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RECIPROCAL RELATIONS FOR
TRIGONOMETRIC SUMS

WENCHANG CHU

ABSTRACT. By means of the partial fraction decomposi-
tion method, a general reciprocal theorem on trigonometric
sums is established. Several trigonometric reciprocities and
summation formulae are derived as consequences.

1. Outline and introduction. Over the past few decades, there
has been growing interest in finite sums involving integer powers of
trigonometric functions [1, 7, 17, 25, 27, 28]. Compared to those
with positive powers [3, 19, 26] that are relatively easier to treat, the
most interesting sums have been trigonometric power sums with inverse
powers of the sine or cosine, since their evaluation invariably directly
involves the zeta function [2, 6, 13, 29] or through classical numbers,
such as the Bernoulli and Euler, and polynomials [11, 12, 14, 15]. For
more extensive information, the reader is referred to [5] and the list of
references therein.

In 1969, Gardner [21] discovered the following asymptotic relation(
π

2m

)2λ m−1∑
k=1

sec2λ
kπ

2m
≈ ζ(2λ) as m → ∞

and posed the problem of evaluating the finite trigonometric series in
a simpler closed form. Fisher [18] resolved this problem by examining
the equivalent expression with the sec-function replaced by the csc-
function via the generating function approach. In 1971, Williams [29]
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found the following analogous asymptotic formula

(
π

2m

)2λ m∑
k=1

cot2λ
kπ

2m+ 1
≈ ζ(2λ) as m → ∞

that was also obtained independently by Apostol [2]. Subsequently, the
sums of even positive powers of csc(kπ)/m arose in a paper of the early
1990s on string theory due to Dowker [16]. In quite a comprehensive
paper, Chu and Marini [10] established systematically closed formulae
for 24 different classes of trigonometric sums by employing generating
functions and partial fraction decompositions. Berndt and Yeap [5]
derived, by the contour integration, not only explicit formulae for
several classes of trigonometric sums, but also numerous reciprocal
relations, including those for Dedekind and Gauss sums.

Many finite trigonometric sums evidently do not have evaluations in
closed form. However, they may possess beautiful reciprocity theorems
[4, 5, 20, 23]. The primary objective of this paper is to establish
several reciprocity theorems for finite trigonometric sums. A couple
of examples can be anticipated as follows. Let m and n be two
natural numbers with gcd(m,n) = 1. Then, we have the following
trigonometric formulae, see Corollary 3.4 (A):

m−1∑
i=1

n sin(iπ/m) cot(niπ/m)

cos2(iπ/m)− cos2 θ
+

n−1∑
j=1

m sin(jπ/n) cot(mjπ/n)

cos2(jπ/n)− cos2 θ
= 0,

m−1∑
i=1

n sin(2iπ/m) cot(niπ/m)

cos2(iπ/m)− cos2 θ
+

n−1∑
j=1

m sin(2jπ/n) cot(mjπ/n)

cos2(jπ/n)− cos2 θ

= 4mn− 2

sin2 θ
+ 2mn

cos(m+ n)θ

sinmθ sinnθ
.

These relations are said to be reciprocal since each equation contains
two trigonometric sums dependent upon two integer parameters m
and n which can be written as S(m,n) + S(n,m), with the second
sum obtained from the first under the exchange m
n, even though
S(m,n) does not admit a closed form in general. If m is an odd integer
and n an even integer subject to gcd(m,n) = 1, we have two further
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pairs of reciprocal relations, see Corollary 3.4 (E):

m−1∑
i=1

n sin(iπ/m) csc(niπ/m)

cos2(iπ/m)−cos2 θ
+

n−1∑
j=1

(−1)j
m sin(jπ/n) cot(mjπ/n)

cos2(jπ/n)−cos2 θ
=0,

m−1∑
i=1

n sin(2iπ/m) csc(niπ/m)

cos2(iπ/m)−cos2 θ
+

n−1∑
j=1

(−1)j
m sin(2jπ/n) cot(mjπ/n)

cos2(jπ/n)−cos2 θ

=
2mn cosmθ

sinmθ sinnθ
− 2

sin2 θ
;

and, see Corollary 3.4 (K):

m−1∑
i=1

n(−1)i sinn(iπ/m) sin(2iπ/m)

sin(niπ/m)(cos2(iπ/m)−cos2 θ)

