
ROCKY MOUNTAIN
JOURNAL OF MATHEMATICS
Volume 48, Number 2, 2018

COUNTING ALL SELF-AVOIDING WALKS
ON A FINITE LATTICE STRIP
OF WIDTH ONE AND TWO

M.A. NYBLOM

ABSTRACT. In this paper, a closed-form expression for
counting all SAWs, irrespective of length, but restricted to
the finite lattice strip {−a, . . . , 0, . . . , b} × {0, 1}, shall be
obtained in terms of the non-negative integer parameters a
and b. In addition, the argument used to prove this result
will be extended to establish an enumerating formula for
counting all SAWs, irrespective of length, but restricted
to the half-finite lattice strip of width two {0, 1, . . . , n} ×
{0, 1, 2}, in terms of n.

1. Introduction. In a two-dimensional square lattice Z×Z, a self-
avoiding walk (SAW) is a path beginning at the origin which does not
pass through the same lattice point twice. Specifically, an n length
SAW is a finite sequence of distinct lattice points (x0, y0) = (0, 0),
(x1, x2), . . . , (xn, yn) such that, for all i, (xi, yi) and (xi+1, yi+1) are
separated by a unit distance. The concept of a SAW is generally con-
sidered to have been introduced by the polymer chemist Orr [6] around
the mid 20th century. Despite their simplicity of definition, SAWs pose
a number of open and perhaps intractable problems, in particular, the
enumeration of all n length SAWs on the square lattice, either by a
closed-form expression or by some efficient algorithmic procedure.

Closed-form expressions for the enumeration of all n length SAWs
can, however, be obtained by placing restrictions on the way the
SAWs are constructed. Typically, this could entail either restricting
a direction on the square lattice in which the SAWs can never step,
or isolating the count of the SAWs to a subset of the square lattice
containing the origin. One good example of this latter type of result
is due to Zeilberger [9], who solved the problem of enumerating all n
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length SAWs on the infinite lattice strip {0, 1} × Z of width one. If an
denotes the sequence just described and Fn the nth Fibonacci number,
then Zeilberger proved that an = 8Fn − εn, where εn = 4, when n > 1
is odd, and εn = n, when n > 1 is even, while a0 = 1 and a1 = 3.

Zeilberger’s approach was to show that all n length SAWs on the
lattice strip could be decomposed into a finite sequence of specific
pieces, whose individual generating functions were easily identified.
By formally multiplying these generating functions, the generating
function for the sequence an could then be obtained, from which the
above closed-form expression was extracted. A similar approach was
also employed by Williams [8] to count all n length SAWs whose
movements were restricted to upwards and sideways, but not down
the infinite lattice strips {0, 1} × Z and {0, 1, 2} × Z of width one and
two, respectively. It should be noted that Zeiberger’s result was later
proved by Benjamin [2] via a combinatorial argument not requiring the
use of a generating function.

In this paper, we shall similarly employ a combinatorial argument
that does not require the use of generating functions to establish two
related but different results to those of Zeilberger and Williams. In
particular, we shall prove that the total number of SAWs, regardless of
length, restricted to the finite lattice strip {−a, . . . , 0, . . . , b}×{0, 1} of
width one, where a and b are positive integers, is given by the following
closed-form expression

(1.1) w(a, b) = 6(a2b−1 + b2a−1 + 2a + 2b)− (2ab+ 4(a+ b) + 10).

In addition, we shall prove that the total number of SAWs, regardless of
length, restricted to the half-finite lattice strip {0, 1, . . . , n} × {0, 1, 2},
is given by
(1.2)

Wn =

⌊(
481 + 131

√
13

78

)(
3 +

√
13

2

)n

−
(
19 + 13

√
2

4

)
(1+

√
2)n+

2

3

⌋
for n ≥ 3, where ⌊·⌋ is the floor function. (Note that both enumerating
functions w(a, b) and Wn include, as part of their count, the empty
walk, which consists of the single lattice point (0, 0)). The argument
necessary for establishing equations (1.1) and (1.2) will first partition
the SAWs into the sets of unfolded and folded walks. An unfolded
walk is a SAW whose terminating lattice point is strictly “right-most,”
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having a maximal x-coordinate, while a folded walk has a terminating
lattice point which is not “right-most” [3]. Secondly, the argument
in general will then relate the count of the folded walks to those of
the unfolded walks by observing that any folded walk on either lattice
strip can be decomposed into an unfolded walk connected to at most
two lattice paths, whose total number can easily be determined. As
shall be seen in Section 2, the counting of the unfolded walks on the
lattice strip of width one will be straightforward; however, for the lattice
strip of width two, this enumeration will be achieved in Section 3 by
first exploiting a column state sequence representation for the unfolded
walks, first introduced by Klein [4]. In particular, this representation
will be used to construct a second order constant coefficient difference
equation for the number of unfolded walks, from which the required
closed-form expression shall be obtained. It should be noted that this
approach is more direct than the related transfer-matrix method of
[1, 4], where a generating function can first be derived for the number
of unfolded walks of a specific end to end length, for lattice strips of
varying widths.

2. The finite lattice strip of width one. For completeness and
to motivate the methodology of Section 3, here we present some recent
results [5] in connection with the problem of counting all SAWs on
a finite lattice strip of width one. We start with the definition of
the unfolded and folded SAW, restricted to the half-finite lattice strip
{0, 1, . . . , n} × {0, 1}.

Definition 2.1. For an integer n ≥ 0, let Hn denote the set of all
SAWs restricted to the half-finite lattice strip {0, 1, . . . , n} × {0, 1}.
Suppose that w is a SAW in Hn, which terminates on the line x = i,
for 0 ≤ i ≤ n, and let

Si={w∈Hn :w only traverses (l, j) with j∈{0, 1} and 0≤ l≤ i},
S ′

i={w∈Hn :w traverses at least one (l, j) with j∈{0, 1} and l>i}.

Then,

S(n) =
n∪

i=0

Si and S ′(n) =

n∪
i=0

S ′
i,

are the set of unfolded and folded SAWs, respectively, restricted to the
half-finite lattice strip.
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Examples of folded and unfolded SAWs, restricted to the half-finite
lattice strip {0, 1, . . . , 7} × {0, 1}, may be seen in Figure 1 (a) and (b),
respectively.

...
(b)

..

(5, 1)

..

(5, 0)

..

(0, 0)

..

(a)

..

(5, 1)

..

