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SUMMABILITY OF SUBSEQUENCES OF A
DIVERGENT SEQUENCE BY REGULAR MATRICES

J. BOOS AND M. ZELTSER

ABSTRACT. Stuart proved [8, Proposition 7] that the
Cesàro matrix C1 cannot sum almost every subsequence of
a bounded divergent sequence x. At the end of the paper,
he remarked, “It seems likely that this proposition could be
generalized for any regular matrix, but we do not have a
proof of this.” In this note, we confirm Stuart’s conjecture,
and we extend it to the more general case of divergent
sequences x.

1. Introduction. Throughout this note, we assume familiarity with
summability and the standard sequence spaces, see e.g., [2, 9]. Thus,
we denote by ω, ℓ∞, c, c0 and ℓ the set of all sequences in K (K = R
or K = C), of all bounded sequences, all convergent sequences, all
sequences converging to 0, and of all absolutely summable sequences,
respectively.

If A = (ank) is an infinite matrix with scalar entries, then we consider
the application domain:

ωA :=

{
(xk) ∈ ω |

∑
k

ank xk converges for each n ∈ N
}

and the domain:

cA :=

{
(xk) ∈ ωA | Ax :=

(∑
k

ank xk

)
n

∈ c

}
of A. The matrix (method) A is called regular, if c ⊂ cA and limA x :=
limAx = limx (x ∈ c). The following characterization of regular
matrices is contained in the theorem of Toeplitz, et al. [2].
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Theorem 1.1. [2, Theorem 2.3.7 II]. A matrix A = (ank) is regular
if and only if :

(a) supn
∑

k |ank| < ∞.

(b) For all k ∈ N : (ank)n ∈ c0.

(c) limn

∑
k ank = 1.

The Cesàro matrix C1 = (cnk) with cnk := 1/n if 1 ≤ k ≤ n (k,
n ∈ N) and cnk := 0 otherwise is certainly the most famous example of
a regular matrix.

2. Preliminary considerations. Steinhaus stated in [7] that a
regular matrix cannot sum all sequences of 0’s and 1’s for which Connor
gave in [4] a very short proof based on the Baire classification theorem.
In particular, the Steinhaus theorem obviously implies that a regular
matrix cannot sum all bounded sequences, which is also a corollary
of the Schur theorem [2, Corollary 2.4.2], [6]. Moreover, the Hahn
theorem [2, Theorem 2.4.5], [5] states that a matrix sums all bounded
sequences if it sums all sequences of 0’s and 1’s.

The examination of the following problems may be interesting:

Problem 2.1.

(a) Determine (small) subsets Q of ℓ∞ \ c such that a given regular
matrix like C1 cannot sum all x ∈ Q.

(b) Determine (small) subsets Q of ℓ∞ \ c such that each regular
matrix cannot sum all x ∈ Q.

In both cases, Q ⊂ ℓ∞ \ c may be replaced by Q ⊂ ω \ c.

A related problem is based on the question, how many subsequences
of a given divergent sequence can be summed by a given regular matrix
(or by any regular matrix)? This question makes sense as the following
result shows.

Proposition 2.2. [3, Theorem], [8, Theorem 5]. If x is any bounded
divergent sequence, then each regular matrix cannot sum all subse-
quences of x.

Analogously to Problem 2.1, we pose the following problem:
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Problem 2.3. Let I be the set of all index sequences (ni), and let
x = (xn) be any bounded divergent sequence. (By definition, an index
sequence is a strictly increasing sequence of natural numbers.)

(a) Determine (small) subsetsQ of I such that a given regular matrix
like C1 cannot sum all subsequences (xni) of x with (ni) ∈ Q.

(b) Determine (small) subsets Q of I such that each regular matrix
cannot sum all subsequences (xni) of x with (ni) ∈ Q.

In both cases, we may assume that x is divergent and not necessarily
bounded.

Following Stuart in [8] we consider the set of subsequences (of a
bounded divergent sequence) that have index sets with positive density.

Definition 2.4 (Positive density). Given a set S ⊂ N, let Sn := S∩Nn

(n ∈ N). Then the density of S is defined by d(S) := lim supn |Sn|/n
where |Y | denotes the cardinality of any set Y. A property holds for
almost every subsequence of a given sequence if it holds for all the
subsequences that have index sets with positive density. Note that
d(S) is defined in [8] by d(S) := (1/n) lim supn |Sn|, which is, with
certainty, an oversight, and that, in some papers, d(S) is denoted as
upper (asymptotic) density [1].