+
n−1∑
j=1

m(−1)j sinn(jπ/n) sin(2jπ/n)

sin(mjπ/n)(cos2(jπ/n)−cos2 θ)
= 0,

m−1∑
i=1

n(−1)i sinn(iπ/m) sin(iπ/m)

sin(niπ/m)(cos2(iπ/m)−cos2 θ)

+

n−1∑
j=1

m(−1)j sinn(jπ/n) sin(jπ/n)

sin(mjπ/n)(cos2(jπ/n)−cos2 θ)
=

mn sinn θ

sinmθ sinnθ cos θ
.

These are just the tip of the iceberg since, as may be seen in the sequel,
there exist numerous such reciprocal sums. Moreover, considering each
reciprocal relation as a functional equation in y = cos θ and then
extracting the coefficients of yk for k = 0, 1, 2, . . . , we would create
an infinite number of reciprocal formulae of trigonometric sums.

The rest of the paper is organized as follows. In Section 2, we shall
prove the main theorem involving a general trigonometric polynomial
P (cos θ) by means of the partial fraction decomposition. Then, in the
third section, we shall derive several reciprocal relations by specify-
ing concretely different trigonometric polynomials P (cos θ). Observ-
ing that when one of two integers m and n is small enough, we can
derive a summation formula from a reciprocal relation. Finally, we
shall examine the cases m = 1, 2 in Section 4 and illustrate several
trigonometric summation formulae, including those appearing previ-
ously in [1, 10, 12, 15, 24, 25].
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2. Main theorem and proof. For two natural numbers m and n
with gcd(m,n) = 1, it is easy to verify that sinmθ sinnθ is a polynomial
of cos θ with the distinct zeros

{
iπ

m

}m−1

i=0

and

{
jπ

n

}n

j=1

.

Suppose that P (cos θ) is a polynomial in cos θ with degree ≤ m + n.
Then, we have the following partial fraction decomposition:

P (cos θ)

sinmθ sinnθ
=

−β

mn
+

m−1∑
i=0

Ai

cos(iπ/m)− cos θ
+

n∑
j=1

Bj

cos(jπ/n)− cos θ
.

The constant β can be determined by making the replacement θ → iy
throughout the equation and then evaluating the limit

(2.1) β = lim
y→∞

mnP (cosh y)

sinhmy sinhny
.

The other connection coefficients are determined as follows:

A0 = lim
θ→0

(1− cos θ)P (cos θ)

sinmθ sinnθ
= lim

θ→0

2P (cos θ) sin2(θ/2)

sinmθ sinnθ
=

P (1)

2mn
,

Ai = lim
θ→(iπ)/m

cos(iπ/m)− cos θ

sinmθ sinnθ
P (cos θ)

= (−1)i
P (cos(iπ/m)) sin(iπ/m)

m sin(niπ/m)
, 1 ≤ i < m;

Bj = lim
θ→(jπ)/n

cos(jπ/n)− cos θ

sinmθ sinnθ
P (cos θ)

= (−1)j
P (cos(jπ/n)) sin(jπ/n)

n sin(mjπ/n)
, 1 ≤ j < n;

Bn = lim
θ→π

(1 + cos θ)P (cos θ)

− sinmθ sinnθ
= (−1)m+n−1P (−1)

2mn
.
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Therefore, the following reciprocal formula has been established:

mnP (cos θ)

sinmθ sinnθ
=

P (1)

2(1− cos θ)
− β +

(−1)m+nP (−1)

2(1 + cos θ)

+
m−1∑
i=1

(−1)i
nP (cos(iπ/m)) sin(iπ/m)

sin(niπ/m)(cos(iπ/m)− cos θ)
(2.2)

+
n−1∑
j=1

(−1)j
mP (cos(jπ/n)) sin(jπ/n)

sin(mjπ/n)(cos(jπ/n)− cos θ)
.

This formula is highlighted in the next lemma.

Lemma 2.1 (Reciprocal formula). For two natural numbers m and n
subject to gcd(m,n) = 1 and a trigonometric polynomial P (cos θ) of
degree ≤ m+ n, define β by (2.1) and the finite trigonometric sum

(2.3) Ωm,n[P ] =

m−1∑
k=1

(−1)k
nP (cos(kπ/m)) sin(kπ/m)

sin(nkπ/m)(cos(kπ/m)− cos θ)
.

