N,
we compute

(4.2)
D oA A=Y Qx| = (1T ({Air}ies) — Ro({Qia}ico )|
i€o i€o

= [IT5T5x — Ro Ry x|

< WTT5 =To By ) ()| +[|(To By — Ro RS ) (2) |
ST TS = Bl +11T6 = Ro ||| Bo [l |
ITINT = Rllll<] + T = R R[]z
AT+ Aol BRI+ ) T+ ([ RID ]

< (MVBi+22V/Ba+1)(VBi+V/Ba) |z

<(; r’i ﬁ) (VBr +vBa)lz]
Ay

—||a:H for all x € H.

<
<
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By using (4.2), it follows that

1€0° 1€0
=Y A Az + ) AT A =Y AT+ Y Qi
i€o° €0 €0 i€
= D) AN+ ) Q- > Az
€N €0 €0
> A A — [ D = > AT A
€N i€o €0
> Arllal = || D AT A =) Qi
€0 i€

Ay
> A - o]

A
= 71||m|\ for all x € H.

This gives a universal lower g-frame bound. The upper universal g-
frame bound can be obtained from Proposition 3.6. Hence, A and €2
are g-woven. |

The next theorem gives another variant of Paley-Wiener type per-
turbation of weaving g-frames in terms of frame operators associated
with A and Q.

Theorem 4.2. Let A = {A;}ien and Q = {Q;}ien be g-frames for H
with respect to {H; : i € N} with frame bounds Ay, By and Ag, Bs,
respectively. Assume that there are constants 0 < A, p, v < 1 such that

AB1 + uBs + vV By < Ax

and
(4.3)
D (A A — Qi) || < A DD AN
1€0 i1€0
1/2
| ez +W(Z||Aix||2) ,
1€0 1€E0
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for all x € H and for every o C N. Then, A and 2 are g-woven with
universal g-frame bounds (A1 — AW/B1 — uBa — ) and (By + A\/By +
uBs + 7).

Proof. By using the fact that

> ANz

1€0

< Bifjz]| and < Bfz|

> i

1€0

for any ¢ C N and = € H, we compute

S OA AT+ Qe SOA AT+ Y QY AfAix

1€0¢ 1€0 1€N 1€0 1€0
> A A~ || Y e =Y AfA
iEN 1€E0 1€E0
> Arllz] = A DDA Nz = pf Y
1€0 1€0
1/2
—V(Z ||Aiw||2)
i€o
(4.4) > (A1 = AB1 — puB2 — v/ Bi1) ||,
and
SOANz+ Y Q| = (1Y AAz+ Y QG Qr— > Al
1€0C 1€0 1EN 1€0 1€0
<[ Do ArAz|[+]D - AjA
€N 1€E0 i€o
< Bl + || Y Af Az ||+ pf D Qe
1€0 1€E0
1/2
#9( X Ial?)
1€0
(4.5) < (B1 + AB1 + pB2 + v/ Bi)lz]|.

Therefore, by (4.4) and (4.5), the g-frames A and 2 are g-woven with
the required universal g-frame bounds. O
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We end this section with perturbation of weaving g-frames in terms
of certain closeness between the vectors in H,;.

Theorem 4.3. Let A = {A;}ien and Q = {Q;}ien be g-frames for H
with respect to {H,; : i € N} and with g-frame bounds A1, By and As, Ba,
respectively. Assume that there is a constant M > 0 such that, for every
JCN,

(4.6) > ||Aiz — Qz|® < M min { o)) Qix||2}, reM.
iceJ iceJ ieJ

Then, A and Q are g-woven with universal g-frame bounds (A1 + As)/

Proof. Let o C N be arbitrary. Then, by using (4.6), we compute

(A1 + A ell® < D lAge]® + Y Q]

1€N 1€N
=S i Y A S el 4 S [
i€o 1€0° i€o i€oc
<3 Al + 2( Sl - )@+ Y ﬂixn?)
1€0 1€0°¢ icoc
n 2(2 A2 @2+ Y ||Aix||2)+2 el
1€0 1€0 1€0°¢
<3 Al + 2(M Sl + 3 miqu)
i€o 1€0C i€o¢
2L Ihal + X al?) + 3 Ieal?
1€E0 1€0 1€0°
= (2M+3)<Z | Asz)® + Z ||Qlas||2> for all x € H.
i1€o 1€E0C

Therefore,

Ap + Ay 2 2 2
<3 |IA S e
2M 4 3 ||$H — — || 'Lx|| + = ||Q'L$H

< (Bi+Bo)al?, wen.