(5, 0)

..

(0, 0)

Figure 1. Two SAWs restricted to the half-finite lattice strip {0, 1, . . . , 7}×
{0, 1}.

An explicit expression for the cardinality of the set Hn in terms of n
may be obtained as follows.

Lemma 2.2. For an integer n ≥ 0, the total number of SAWs
restricted to the half-finite lattice strip {0, 1, . . . , n} × {0, 1}, including
the empty walk, is given by

(2.1) |Hn| = 6 · 2n − (n+ 4).

Proof. For all integers n ≥ 0 and 0 ≤ i ≤ n, let si = |Si| and
s′i = |S ′

i|. We first show that si = 2i+1 and s′i = (n− i)2i. In order to
determine si, observe that any unfolded walk in Hn which terminates
on the line x = i is uniquely characterized by the placement of its
vertical steps, that is, at every line x = j, with 0 ≤ j ≤ i, it may be
decided whether or not to put a vertical step; thus, si = 2i+1.

Next, we determine s′i by relating the count of the SAWs in S ′
i to

those in Si as follows. Beginning with s′0, observe from Figure 2 (a)
that any SAW in S ′

0 can only be a U shaped path which turns on the
line x = k, for k = 1, . . . , n, before terminating at (0, 1); consequently,
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...

(b)

..

(i− 1, 0)

..

(i, 0)

..

(i+m, 0)

..

(i+m, 1)

..

(i, 1)

..

(i− 1, 1)

..
(c)

..

(i− 1, 0)

..

(i, 0)

..

(i+m, 1)

..

(i+m, 0)

..

(i, 1)

..

(i− 1, 1)

..

(a)

..

(0, 0)

..

(k, 0)

..

(k, 1)

..

(0, 1)

..

(n, 0)

Figure 2. Final U shaped paths of the SAWs in S ′
i.

s′0 = n. Similarly, to determine s′i, for 1 ≤ i ≤ n − 1, observe from
Figure 2 (b) and (c) that any SAW in S ′

i can only be formed by
concatenating a U shaped path which turns on the line x = i + m,
for m = 1, . . . , n− i, with an unfolded walk that terminates on the line
x = i−1. Thus, s′i = (n− i)si−1 = (n− i)2i. We note that the previous
equality also holds for i = n, since s′n = 0 as S ′

n = ∅. It is now a simple
task to count all the SAWs restricted to the half-finite lattice strip.
Since Hn = S(n)∪S ′(n) with S(n)∩S ′(n) = ∅, we readily deduce that

|Hn| =
n∑

i=0

si +

n∑
i=0

s′i =

n∑
i=0

2i+1 +

n∑
i=0

(n− i)2i

=

n∑
i=0

(n+ 2)2i −
n∑

i=0

i2i = 6 · 2n − (n+ 4). �
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By employing a similar geometric decomposition together with a
symmetry argument, the following result may be obtained via an
application of Lemma 2.2. Interested readers may consult [5] for a
complete proof.

Theorem 2.3. If a and b are positive integers, then the total number
of SAWs restricted to the finite lattice strip {−a, . . . , 0, . . . , b}× {0, 1},
including the empty walk, is given by

w(a, b) = 6(a2b−1 + b2a−1 + 2a + 2b)− (2ab+ 4(a+ b) + 10).

3. The half-finite lattice strip of width two. In what follows,
let Hn denote the set of all SAWs restricted to the half-finite lattice
strip of width two, namely, {0, 1, . . . , n} × {0, 1, 2}. In this section,
we shall extend the combinatorial argument of Section 2 to establish a
closed-form expression for |Hn| in terms of n. Again, all SAWs in Hn

shall be partitioned into the set of unfolded and folded walks, and the
count of the folded walks will be related to those of the unfolded walks
via an analogous geometric decomposition to that used in the proof of
Lemma 2.2. We begin with the enumeration of the unfolded and folded
walks in Hn.

3.1. Counting the unfolded SAWs in Hn. Let si now denote the
number of unfolded walks in Hn, which terminate on the line x = i.
Unlike the lattice strip of width one, the determination of a closed-form
expression for si will now require a more elaborate argument, which
shall make use of the fact that any unfolded walk in Hn can be uniquely
constructed from a sequence of column states [4]. In particular, five
column states are sufficient to construct any unfolded walk. As an
example,

...

(0, 0)

..

(9, 0)

..

(9, 2)

Figure 3. An unfolded SAW in H9.
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Figure 3 depicts a typical unfolded walk in H9, represented by the
column state sequence {S4, S4, S3, S5, S5, S1, S2, S1, S4}, where each of
the five column states is illustrated in Figure 4. It should be noted that,
in Figure 3, the first two columns are occupied by S4 since the top two
horizontal edges in these columns are connected through a left most
looped segment of the SAW, while, similarly, columns four and five are
occupied by S5 since the bottom two horizontal edges are connected
through a left most looped segment of the SAW.

...

S1

..

S2

..

S3

..

S4

..

S5

Figure 4. The five column states needed to construct any unfolded walk
in Hn.

Specifically, the argument used to determine sn will first partition
the unfolded walks according to whether their nth column is occupied
with the two S shaped column states S4 and S5 or the remaining
column states S1, S2 and S3. From this partition, a second order
difference equation for si can then be derived, leading to the closed-
form expression in (3.1).

Lemma 3.1. For an integer 0 ≤ i ≤ n, the total number of unfolded
walks in Hn terminating on the line x = i is given by

(3.1)

si =

(
39 + 11

√
13

26

)(
3 +

√
13

2

)i

+

(
39− 11

√
13

26

)(
3−

√
13

2

)i

.

Proof. Suppose that w is a SAW in Hn which terminates on the line
x = i, for 0 ≤ i ≤ n, and

Si = {w∈Hn :w only traverses (l, j) with j∈{0, 1, 2} and 0 ≤ l ≤ i}.
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Then, si = |Si|. We shall first establish a difference equation for si.
Toward this end, it will be necessary to introduce the following auxiliary
sets

Ai = {w ∈ Si : w terminates at (i, 0)},

Bi = {w ∈ Si : w terminates at (i, 1)},

Ci = {w ∈ Si : w terminates at (i, 2)}.