In the following, we consider, in this sense, the set

(2.1) Q := {(ni) ∈ I | d({ni | i ∈ N}) > 0}.

Stuart presented Proposition 2.5 for the case Q and the more general
case of Proposition 2.6.

Proposition 2.5. [8, Proposition 6]. The matrix C1 cannot sum
almost every subsequence of any sequence of 0’s and 1’s.

Proposition 2.6. [8, Proposition 7]. The matrix C1 cannot sum
almost every subsequence of any bounded divergent sequence.

3. General results. Now, we shall prove that Stuart’s proposi-
tion 2.6 remains true if we consider any regular matrix A instead of
C1 and any divergent sequence x instead of any bounded divergent
sequence x.
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Theorem 3.1. Let A = (ank) be a regular matrix. Then, A cannot
sum almost every subsequence of any divergent sequence x = (xk).

The proof will be given in two steps, Theorem 3.3 and Theorem 3.6.
In the first step, we consider exclusively bounded divergent sequences x.
Thereby, the structure of the proof of the corresponding result is
essentially based upon the proof of Proposition 2.6 [8, Proposition 7],
whereby Stuart applied the following lemma (without proof); for the
sake of completeness, we will provide a proof.

Lemma 3.2. Let x = (xn) ∈ ℓ∞ \ c. Then, for each ε > 0, there exists
a limit point αε of x such that S := {r ∈ N | |xr −αε| < ε} has positive
density.

Proof. Let x = (xn) ∈ ℓ∞ \ c be given. Without loss of generality,
we may assume that 0 < xn ≤ 1 (n ∈ N) and, initially, ε := 1/k for
any given k ∈ N. Then, we split the interval ]0, 1] into the intervals
Ij := ](j − 1)/k, j/k] for j ∈ Nk. Let Sj := {r ∈ N | xr ∈ Ij}. Then,
there must be a subsequence of x that has the range in one of these
intervals, say in Iu, and that has the support of positive density, that
is, Su has positive density. This uses the sub-additivity of the density.

Now, let ε > 0 be given and k ∈ N chosen such that 1/k < ε. By the
previous considerations, there exists a u ∈ Nk such that Su has positive
density and the interval [(u− 1)/k, u/k] contains a limit point α of x.
Since S := {r ∈ N | |xr − α| < ε} ⊃ Su, the set S has positive density
since so does Su. �

Theorem 3.3. Let A = (ank) be a regular matrix. Then, A cannot sum
almost every subsequence of any bounded divergent sequence x = (xk).

Proof. By [2, Remark 10.4.3] there exists a normal regular matrix
that is b-equivalent to A, so that we can assume that A has already this
property. (A lower triangular matrix A = (ank) with ann ̸= 0, n ∈ N,
is called a triangle or normal matrix, cf., [2, 2.2.8]. Moreover, we can
obviously assume that the row sums of A are equal to 1. We set

M := sup
n

∑
k

|ank| < ∞

and note that M ≥ 1 since A is regular.
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Let x = (xn) ∈ ℓ∞ \ c be given. Without loss of generality, we may
assume xn ≥ 1, n ∈ N; otherwise, we consider y := x + (∥x∥∞ + 1)e
instead of x. Then, for any limit point a of x, there exists another limit
point b ∈ R with positive distance 0 < δ = |a − b| < ∞ (otherwise,
x ∈ c). In particular, we consider a to be a limit point such that

S :=

{
r ∈ N | |xr − a| < δ

3M
=:

ε

M

}
has positive density (cf., Lemma 3.2). We assume a > b; in the case
of a < b, the proof runs analogously. Let (mk) be the index sequence
corresponding to S.

Now, we can choose a subsequence (xrk) of x with |xrk − b| < ε/M ,
k ∈ N, and set T := {rk | k ∈ N}. Consequently, the distance between
the values of (xmk

) and (xrk) is at least ε.

Next, we construct a subsequence y = (yi) of x, that is not A-
summable and has an index set with positive density. First, we choose
an n1 ∈ N such that

1

n1
|S ∩ Nn1 | ≥

d(S)

2
.