Hence, A and 2 are g-woven with the desired universal g-frame bounds.
O
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5. Weaving g-Riesz bases. Bemrose, et al., [1] classified when
Riesz bases and Riesz basic sequences can be woven and proved a
characterization in terms of distances between subspaces. We present
a necessary and sufficient condition for weaving g-Riesz bases in terms
of standard woven Riesz bases. The proof is based upon the technique
developed by Sun [17], which may be found in the following theorem.

Theorem 5.1 ([17]). Let A, € B(H,H,) and {enm}tmer, be an
orthonormal basis for H,, where J, C N, n € N. Then, {A,}nen
is a g-Riesz basis for H if and only if {A}en mtmel, nen i a Riesz
basis for H.

As a corollary, we have the next result for weaving g-Riesz bases.

Corollary 5.2. Let A = {A,}nen, and Q = {Qu}nen be g-Riesz
bases for H with respect to {H, : n € N}, and let {en m}mey, be
an orthonormal basis for H,, for each n € N. Then, A and Q
are g-woven Riesz bases for H if and only if {Afen m}tnenmer, and
{Q en,m tnen,mey, are woven Riesz bases for H.

Proof. For each n € N, since {e, m }mer, is an orthonormal basis for
Hn, every y, € H, has an expansion of the form

Yn = § Cn,mE€n,m,

mel,
where {¢pm} nen € /*(N).

mEJn

Let J C N be any arbitrary finite subset and {o,c¢} any partition
of N. We write {I'y, fnen = {An}neo U {Qn}neoe and vy, Wnm € H
for vectors defined as in the proof of Corollary 3.3. Compute

D Thvm ST Mynt Y. Qi

2 2

neJ neJNo neJNo®
= E E <yna en,m>vn,m
neJNo mel, 2

+ Z Z <ynaen,m>wn,m

neJNoc mel,




680 L.K. VASHISHT, S. GARG, DEEPSHIKHA AND P.K. DAS

2

b

§ § Cn,mUn,m + § § CnomWn,m

neJNo mel, neJNo® mel,

and

2
=22 leaml”

neJ mel,

g Cn,m€n,m

mel,

Do llyall> =

neJ neJ

Hence, it follows that

A lyall® <

neJ

2
<BY |yl

neJ

> Thyn

neJ

is equivalent to

2
2
AE E |Cn,m|” < E E Cn,mVn,m + E E Cr,ymWn,m
neJ mel, neJNo mel, neJNo® mel,
2
<BE § |Cn,ml®,
neJ mel,

that is, {Ap}neo U {Qn}neoe is a g-Riesz sequence if and only if

(A% enim} neo U{enm)} neor
meln meln

is a Riesz sequence.
Next, we show that {I', },en is g-complete if and only if

{A:Len77rz}£gf U {Q:‘Len,m}neeic
n m n

is complete.
{z:Tpr=0neN}={z:A,z=0neco}U{z:Qux=0,n¢€oc}

= {x : Z (@, Vnm)enm =0,n € a}

mely

U {x : Z (x, Wn,m)enm =0,n € O’c}

mel,
={z: (z,vm)=0,n€0,mel,}

U{z : (@, wnm) =0,n €0, mel,}

This completes the proof.
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Example 5.3. Let H = C, where N > 1 is any odd natural number,
and let {e, }2_, be the canonical orthonormal basis for H, i.e.,

en = (o,...,o, 1 ,0,...,0).
~~

nth-place

Suppose that H, = span{e, + e,11} for n € [N — 1] and Hy =
span{e; + ex}. Then,

1
{enm}tme1 = {ﬂ(oo 1 ,1,0,...,0)}

nth-place

is an orthonormal basis of H,, (n € [n — 1]) and

{enm}m=1 = { (1,07...,071)}

is an orthonormal basis of H .