Clearly, Ai, Bi and Ci partition the set Si, and thus, si = |Ai|+ |Bi|+
|Ci|. With reference to Figure 5, observe that the only way a walk in Bi,
for i ≥ 1, can be formed is to concatenate a SAW in Ci−1, Bi−1 andAi−1

to the column state S3, S2 and S1 shown, respectively. Consequently,

(3.2) |Bi| = |Ai−1|+ |Bi−1|+ |Ci−1| = si−1.

...

(i, 1)

..

(i− 1, 2)

..

(i, 1)

..

(i− 1, 1)

..

(i, 1)

..

(i− 1, 0)

Figure 5. Final column states of the unfolded walks in Bi.

In what follows, we shall assume that i ≥ 3. Now, the set Ai can
further be partitioned into two subsets, one containing those SAWs
whose ith column state is chosen from the set {S1, S2, S3}, and the
other whose ith column state is S5. In particular, for the former subset,
observe from Figure 6 (a) that all such walks can only be formed by
concatenating a SAW in Ai−1, Bi−1 and Ci−1 to the column state S1,
S2 and S3, respectively. For the latter subset, observe from Figure
6 (b) that all such walks can only be formed by concatenating, for
each j = 2, . . . , i, a SAW in Ci−j to the final column state sequence
{S3, S5, . . . , S5} of length j, consisting of j − 1 repartitions of S5.
Consequently,
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(3.3) |Ai| = |Ai−1|+ |Bi−1|+ |Ci−1|+
i∑

j=2

|Ci−j | = si−1 +

i∑
j=2

|Ci−j |.

...

(a)

..

(i, 0)

..

(i− 1, 2)

..

(i, 0)

..

(i− 1, 1)

..

(i, 0)

..

(i− 1, 0)

..
(b)

..

(0, 0)

..

(i, 0)

..

(i− j, 2)

Figure 6. Final column states of the unfolded walks in Ai.

Finally, the set Ci can, in like manner, now be partitioned into three
subsets as follows: the first subset contains those SAWs whose ith col-
umn state is chosen from the set {S1, S2, S3}, where, in particular,
with reference to Figure 7 (a), all such walks can only be formed by
concatenating a SAW in Ai−1, Bi−1 and Ci−1 to the column state S1,
S2 and S3, respectively. For the second subset, observe from Figure
7 (b) that all such walks can only be formed by concatenating, for
each j = 2, . . . , i, a SAW in Ai−j to the final column state sequence
{S1, S4, . . . , S4} of length j, consisting of j − 1 repartitions of S4.
Finally, the third subset contains a single unfolded walk represented by
the column state sequence {S4, S4, . . . , S4} consisting of i repartitions
of S4 as shown in Figure 7 (c). Consequently,

(3.4) |Ci|= |Ai−1|+|Bi−1|+|Ci−1|+
i∑

j=2

|Ai−j |+1=si−1+
i∑

j=2

|Ai−j |+1.

Recalling |Bk| = sk−1, for k ≥ 1, and |A0| = |B0| = |C0| = 1, it may be
found, upon combining equations (3.2), (3.3) and (3.4) that, for i ≥ 3,
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si = 3si−1 +
i∑

j=2

(|Ai−j |+ |Ci−j |) + 1

= 3si−1 +

i−1∑
j=2

(|Ai−j |+ |Ci−j |) + (|A0|+ |C0|) + 1

= 3si−1 +
i−1∑
j=2

((|Ai−j |+ |Bi−j |+ |Ci−j |)− |Bi−j |) + 3

= 3si−1 +
i−1∑
j=2

(si−j − si−j−1) + 3 = 3si−1 + si−2 − s0 + 3.

...

(a)

..

(i, 2)

..

(i− 1, 2)

..

(i, 2)

..

(i− 1, 1)

..

(i, 2)

..

(i− 1, 0)

..

(b)

..

(0, 0)

..

(i, 0)

..

(i, 2)

..

(i− j, 0)

..
(c)

..

(0, 0)

..

(i, 2)

..

(i, 0)

Figure 7. Final column states of the unfolded walks in Ci.
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Consequently, the sequence term si satisfies the difference equation
si = 3si−1 + si−2, for i ≥ 3. Since a manual count reveals that s1 = 10
and s2 = 33, it can easily be seen that the difference equation for si also
holds for i ≥ 2. Thus, by solving this difference equation, subject to the
boundary conditions s0 = 3, s1 = 10, we finally obtain the closed-form
expression given in equation (3.1). �

Applying the identity

n∑
i=0

ri =
rn+1 − 1

r − 1
,

we readily deduce from equation (3.1) that the total number of unfolded
walks in Hn, including the empty walk, is given by

n∑
i=0

si =

(
26 + 7

√
13

39

)(
3 +

√
13

2

)n+1

(3.5)

+

(
26− 7

√
13

39

)(
3−

√
13

2

)n+1

− 4

3
.

...

(a)

..

(0, 0)

..

(9, 0)

..

(i, 1)

..

(i, 0)

..

(i− 1, 0)

..
(b)

..
(0, 0)

..
(9, 0)

..

(i− 3, 2)

..
(i, 0)

Figure 8. Two folded walks in H9.
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3.2. Counting the folded SAWs in Hn. Recall, in the case of the
half-finite lattice strip of width one, all folded walks terminated on
the right of their terminus lattice points. Now, with the inclusion of
an additional lattice strip layer, the folded walks in Hn can either
terminate on the right or left of their terminus lattice point, as illus-
trated in Figure 8 (a) and (b). Denote the set of folded walks which
terminate on the right and left of the line x = i by S ′

i,1 and S ′
i,2, re-

spectively. In order to determine the cardinality of these sets in terms
of si and another auxiliary sequence, denoted (an)n≥0, we shall need
to exploit in Propositions 3.3 and 3.4 the following generic geometric
decomposition, namely, that the folded walks can be decomposed into
three segments, an initial unfolded walk connected to an intermediary,
possibly disconnected lattice path, which is adjoined on the right by
another self avoiding lattice path. As shall be seen, these right most
adjoining paths can be uniquely constructed from one of either two
sets containing three directed column states, depicted in Figure 9 (a)
and (b). Moreover, their enumeration will be given in terms of the se-
quence (an)n≥0, defined as the number of n length ternary strings over

...

(a)

..

0

..

1

..

2

..
(b)

..

0′

..

1′

..