Then the following reciprocal formula holds:
(2.4)

Ωm,n[P ]+Ωn,m[P ] = β+
mnP (cos θ)

sinmθ sinnθ
− P (1)

2(1− cos θ)
− (−1)m+nP (−1)

2(1 + cos θ)
.

Replacing θ by π − θ in equation (2.2), we find that

(−1)m+nmnP (− cos θ)

sinmθ sinnθ
=

P (1)

2(1 + cos θ)
− β +

(−1)m+nP (−1)

2(1− cos θ)

+

m−1∑
i=1

(−1)i
nP (cos(iπ/m)) sin(iπ/m)

sin(niπ/m)(cos(iπ/m) + cos θ)
(2.5)

+

n−1∑
j=1

(−1)j
mP (cos(jπ/n)) sin(jπ/n)

sin(mjπ/n)(cos(jπ/n) + cos θ)
.

The sum and difference of (2.2) and (2.5) give, respectively, the identi-
ties

mn
{
P (cos θ) + (−1)m+nP (− cos θ)

}
sinmθ sinnθ

=
P (1)

sin2 θ
− 2β +

(−1)m+nP (−1)

sin2 θ
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+
m−1∑
i=1

(−1)i
nP (cos(iπ/m)) sin(2iπ/m)

sin(niπ/m)(cos2(iπ/m)− cos2 θ)

+
n−1∑
j=1

(−1)j
mP (cos(jπ/n)) sin(2jπ/n)

sin(mjπ/n)(cos2(jπ/n)− cos2 θ)

and

mn
{
P (cos θ)− (−1)m+nP (− cos θ)

}
sinmθ sinnθ cos θ

=
P (1)

sin2 θ
− (−1)m+nP (−1)

sin2 θ

+

m−1∑
i=1

(−1)i
2nP (cos(iπ/m)) sin(iπ/m)

sin(niπ/m)(cos2(iπ/m)− cos2 θ)

+

n−1∑
j=1

(−1)j
2mP (cos(jπ/n)) sin(jπ/n)

sin(mjπ/n)(cos2(jπ/n)− cos2 θ)
.

It is interesting that both trigonometric fractions on the left of these
two equalities are expressed as sums of sin2 θ (and also of cos2 θ
equivalently). We reformulate these reciprocal relations in the next
main theorem.

Theorem 2.2 (Reciprocal formulae). For two natural numbers m and
n subject to gcd(m,n) = 1 and a trigonometric polynomial P (cos θ) of
degree ≤ m+ n, define β by (2.1) and the finite trigonometric sums

Um,n[P ] =
m−1∑
k=1

(−1)k
nP (cos(kπ/m)) sin(2kπ/m)

sin(nkπ/m)(cos2(kπ/m)− cos2 θ)
,(2.6)

Vm,n[P ] =
m−1∑
k=1

(−1)k
nP (cos(kπ/m)) sin(kπ/m)

sin(nkπ/m)(cos2(kπ/m)− cos2 θ)
.(2.7)

Then, the following reciprocal formulae hold :

Um,n[P ] + Un,m[P ] =
mn

{
P (cos θ) + (−1)m+nP (− cos θ)

}
sinmθ sinnθ

(2.8)

+ 2β − P (1) + (−1)m+nP (−1)

sin2 θ
,
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Vm,n[P ] + Vn,m[P ] =
mn

{
P (cos θ)− (−1)m+nP (− cos θ)

}
2 sinmθ sinnθ cos θ

(2.9)

− P (1)− (−1)m+nP (−1)

2 sin2 θ
.

3. Reciprocal relations. According to the parity of the integer
m+ n and the function P (x) (even or odd), the reciprocities displayed
in Theorem 2.2 can further be reformulated as follows.

Theorem 3.1 (Reciprocal formulae). Under the same conditions as in
Theorem 2.2, the following reciprocal formulae of trigonometric sums
hold :

(A) P and m+ n have the same parity :

Um,n[P ] + Un,m[P ] = 2β +
2mnP (cos θ)

sinmθ sinnθ
− 2P (1)

sin2 θ
,

Vm,n[P ] + Vn,m[P ] = 0.