Let F1 := S ∩ Nn1 , β1 := |F1| and y1, y2, . . . , yβ1 be the set

{xmi | mi ∈ F1}

in its order as a subsequence of x. Obviously, we have

α1 :=

β1∑
i=1

aβ1iyi =

β1∑
i=1

aβ1i≥0

aβ1iyi +

β1∑
i=1

aβ1i<0

aβ1iyi

>

(
a− ε

M

) β1∑
i=1

aβ1i≥0

aβ1i +

(
a+

ε

M

) β1∑
i=1

aβ1i<0

aβ1i

= a

β1∑
i=1

aβ1i −
ε

M

β1∑
i=1

|aβ1i|

≥ a− ε

M
·M = a− ε

since the row sums of A are assumed to be 1. Second, we choose an
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n∗
2 > n1 such that

β1∑
i=1

aniyi <
ε

6

and

β1∑
i=1

|ani| <
ε

6b
,

n ≥ n∗
2, and then an n2 ≥ n∗

2 such that β2 := |F1|+ |F2| = β1 + |F2| ≥
n∗
2, where F2 := T ∩ (Nn2 \ Nn1). Setting yβ1+1, . . . , yβ2 for the set

{xri | ri ∈ F2} in its order as a subsequence of x, we obtain

α2 :=

β1∑
i=1

aβ2iyi +

β2∑
i=β1+1
aβ2i≥0

aβ2iyi +

β2∑
i=β1+1
aβ2i<0

aβ2iyi

<
ε

6
+

(
b+

ε

M

) β2∑
i=β1+1
aβ2i≥0

aβ2i +

(
b− ε

M

) β2∑
i=β1+1
aβ2i<0

aβ2i

=
ε

6
+ b

β2∑
i=β1+1

aβ2i +
ε

M

β2∑
i=β1+1

|aβ2i|

≤ ε

6
+ b

( β2∑
i=1

aβ2i +

β1∑
i=1

|aβ2i|
)
+

ε

M
M

<
ε

6
+ b+ b

ε

6b
+ ε = b+

4ε

3
.

Now, we choose an n∗
3 > n2 such that

(3.1)

β2∑
i=1

|aνi| <
ε

6a
and

∣∣∣∣ β2∑
i=1

aνiyi

∣∣∣∣ < ε

6
, ν ≥ n∗

3,

and then an n3 > n∗
3 such that

(3.2)
1

n3
|S ∩ (Nn3 \ Nn2)| ≥

d(S)

2
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and

β3 :=
3∑

j=1

|Fj | = β2 + |F3| ≥ n∗
3

where F3 := S ∩ (Nn3 \ Nn2), and, noting the regularity of A and
0 < ε/(6a) < 1,

(3.3)

β3∑
i=β2+1

aβ3i > 1− ε

6a
.

Setting yβ2+1, . . . , yβ3 for the members of the set {xmi | mi ∈ F3} in
its order as a subsequence of x, we get by (3.1) and (3.3):

α3 :=

β2∑
i=1

aβ3iyi +

β3∑
i=β2+1
aβ3i≥0

aβ3iyi +

β3∑
i=β2+1
aβ3i<0

aβ3iyi

> −ε

6
+

(
a− ε

M

) β3∑
i=β2+1
aβ3i≥0

aβ3i +

(
a+

ε

M

) β3∑
i=β2+1
aβ3i<0

aβ3i

= −ε

6
+ a

β3∑
i=β2+1

aβ3i −
ε

M

β3∑
i=β2+1

|aβ3i|

> −ε

6
+ a

(
1− ε

6a

)
− ε

M
M = a− 4ε

3
.

Continuing inductively, we get a sequence (Fn) of finite and pairwise
disjoint sets and a subsequence y = (yi) of x with the following
properties: the index set

F :=
∪
n

Fn

of y has density at least d(S)/2 by (3.2), and the corresponding
subsequence (αν) of Ay oscillates between values greater than a−(4/3)ε
and less than b + (4/3)ε. Thus, since a − b = δ = 3ε, the constructed
sequence y is not A-summable. �

In the next step, we consider exclusively unbounded sequences x and
regular matrices A. Below, the next obvious remark is useful.
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Remark 3.4. A regular matrix cannot sum any subsequence of any
fixed sequence if there exists a row-finite submatrix of it with this
property.

Proposition 3.5. If a = (ak) ∈ ω \ φ and x = (xk) is any unbounded
sequence, then there exists a subsequence y = (yi) of x with positive
density such that (

∑m
i=1 aiyi)m is unbounded.

Proof. Let β2 > 1 be such that aβ2 ̸= 0. Set F1 := {1, . . . , β2 − 1},
β1 := |F1| and y1 := x1, . . . , yβ1 := xβ1 . Then,

1

β1
|F1| ≥

1

2
.