2′

Figure 9. Directed column states.

the alphabet {0, 1, 2, }, not containing the substrings 12 or 21. Before
determining |S ′

i,1| and |S ′
i,2|, we shall derive a closed-form expression

for the sequence {an}, whose terms are all of odd parity as follows.
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Lemma 3.2. Suppose that an denotes the number of ternary strings of
length n ≥ 1, over the alphabet {0, 1, 2}, not containing the substrings
12 or 21. Then,

(3.6) an = 1
2 ((1 +

√
2)n+1 + (1−

√
2)n+1).

Moreover, if Ni(n), where i ∈ {0, 1, 2} denotes the number of such
length n ternary strings having an initial symbol i, then N0(n) = an−1

while N1(n) = N2(n) = (an − an−1)/2, formally noting that a0 ≡ 1.

Proof. By definition, an = N0(n)+N1(n)+N2(n). In order to obtain
a recurrence relation for an, initially assume that n ≥ 3. Observe
that any ternary string enumerated by N0(n) can uniquely be written
as 0x, where x is a ternary string of length n − 1 not containing the
substrings 12 or 21, and thus, N0(n) = an−1. However, a ternary string
enumerated by N1(n) can be uniquely written as either 1x or 1y, where
x and y are ternary strings of length n−1 not containing the substrings
12 or 21 and beginning with the symbols 0 and 1, respectively. Thus,
N1(n) = N0(n − 1) + N1(n − 1) = an−2 + N1(n − 1). Similarly,
N2(n) = N0(n− 1) +N2(n− 1). Consequently, for n ≥ 3,

an = an−1 + (an−2 +N1(n− 1)) + (N0(n− 1) +N2(n− 1))

= an−1 + an−2 +N0(n− 1) +N1(n− 1) +N2(n− 1)

= 2an−1 + an−2.

Upon solving the recurrence with a1 = 3 and a2 = 7, (3.6) is
obtained, noting here that a0 ≡ 1. By symmetry, it is clear that
N1(n) = N2(n), for n ≥ 1. Consequently, again by definition,
since an = an−1 + N1(n) + N2(n), it may finally be deduced that
N1(n) = N2(n) = (an − an−1)/2, for n ≥ 1. �

We now determine |S ′
i,1| in terms of the sequences (si)i≥0, (ai)i≥0

and (|Bi|)i≥0.

Proposition 3.3. For an integer n ≥ 2 and 0 ≤ i ≤ n − 1, the total
number of folded walks in Hn, which terminate on the right of the line
x = i, is given by
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(3.7)

|S ′
i,1| =



n∑
j=1

(aj + aj−1) +
an − 1

2
i = 0;

si−1

( n−i∑
j=1

(aj + aj−1) +
an−i − 1

2

)
− |Bi−1|

an−i − 1

2

i = 1, . . . , n− 1.

Proof. The set of folded walks S ′
i,1 can be partitioned into the

following three sets

A′
i,1 = {w ∈ S ′

i,1 : w terminates at (i, 0)},
B′
i,1 = {w ∈ S ′

i,1 : w terminates at (i, 1)},
C′
i,1 = {w ∈ S ′

i,1 : w terminates at (i, 2)},

with |S ′
i,1| = |A′

i,1|+ |B′
i,1|+ |C′

i,1|. Before determining the cardinality
of these sets, we shall need to derive an enumerating formula for the
three types of right most adjoining self avoiding lattice paths, which
depart and terminate along the line x = i, for 1 ≤ i ≤ n− 1, and turn
on the line x = i+ k, for 1 ≤ k ≤ n− i, as illustrated in Figure 10 (a),
(b) and (c).

We first note, as these paths can traverse in either a clockwise or
anticlockwise direction, they can be uniquely constructed from one
of the two sets of directed column states in Figure 9, but with the
restriction that the two pairs of column states labeled 1 and 2 or 1′

and 2′ cannot occur in succession. Consequently, from Lemma 3.2, we
deduce that the total number of paths beginning with one and only
one of the column states labeled 0 or 0′ pictured in Figure 10 (a), must
be N0(k) = ak−1. Similarly, from Lemma 3.2, the total number of
paths beginning with one and only one of the column states labeled
2, 2′ or 1, 1′, pictured in Figure 10 (b) and (c), respectively, must be
N1(k) = N2(k) = (ak − ak−1)/2.

We now examine more closely the geometric decomposition of each
SAW in S ′

i,1, alluded to in the introduction of subsection 3.2. Beginning
with i = 0, clearly, |A′

0,1| = 0, as A′
0,1 = ∅. However, the only walks

in B′
0,1 are those right most adjoining self avoiding lattice paths, which
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...

(a)

..

(i, 0)

..

(i+ k, 0)

..

(i, 2)

..

(0, n)

..

(b)

..

(i, 1)

..

(i, 2)

..

(0, n)

..

(i+ k, 0)

..
(c)

..
(i, 0)

..
(0, n)

..

(i, 1)

..
(i+ k, 0)

Figure 10. Three right most adjoining self avoiding lattice paths.

have an initial directed column state labeled 0 or 1, as shown in Figure
11 (a). Consequently, as these paths turn on the line x = j for j = 1,
. . . , n, it may be deduced, after recalling a0 = 1, that

|B′
0,1| =

n∑
j=1

(N0(j) +N1(j))

=
n∑

j=1

(
aj−1 +

aj − aj−1

2

)

=

n∑
j=1

aj−1 +
an − 1

2
.

Similarly, the only walks in C′
0,1 are those right most adjoining self

avoiding lattice paths, which have an initial directed column state
labeled 0, 1 or 2, as shown in Figure 11 (b). Consequently, since these
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...

(a)

..

(0, 1)

..

(0, 0)

..

(0, 1)

..

(0, 0)

..
(b)

..

(0, 0)

..

(0, 2)

..

(0, 0)

..

(0, 2)

..

(0, 0)

..

(0, 2)

Figure 11.

paths also turn on the line x = j for j = 1, . . . , n, it may be deduced
after recalling aj = N0(j) +N1(j) +N2(j) that

|C′
0,1| =

n∑
j=1

(N0(j) +N1(j) +N2(j)) =
n∑

j=1

aj ,

and thus, |S ′
0,1| =

∑n
j=1(aj + aj−1) + (an − 1)/2.