(B) P and m+ n have the opposite parity :

Um,n[P ] + Un,m[P ] = 2β,

Vm,n[P ] + Vn,m[P ] =
mnP (cos θ)

sinmθ sinnθ cos θ
− P (1)

sin2 θ
.

By concretely specifying the trigonometric polynomial P (cos θ), we
can derive numerous reciprocal relations from Theorem 3.1. The fol-
lowing two propositions illustrate some representative examples corre-
sponding to four classes of polynomial functions P (cos θ). For the sake
of brevity, we shall adopt the Kronecker symbol δi,j with δi,j = 1 for
i = j and δi,j = 0 for i ̸= j, otherwise.

Proposition 3.2 (Reciprocal relations: P and m + n have the same
parity). Under the same conditions as in Theorem 2.2, the following
reciprocal formulae of trigonometric sums hold :

(A) P (cos θ) = cosλθ with λ ≤ m+ n and λ = m+ n (mod 2):

Um,n[P ] + Un,m[P ] = 4mnδλ,m+n +
2mn cosλθ

sinmθ sinnθ
− 2

sin2 θ
,

Vm,n[P ] + Vn,m[P ] = 0.
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(B) P (cos θ) = cosλ θ with λ ≤ m+ n and λ = m+ n (mod 2):

Um,n[P ] + Un,m[P ] =
mnδλ,m+n

2m+n−3
+

2mn cosλ θ

sinmθ sinnθ
− 2

sin2 θ
,

Vm,n[P ] + Vn,m[P ] = 0.

(C) P (cos θ) = sinλθ/sin θ with λ ≤ 1 + m + n and λ ̸= m + n
(mod 2):

Um,n[P ] + Un,m[P ] = 8mnδλ,m+n+1 +
2mn sinλθ

sin θ sinmθ sinnθ
− 2λ

sin2 θ
,

Vm,n[P ] + Vn,m[P ] = 0.

(D) P (cos θ) = cosλθ cosµθ with λ+ µ ≤ m+ n and λ+ µ = m+ n
(mod 2):

Um,n[P ] + Un,m[P ] = 2mnδλ+µ,m+n +
2mn cosλθ cosµθ

sinmθ sinnθ
− 2

sin2 θ
,

Vm,n[P ] + Vn,m[P ] = 0.

Proposition 3.3 (Reciprocal relations: P and m + n have opposite
parity). Under the same conditions as in Theorem 2.2, the following
reciprocal formulae of trigonometric sums hold :

(A) P (cos θ) = cosλθ with λ < m+ n and λ ̸= m+ n (mod 2):

Um,n[P ] + Un,m[P ] = 0,

Vm,n[P ] + Vn,m[P ] =
mn cosλθ

sinmθ sinnθ cos θ
− 1

sin2 θ
.

(B) P (cos θ) = cosλ θ with λ < m+ n and λ ̸= m+ n (mod 2):

Um,n[P ] + Un,m[P ] = 0,

Vm,n[P ] + Vn,m[P ] =
mn cosλ θ

sinmθ sinnθ cos θ
− 1

sin2 θ
.

(C) P (cos θ) = sinλθ/sin θ with λ ≤ m+ n and λ = m+ n (mod 2):

Um,n[P ] + Un,m[P ] = 0,

Vm,n[P ] + Vn,m[P ] =
2mn sinλθ

sin 2θ sinmθ sinnθ
− λ

sin2 θ
.
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(D) P (cos θ) = cosλθ cosµθ with λ+ µ < m+ n and λ+ µ ̸= m+ n
(mod 2):

Um,n[P ] + Un,m[P ] = 0,

Vm,n[P ] + Vn,m[P ] =
mn cosλθ cosµθ

sinmθ sinnθ cos θ
− 1

sin2 θ
.

In particular, we have the following remarkable reciprocal relations
with the degree of polynomial P (cos θ) related to m and/or n.

Corollary 3.4 (Reciprocal relations). Under the same conditions as in
Theorem 2.2, the following reciprocal formulae of trigonometric sums
hold :

(A) m+ n and P (cos θ) = cos(m+ n)θ have the same parity :

Um,n[P ] + Un,m[P ] = 4mn+
2mn cos(m+ n)θ

sinmθ sinnθ
− 2

sin2 θ
,

Vm,n[P ] + Vn,m[P ] = 0.