In view of supk |xk| = ∞, we can choose k1 > β1 such that

|aβ2xk1 | >
∣∣∣∣ β1∑
i=1

aiyi

∣∣∣∣+ 1.

Then, we set yβ2 := xk1 and F2 := {k1}, and we get

α2 :=

∣∣∣∣ β2∑
i=1

aiyi

∣∣∣∣ ≥ |aβ2yβ2 | −
∣∣∣∣ β1∑
i=1

aiyi

∣∣∣∣ > 1.

Now, we choose an s2 > k1 such that

(3.4)
1

s
|Ns \ Nk1 | ≥

1

2
, s ≥ s2.

Let r3 > s2 be such that ar3 ̸= 0. We set β3 := r3 − 1 and F3 :=
Nβ3 \ Nk1 . We take

yβ2+1 := xk1+1, . . . , yβ3 := xk1+β3−β2 .

Now, we choose k2 > k1 + β3 − β2 such that

|ar3xk2 | >
∣∣∣∣ β3∑
i=1

aiyi

∣∣∣∣+ 2.
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Then, we set F4 := {k2} and β4 := β3 + 1, yβ4 := xk2 , and, noting
aβ4

yβ4
= ar3xk2

, we obtain

α4 :=

∣∣∣∣ β4∑
i=1

aiyi

∣∣∣∣ ≥ |aβ4yβ4 | −
∣∣∣∣ β3∑
i=1

aiyi

∣∣∣∣ > 2.

Continuing inductively, we get a sequence (Fn) of finite and pairwise
disjoint sets and a subsequence y = (yi) of x with the following
properties: the index set F :=

∪
n Fn of y has density at least 1/2

by (3.4), and the sequence (
∑m

i=1 aiyi) is unbounded. �

Theorem 3.6. Let A = (ank) be any regular matrix and x = (xk) any
unbounded sequence. Then, A cannot sum almost every subsequence
of x.

Proof. We may assume that all rows of A are finite since, otherwise,
by Proposition 3.5, there exists a subsequence y of x with positive
density satisfying y /∈ ωA ⊃ cA. Moreover, since A is regular, from
Remark 3.4, we may assume that

• for all n ∈ N, there exists a k ∈ N : ank ̸= 0;
• r = (rn) with rn := max{k | ank ̸= 0} is strictly increasing and
r1 > 1;

otherwise, we consider a row submatrix of A with these properties.

Set F1 := {1, . . . , r1−1}, β1 := |F1|, n1 := 1 and y1 := x1, . . . , yβ1 :=
xβ1 . Then,

1

β1
|F1| ≥

1

2
.

Set β2 := β1 + 1. In view of lim supk |xk| = ∞, we can choose k1 > β1

such that

|an1r1xk1 | >
∣∣∣∣ β1∑
i=1

an1iyi

∣∣∣∣+ 1.

Then, we set yβ2
:= xk1

and F2 := {k1}, and we obtain

α1 :=

∣∣∣∣ β2∑
i=1

an1iyi

∣∣∣∣ ≥ |an1β2yβ2 | −
∣∣∣∣ β1∑
i=1

an1iyi

∣∣∣∣ > 1.
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Now, we choose an s2 > k1 such that

(3.5)
1

s
|Ns \ Nk1 | ≥

1

2
, s ≥ s2.

Choose n2 ∈ N such that rn2 > max{β2 +1, s2}, and set β3 := rn2 − 1,
F3 := Nβ3 \ Nk1 and β4 := rn2 . We put

yβ2+1 := xk1+1, . . . , yβ3 := xk1+β3−β2 .

Next, we choose k2 > k1 + β3 − β2, such that

|an2β4xk2 | >
∣∣∣∣ β3∑
i=1

an2iyi

∣∣∣∣+ 2.

Then, we set yβ4 := xk2 and F4 := {k2}, and we get

α2 :=

∣∣∣∣ β4∑
i=1

an2iyi

∣∣∣∣ ≥ |an2β4yβ4 | −
∣∣∣∣ β3∑
i=1

an2iyi

∣∣∣∣ > 2.

Continuing inductively, we obtain a sequence (Fn) of finite and
pairwise disjoint sets and a subsequence y = (yi) of x with the following
properties: by (3.5), the index set F := ∪nFn of y has density at least
1/2, and the corresponding subsequence (αν) is unbounded. Thus, the
constructed sequence y is not A-summable. �
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