Next, we first examine the geometric decomposition of the SAWs
in the sets A′

i,1, C′
i,1 and then B′

i,1 for i = 1, . . . , n − 1, as follows.
Observe from Figure 12 (a) and (b) that the only walks in A′

i,1 are
those consisting of an initial unfolded walk from the set Bi−1 or Ci−1,
which are connected by a simple lattice path of at most two edges to
a right most adjoining self avoiding lattice path, that turn on the line
x = i + j for j = 1, . . . , n − i. Moreover, as these right most lattice
paths in Figure 12 (a) can only have an initial directed column state
labeled 0 or 1, whilst those of Figure 12 (b) can have an initial directed
column state labeled 0, 1 or 2, we deduce that
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...

(a)

..

(i− 1, 1)

..

(i, 0)

..

(i+ 1, 0)

..

(i− 1, 1)

..

(i, 0)

..

(i+ 1, 0)

..
(b)

..

(i− 1, 2)

..

(i, 0)

..

(i+ 1, 0)

..

(i− 1, 2)

..

(i, 0)

..

(i+ 1, 0)

..

(i− 1, 2)

..

(i, 0)

..

(i+ 1, 0)

Figure 12.

|A′
i,1| = |Bi−1|

n−i∑
j=1

(N0(j) +N1(j))(3.8)

+ |Ci−1|
n−i∑
j=1

((N0(j) +N1(j) +N2(j))

= |Bi−1|
n−i∑
j=1

(
aj−1 +

aj − aj−1

2

)
+ |Ci−1|

n−i∑
j=1

aj

= |Bi−1|
( n−i∑

j=1

aj−1 +
an−i − 1

2

)
+ |Ci−1|

n−i∑
j=1

aj .

Next, following the geometric decomposition shown in Figure 13 (a)
and (b), we see that an analogous argument used to determine equa-
tion (3.8) will allow one to readily deduce that
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|C′
i,1| = |Bi−1|

n−i∑
j=1

(N0(j) +N2(j))(3.9)

+ |Ai−1|
n−i∑
j=1

(N0(j) +N1(j) +N2(j))

= |Bi−1|
n−i∑
j=1

(
aj−1 +

aj − aj−1

2

)
+ |Ai−1|

n−i∑
j=1

aj

= |Bi−1|
( n−i∑

j=1

aj−1 +
an−i − 1

2

)
+ |Ai−1|

n−i∑
j=1

aj .

...

(a)

..

(i− 1, 1)

..

(i, 2)

..

(i+ 1, 0)

..

(i− 1, 1)

..

(i, 2)

..

(i+ 1, 0)

..
(b)

..

(i− 1, 0)

..

(i, 2)

..

(i+ 1, 0)

..

(i− 1, 0)

..

(i, 2)

..

(i+ 1, 0)

..

(i− 1, 0)

..

(i, 2)

..

(i+ 1, 0)

Figure 13.

Finally, with reference to Figure 14 (a) and (b), observe that the
only walks in B′

i,1 are those consisting of an initial unfolded walk from
the sets Ai−1 or Ci−1, which are connected by a horizontal edge to a
right most adjoining self avoiding lattice path, that turn on the line
x = i + j for j = 1, . . . , n − i. However, as both of these right most
lattice paths in Figure 14 (a) and (b) can only have the initial directed
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...

(a)

..

(i− 1, 0)

..

(i, 1)

..

(i+ 1, 0)

..

(i− 1, 0)

..

(i, 1)

..

(i+ 1, 0)

..
(b)

..

(i− 1, 2)

..

(i, 1)

..

(i+ 1, 0)

..

(i− 1, 2)

..

(i, 1)

..

(i+ 1, 0)

Figure 14.

column state labeled 0, 1 and 0′, 2′, respectively, it may be deduced,
after recalling N1(j) = N2(j), that

|B′
i,1| = |Ai−1|

n−i∑
j=1

(N0(j) +N1(j)) + |Ci−1|
n−i∑
j=1

(N0(j) +N2(j))(3.10)

= (|Ai−1|+ |Ci−1|)
n−i∑
j=1

(
aj−1 +

aj − aj−1

2

)

= (|Ai−1|+ |Ci−1|)
( n−i∑

j=1

aj−1 +
an−i − 1

2

)
.

Now, by adding equations (3.8), (3.9) and (3.10), one concludes,
after recalling si = |Ai|+ |Bi|+ |Ci|, that

|S ′
i,1| = (|Ai−1|+ |Ci−1|)

( n−i∑
j=1

(aj + aj−1) +
an−i − 1

2

)

+ |Bi−1|
(
2
n−i∑
j=1

aj−1 + an−i − 1

)
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= si−1

( n−i∑
j=1

(aj + aj−1) +
an−i − 1

2

)

+ |Bi−1|
( n−i∑

j=1

(aj−1 − aj) +
an−i − 1

2

)

= si−1

( n−i∑
j=1

(aj + aj−1)+
an−i − 1

2

)
− |Bi−1|

an−i − 1

2
. �

We next determine |S ′
i,2| in terms of the sequences (si)i≥0 and

(ai)i≥0 via the same geometric decomposition used in the proof of
Proposition 3.3, except now all intermediary lattice paths will be
disconnected and constructed from a sequence of column states chosen
from the subset {S1, S3, S4, S5} of column states shown in Figure 4.

Proposition 3.4. For an integer n ≥ 3 and 1 ≤ i ≤ n − 1, the total
number of folded walks in Hn, which terminate on the left of the line
x = i, is given by

(3.11) |S ′
i,2| =



n−1∑
j=1

aj−1 +
an−1 − 1

2
i = 1;

si−2

( n−i∑
j=1

aj−1 +
an−i − 1

2

)
i = 2, . . . , n− 1.

Proof. As before, the set of folded walks S ′
i,2 can be partitioned into

the following three sets:

A′
i,2 = {w ∈ S ′

i,2 : w terminates at (i, 0)},
B′
i,2 = {w ∈ S ′

i,2 : w terminates at (i, 1)},
C′
i,2 = {w ∈ S ′

i,2 : w terminates at (i, 2)},

with |S ′
i,2| = |A′

i,2| + |B′
i,2| + |C′

i,2|. We again examine the geometric
decomposition of each SAW in S ′

i,2. Beginning with i = 1, clearly,
|A′

1,2| = 0 as A′
1,2 = ∅. However, the only walks in B′

1,2 and C′
1,2

are those with an initial column state of S4, which are connected to a
right most adjoining self avoiding lattice path having an initial directed
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column state labeled 0 and 1, respectively, as pictured in Figure 15 (a)
and (b). Moreover, as both of these paths turn on the line x = j + 1
for j = 1, . . . , n− 1, it may be deduced that

|B′
1,2| =

n−1∑
j=1

N0(j) =

n−1∑
j=1

aj−1

and

|C′
1,2| =

n−1∑
j=1

N1(j) =
an−1 − 1

2
,

and thus,

|S ′
1,2| =

n−1∑
j=1

aj−1 +
an−1 − 1

2
.