Let A = {A,})_, and Q = {Q,})_,, where A,, is the orthogonal
projection from H onto H,, and €, is the orthogonal projection of H
onto span{e, } for each n, 1 <n < N. Clearly,

* *
Aen1=e,1 and Qre,; = en-

1
V2
It is easy to verify that {A} e, m }ne(n],m=1 and {2 en m fne[N],m=1 are
Riesz bases for H. Furthermore, for any ¢ C N,

{A;en,m}nEJ U {Q:;en,m}n.ecrC
m=1 m=1

is a Riesz basis for H. Hence, by Corollary 5.2, A and 2 are g-woven.

The next theorem provides sufficient conditions for weaving g-Riesz
bases in terms of g-Riesz sequences. This generalizes [1, Theorem 5.2].

Theorem 5.4. Let A = {A;}ien and Q = {Q; }ien be g-Riesz bases for
H with respect to {H; : i € N}, for which there are uniform constants
0 < A< B < oo so that, for every o C N, the family

{Aitico U{Qi}icoe

is a g-Riesz sequence with g-Riesz bounds A and B. Then, for every
o CN, the family {A;}ico U {Q;i}icoe is a g-Riesz basis.
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Proof. We prove the result in the following steps.

Step 1. First, we discuss the case |o| < co. We prove the result by
induction on the cardinality of o. The case |o| = 0 is trivial. Suppose
that the result is true for every o with |o| = n.

Now, let 0 C Nwith |o| = n+1, and choose iy € 0. Let 01 = o\ {io}-
Then,

{Aitico, U{Qi}icoe
is a g-Riesz basis by induction hypothesis. Assume that
{Aitico U{Qi}icoe

is not a g-Riesz basis, that is,
{Ajeir}ico U{Q7€ir}icoe
kEN keN
is not complete in H. Then,
o # span((feosd) e U (O ein e )
kEN keN
Indeed, if
i < span ( {Afess) g U (i) e ).
kEN keN

then
wwcﬁqdmﬂHW%&@v
keN keN

DW%GM%M@AHW%&@Ozﬂ,
keN keN

that is,
{Ajeik}ico U{Qi€iktico
keN keN

is complete in H, which is a contradiction. Hence,
{Citien = {Afeir}ico UL eirticos UL €k}
kEN keN

is a Riesz sequence in H.

Now, of = UCU{io}. We obtained {Afei,k}ichl,keNU{Q:ei,k}iEUY,keN
by deleting the element Aj e;, r from the Riesz sequence {I';};en.
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Therefore, {Aje;r}ico, ken U {2 €k bicos ken cannot be a Riesz basis
for H, i.e., {Ai}ico, U {Qi}icoe cannot be a g-Riesz basis, which is a
contradiction. Hence,

{Aitico U{Qi}ieoe
is a g-Riesz basis.

Step 2. Consider |o| = co. Suppose that there exists a 0 € N with
both o and ¢ infinite, such that {A;}ico U{Q;}icoe is not g-complete,
ie., {Afeik}icoken U{Q €k }icoe ken is not complete in H. Then,

M = s {Aesa jeg U eushest ) #
keN keN

Thus, there exists a non-zero vector xg € H such that xog L M. Since
{Q%e; k}iren is a Bessel sequence, we can find o3 C o with |o] < o0

such that 4
DD Hwo, Qeir)” < §||$0||2-
i€o\o1 kEN

From Step 1, the family

{Ajeiktico, U{Q7€iktico\o, U{Q €k ficoe
keN keN keN

is a Riesz basis with Riesz bounds A and B. Using xo 1. M, we compute

Allzol” < Z Z (o, Afei)]?

i€o1 kEN

+ >0 Hwo, Qen)?

i€o\op kKEN

+ 0> (wo, Aean)?

i€o® keN

. A
= D > w0, Qeir)* < Sllaoll?,

i€o\oy kEN

which is absurd. Thus, {A;}ico U{Q;}icoe is g-complete, and hence, a
g-Riesz basis. O
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