...

(a)

..

(0, 0)

..

(1, 1)

..

(b)

..

(1, 2)

..

(0, 0)

Figure 15.

Next, we first examine the geometric decomposition of the SAWs in
the set A′

i,2, C′
i,2 and then B′

i,2 for i = 2, . . . , n− 1, as follows. Observe
from Figure 16 that the only walks in A′

i,2 are those consisting of an
initial unfolded walk from Ci−k for k = 2, . . . , i, which are connected
by a k term column state sequence

{S3, S5, . . . , S5︸ ︷︷ ︸
(k−1)

},

to a right most adjoining self avoiding lattice path that turn on the line
x = i+j for j = 1, . . . , n− i. However, as these right most lattice paths
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...

(i, 0)

..

(i− k + 1, 0)

..

(i− k, 2)

Figure 16.

...

(a)

..

(i− k, 0)

..

(i− k + 1, 2)

..

(i, 2)

..

(b)

..

(i, 2)

..

(0, 0)

Figure 17.

can only have an initial directed column state labeled 2′, we deduce that

(3.12) |A′
i,2| =

( i∑
k=2

|Ci−k|
)( n−i∑

j=1

N2(j)

)
=

( i−2∑
k=0

|Ck|
)(

an−i − 1

2

)
.

Turning to the set C′
i,2, we observe from Figure 17 (a) and (b)

that C′
i,2 can be partitioned into two subsets as follows. The first

contains those SAWs consisting of an initial unfolded walk from Ai−k
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for k = 2, . . . , i, which are connected by a k term column state sequence

{S1, S4, . . . , S4︸ ︷︷ ︸
(k−1)

},

to a right most adjoining self avoiding lattice path that turn on the line
x = i + j for j = 1, . . . , n − i. As these right most lattice paths can
only have an initial directed column state labeled 1, we deduce that
the cardinality of the first subset is( i∑

k=2

|Ai−k|
)( n−i∑

j=1

N1(j)

)
=

( i−2∑
k=0

|Ak|
)(

an−i − 1

2

)
.

The second subset contains those SAWs consisting of an initial i
term column state sequence

{S4, . . . , S4︸ ︷︷ ︸
i

},

connected to a right most adjoining self avoiding lattice path that
turn on the line x = i + j for j = 1, . . . , n − i. Again, as these
right most lattice paths can only have an initial directed column
state labeled 1, we deduce that the cardinality of the second subset

is
∑n−i

j=1 N1(j) = (an−i − 1)/2; consequently,

(3.13) |C′
i,2| =

( i−2∑
k=0

|Ak|
)(

an−i − 1

2

)
+

an−i − 1

2
.

Finally, for the set B′
i,2, we, in like manner, observe from Figure 18

(a), (b) and (c) that B′
i,2 can be partitioned into three subsets as follows.

The first and second subsets contain those SAWs consisting of an initial
unfolded walk from Ai−k and Ci−k, respectively, for k = 2, . . . , i, which
are connected by a k term column state sequence

{S1, S4, . . . , S4︸ ︷︷ ︸
(k−1)

} and {S3, S5, . . . , S5︸ ︷︷ ︸
(k−1)

},

respectively, to a right most adjoining self avoiding lattice path that
turn on the line x = i + j for j = 1, . . . , n − i. As these right most
lattice paths can only have an initial directed column state labeled 0
and 0′, respectively, we deduce that the sum of the cardinality of these
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...

(a)

..

(i− k, 0)

..

(i− k + 1, 2)

..

(i, 1)

..

(b)

..

(i, 1)

..

(0, 0)

..

(i− k + 1, 0)

..

(i− k, 2)

..

(c)

..

(i, 1)

..

(0, 0)

Figure 18.

two subsets is( i∑
k=2

|Ai−k|+ |Ci−k|
)( n−i∑

j=1

N0(j)

)
=

( i−2∑
k=0

|Ak|+ |Ck|
)( n−i∑

j=1

aj−1

)
.

The third subset contains those SAWs consisting of an initial i term
column state sequence

{S4, . . . , S4︸ ︷︷ ︸
i

},

connected to a right most adjoining self avoiding lattice path that
turn on the line x = i + j for j = 1, . . . , n − i. Again, as these
right most lattice paths can only have an initial directed column
state labeled 0, we deduce that the cardinality of the third subset is
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∑n−i
j=1 N0(j) =

∑n−i
j=1 aj−1; consequently,

(3.14) |B′
i,2| =

( i−2∑
k=0

|Ak|+ |Ck|
)( n−i∑

j=1

aj−1

)
+

n−i∑
j=1

aj−1.

Now, by adding equations (3.12), (3.13) and (3.14), one concludes,
when i > 2, after recalling si = |Ai|+ |Bi|+ |Ci|, |Bk| = sk−1 for k ≥ 1
and |B0| = 1, that

|S ′
i,2| =

(
1 +

i−2∑
k=0

(|Ak|+ |Ck|)
)( n−i∑

j=1

aj−1 +
an−i − 1

2

)

=

(
1 +

i−2∑
k=0

(sk − |Bk|)
)( n−i∑

j=1

aj−1 +
an−i − 1

2

)

=

(
1 + (s0 − 1) +

i−2∑
k=1

(sk − sk−1)

)( n−i∑
j=1

aj−1 +
an−i − 1

2

)

= si−2

( n−i∑
j=1

aj−1 +
an−i − 1

2

)
.

Note, by inspection, that the final equality holds for i = 2, as s0 = 3
and |A0| = |C0| = 1. �

When n ≥ 3, we can combine the closed-form expressions of Propo-
sitions 3.3 and 3.4 into a single formula for counting all folded walks
in Hn, in terms of the sequences {si} and {ai} as follows. If one first,
for notational convenience, defines s−1 ≡ 1 and recalls |B0| = 1 with
|Bi−1| = si−2 for i ≥ 2, then the total number of folded walks which
terminate on the right of their terminus lattice point can be given by

n−1∑
i=0

|S ′
i,1|=

n−1∑
i=0

si−1

( n−i∑
j=1

(aj+aj−1)+
an−i−1

2

)
−

n−1∑
i=1

|Bi−1|
an−i−1

2

=
n−1∑
i=0

si−1

( n−i∑
j=1

(aj+aj−1)+
an−i−1

2

)
−

n−1∑
i=1

si−2
an−i−1

2
.
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Similarly, the total number of folded walks which terminate on the left
of their terminus lattice point can be given by

n−1∑
i=1

|S ′
i,2|=

n−1∑
i=1

si−2

( n−i∑
j=1

aj−1+
an−i − 1

2

)

=

n−1∑
i=1

si−2

( n−i∑
j=1

aj−1

)
+

n−1∑
i=1

si−2
an−i−1

2
.

Consequently, by adding the two previous expressions, one finally
concludes that, for n ≥ 3, the total number of folded walks in Hn

is given by

n−1∑
i=0

(|S ′
i,1|+ |S ′

i,2|) =
n−1∑
i=0

si−1

( n−i∑
j=1

(aj + aj−1) +
an−i − 1

2

)
(3.15)

+
n−1∑
i=1

si−2

( n−i∑
j=1

aj−1

)
.

3.3. Final determination of Wn. Given that a closed-form expres-
sion for the total number of unfolded walks has been derived in subsec-
tion 3.1, that is, equation (3.5), all that is required now is to determine
a similar closed-form expression for the total number of folded walks
calculated from equation (3.15). In order to help achieve this, we shall
first need the following technical lemma, whose proof will be omitted
as it entails only the use of the identity

∑n
i=0 r

i = (rn+1 − 1)/(r − 1)
and equation (3.6).

Lemma 3.5. If {an} is the sequence defined in Lemma 3.2, then, for
0 ≤ i ≤ n− 1,

n−i∑
j=1

(aj + aj−1) +
1

2
(an−i − 1)

=
(7 + 5

√
2)

4
(1 +

√
2)n−i +

(7− 5
√
2)

4
(1−

√
2)n−i − 7

2
,

and

n−i∑
j=1

aj−1 =
(2 +

√
2)

4
(1 +

√
2)n−i +

(2−
√
2)

4
(1−

√
2)n−i − 1.
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In what follows, we shall apply Lemma 3.5 to show that equa-
tion (3.15) can be reduced to a linear combination of the exponential
terms involved in equations (3.1) and (3.6). By adding this resulting
expression to the total number of unfolded walks, this will then lead to
the desired closed-form expression for Wn.

Theorem 3.6. For an integer n ≥ 3, the total number of SAWs
restricted to the half-finite lattice strip {0, 1, . . . , n}×{0, 1, 2}, including
the empty walk, is given by

Wn =

⌊(
481 + 131

√
13

78

)(
3 +

√
13

2

)n

−
(
19 + 13

√
2

4

)
(1+

√
2)n+

2

3

⌋
.

Proof. In the ensuing argument, we shall make repeated use of the
following identity, which is demonstrated here for completeness:

(3.16)
n−1∑
i=1

ri−1
1 rn−i

2 = rn−1
2

n−1∑
i=1

(
r1
r2

)i−1

=
rn−1
1 − rn−1

2

r1/r2 − 1
.

Starting with the initial double summation of equation (3.15), after
substituting the first closed-form expression of Lemma 3.5, one finds
that the term corresponding to the index i = 0 is

(3.17)
(7 + 5

√
2)

4
(1 +

√
2)n +

(7− 5
√
2)

4
(1−

√
2)n − 7

2
.

However, upon expanding and summing over the indices i = 1, . . . , n−1,
using equations (3.1) and (3.16) further yields the following four terms:

(39 + 11
√
13)

26

(7 + 5
√
2)

4

n−1∑
i=1

(
3 +

√
13

2

)i−1

(1 +
√
2)n−i

= k1

((
3 +

√
13

2

)n−1

− (1 +
√
2)n−1

)
,

(39 + 11
√
13)

26

(7− 5
√
2)

4

n−1∑
i=1

(
3 +

√
13

2

)i−1

(1−
√
2)n−i

= k2

((
3 +

√
13

2

)n−1

− (1−
√
2)n−1

)
,
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(39− 11
√
13)

26

(7 + 5
√
2)

4

n−1∑
i=1

(
3−

√
13

2

)i−1

(1 +
√
2)n−i

= k3

((
3−

√
13

2

)n−1

− (1 +
√
2)n−1

)
,

(39− 11
√
13)

26

(7− 5
√
2)

4

n−1∑
i=1

(
3−

√
13

2

)i−1

(1−
√
2)n−i

= k4

((
3−

√
13

2

)n−1

− (1−
√
2)n−1

)
,

where the constants on the right hand side are given by

k1 =
(39 + 11

√
13)

26

(17 + 12
√
2)

2

1

1 +
√
13− 2

√
2

k2 =
(39 + 11

√
13)

26

(17− 12
√
2)

2

1

1 +
√
13 + 2

√
2

k3 =
(39− 11

√
13)

26

(17 + 12
√
2)

2

1

1−
√
13− 2

√
2

k4 =
(39− 11

√
13)

26

(17− 12
√
2)

2

1

1−
√
13 + 2

√
2
,

while applying equation (3.5) also yields that

−7

2

n−1∑
i=1

si−1 = −7

2

(26 + 7
√
13)

39

(
3 +

√
13

2

)n−1

(3.18)

− 7

2

(26− 7
√
13)

39

(
3−

√
13

2

)n−1

+
14

3
.

Now, a long but straightforward calculation reveals

k1 + k2 = k3 + k4 =
(29 + 8

√
13)

2

k1 + k3 = k2 + k4 =
(58 + 41

√
2)

4
,

from which it may be concluded that the coefficients of ((3+
√
13)/2)n−1

and (1+
√
2)n−1 must be equal to the conjugate surd of the coefficients
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of ((3−
√
13)/2)n−1 and (1 −

√
2)n−1, respectively, within the closed-

form expression of the double summation. Denoting the coefficients of
((3 +

√
13)/2)n−1 and (1+

√
2)n−1 by A and B, respectively, we deduce

from equation (3.18) that

A =
(29 + 8

√
13)

2
− 7

2

(26 + 7
√
13)

39
=

(949 + 263
√
13)

78

and

B = − (58 + 41
√
2)

4
.

Consequently, combining the above result with equation (3.17) and
the constant term of equation (3.18) yields the following closed-form
evaluation for the first double summation of equation (3.15):

(3.19) A

(
3 +

√
13

2

)n−1

+A

(
3−

√
13

2

)n−1

+B(1 +
√
2)n−1 +B(1−

√
2)n−1

+
7 + 5

√
2

4
(1 +

√
2)n +

7− 5
√
2

4
(1−

√
2)n +

7

6
.

For the second double summation of equation (3.15), after substituting
the second closed-form expression of Lemma 3.5, it may similarly be
found that the term corresponding to the index i = 1 is:

(3.20)
n−1∑
j=1

aj−1 =
2 +

√
2

4
(1 +

√
2)n−1 +

2−
√
2

4
(1−

√
2)n−1 − 1.

However, upon expanding and summing over the indices i = 2, . . . , n− 1,

and noting that
∑n−1

i=2 ri−2
1 rn−i

2 =
∑(n−1)−1

l=1 rl−1
1 r

(n−1)−l
2 further

yields, again using equations (3.1) and (3.16), the following four terms

(39 + 11
√
13)

26

(2 +
√
2)

4

n−1∑
i=2

(
3 +

√
13

2

)i−2

(1 +
√
2)n−i

= k′1

((
3 +

√
13

2

)n−2

− (1 +
√
2)n−2

)
,
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(39 + 11
√
13)

26

(2−
√
2)

4

n−1∑
i=2

(
3 +

√
13

2

)i−2

(1−
√
2)n−i

= k′2

((
3 +

√
13

2

)n−2

− (1−
√
2)n−2

)
,

(39− 11
√
13)

26

(2 +
√
2)

4

n−1∑
i=2

(
3−

√
13

2

)i−2

(1 +
√
2)n−i

= k′3

((
3−

√
13

2

)n−2

− (1 +
√
2)n−2

)
,

(39− 11
√
13)

26

(2−
√
2)

4

n−1∑
i=2

(
3−

√
13

2

)i−2

(1−
√
2)n−i

= k′4

((
3−

√
13

2

)n−2

− (1−
√
2)n−2

)
,

where the constants on the right hand side are given by

k′1 =
39 + 11

√
13

26

4 + 3
√
2

2

1

1 +
√
13− 2

√
2

k′2 =
39 + 11

√
13

26

4− 3
√
2

2

1

1 +
√
13 + 2

√
2

k′3 =
39− 11

√
13

26

4 + 3
√
2

2

1

1−
√
13− 2

√
2

k′4 =
39− 11

√
13

26

4− 3
√
2

2

1

1−
√
13 + 2

√
2
,

while applying equation (3.5) also yields that

−
n−1∑
i=2

si−2 = −26 + 7
√
13

39

(
3 +

√
13

2

)n−2

− 26− 7
√
13

39

(
3−

√
13

2

)n−2

+
4

3
.(3.21)
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Again, a long but straightforward calculation reveals

k′1 + k′2 = k′3 + k′4 =
91 + 25

√
13

26

k′1 + k′3 = k′2 + k′4 =
7 + 5

√
2

2
,

from which it may be concluded that the coefficients of ((3 +
√
13)/2)n−2

and (1+
√
2)n−2 must be equal to the conjugate surd of the coefficients

of ((3−
√
13)/2)n−2 and (1 −

√
2)n−2, respectively, within the closed-

form evaluation of the double summation. Denoting the coefficients of
((3 +

√
13)/2)n−2 and (1+

√
2)n−2 by C and D, respectively, we deduce

from equation (3.21) that

C =
91 + 25

√
13

26
− 26 + 7

√
13

39
=

221 + 61
√
13

78
and

D = −7 + 5
√
2

2
.

Combining the above result with equation (3.20) and the constant term
of equation (3.21) gives the following closed-form evaluation for the
second double summation of equation (3.15)

(3.22) C

(
3+

√
13

2

)n−2

+ C

(
3−

√
13

2

)n−2

+D(1+
√
2)n−2 +D(1−

√
2)n−2

+
2 +

√
2

4
(1 +

√
2)n−1 +

2−
√
2

4
(1−

√
2)n−1 +

1

3
.

In order to determine the required formula for Wn, we first add
equations (3.5), (3.19) and (3.22), noting here that the coefficients of

((3 +
√
3)/2)n and (1 +

√
2)n must be equal to the conjugate surd of

the coefficients of ((3−
√
3)/2)n and (1 −

√
2)n, respectively, in the

resulting closed-form expression. A straightforward calculation reveals
that the coefficients of ((3 +

√
3)/2)n and (1 +

√
2)n are given by

26 + 7
√
13

39

3 +
√
13

2
+A

(
3 +

√
13

2

)−1

+ C

(
3 +

√
13

2

)−2

=
481 + 131

√
13

78
= E
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and

7 + 5
√
2

4
+B(1 +

√
2)−1 +

2 +
√
2

4
(1 +

√
2)−1 +D(1 +

√
2)−2

= −19 + 13
√
2

4
= F,

respectively. Consequently,

Wn = E

(
3 +

√
13

2

)n

+E

(
3−

√
13

2

)n

+F (1+
√
2)n+F (1−

√
2)n+

1

6
;

however, as∣∣∣∣E(
3−

√
13

2

)n

+ F (1−
√
2)n

∣∣∣∣ < 1

2
for n ≥ 3,

a simple manipulation of this inequality yields

Wn < E

(
3 +

√
13

2

)n

+ F (1 +
√
2)n +

1

6
+

1

2

and

E

(
3 +

√
13

2

)n

+ F (1 +
√
2)n +

1

6
+

1

2
< Wn + 1,

that is,

Wn < E

(
3 +

√
13

2

)n

+ F (1 +
√
2)n +

2

3
< Wn + 1.

Hence, we finally deduce, since Wn ∈ N, that, for n ≥ 3,

Wn =

⌊
E

(
3 +

√
13

2

)n

+ F (1 +
√
2)n +

2

3

⌋
. �

4. An open problem. It is known that the number of column
states cD needed to construct an unfolded walk in the half-finite lattice
strip {0, 1, . . . , n} × {0, 1, . . . , D} of width D forms the terms of the
sequence A002026 in [7]. Moreover, a closed-form expression for cD
is known [1, page 6], from which the terms can be seen to exhibit
polynomial growth in the parameter D. In view of this, could the
arguments of Section 3 be generalized to construct a closed form
expression for Wn, in the case of a half-finite lattice strip of width
D ≥ 3?
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