(B) m+ n and P (cos θ) = cosmθ cosnθ have the same parity :

Um,n[P ] + Un,m[P ] = 2mn+
2mn cosmθ cosnθ

sinmθ sinnθ
− 2

sin2 θ
,

Vm,n[P ] + Vn,m[P ] = 0.

(C) m+ n and P (cos θ) = cosm+n θ have the same parity :

Um,n[P ] + Un,m[P ] =
mn

2m+n−3
+

2mn cosm+n θ

sinmθ sinnθ
− 2

sin2 θ
,

Vm,n[P ] + Vn,m[P ] = 0.

(D) m+n and P (cos θ) = sin(m+ n)θ/sin θ have the opposite parity :

Um,n[P ] + Un,m[P ] = 0,

Vm,n[P ] + Vn,m[P ] =
2mn sin(m+ n)θ

sinmθ sinnθ sin 2θ
− m+ n

sin2 θ
.

For the next seven examples, we must remember the fact that
P (cos θ) should remain invariant inside Um,n[P ] and Vm,n[P ] under the
exchange m
 n, even though P (cos θ) may depend upon m and/or n.
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In addition, the reader is reminded that the integer m + n and the
polynomial P (cos θ) have the same parity for the formulae in (E), (F),
(G), and opposite parity for those in (H), (I), (J), (K), (L).

(E) P (cos θ) = cosmθ with m = 1 (mod 2) and n = 0 (mod 2):

Um,n[P ] + Un,m[P ] =
2mn cosmθ

sinmθ sinnθ
− 2

sin2 θ
,

Vm,n[P ] + Vn,m[P ] = 0.

(F) P (cos θ) = sinnθ/sin θ with m = 1 (mod 2) and n = 0 (mod 2):

Um,n[P ] + Un,m[P ] =
2mn sinnθ

sin θ sinmθ sinnθ
− 2n

sin2 θ
,

Vm,n[P ] + Vn,m[P ] = 0.

(G) P (cos θ) = cosm θ with m = 1 (mod 2) and n = 0 (mod 2):

Um,n[P ] + Un,m[P ] =
2mn cosm θ

sinmθ sinnθ
− 2

sin2 θ
,

Vm,n[P ] + Vn,m[P ] = 0.

(H) P (cos θ) = cosnθ with m = 1 (mod 2) and n = 0 (mod 2):

Um,n[P ] + Un,m[P ] = 0,

Vm,n[P ] + Vn,m[P ] =
mn cosnθ

sinmθ sinnθ cos θ
− 1

sin2 θ
.

(I) P (cos θ) = sinmθ/sin θ with m = 1 (mod 2) and n = 0 (mod 2):

Um,n[P ] + Un,m[P ] = 0,

Vm,n[P ] + Vn,m[P ] =
2mn sinmθ

sin 2θ sinmθ sinnθ
− m

sin2 θ
.

(J) P (cos θ) = cosmθ/cos θ with m = 1 (mod 2) and n = 0 (mod 2):

Um,n[P ] + Un,m[P ] = 0,

Vm,n[P ] + Vn,m[P ] =
mn cosmθ

sinmθ sinnθ cos2 θ
− 1

sin2 θ
.

(K) P (cos θ) = sinn θ with m = 1 (mod 2) and n = 0 (mod 2):

Um,n[P ] + Un,m[P ] = 0,
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Vm,n[P ] + Vn,m[P ] =
mn sinn θ

sinmθ sinnθ cos θ
.

(L) P (cos θ) = cosn θ with m = 1 (mod 2) and n = 0 (mod 2):

Um,n[P ] + Un,m[P ] = 0,

Vm,n[P ] + Vn,m[P ] =
mn cosn−1 θ

sinmθ sinnθ
− 1

sin2 θ
.

4. Summation formulae. For m = 1 in Theorem 3.1, it is trivial
to see that U1,n = V1,n = 0. Replacing the summation index k by n−k,
we further verify Un,1 = 0 for P (x) and n having the same parity and
Vn,1 = 0 for P (x) and n having the opposite parity. Then, the other
two reciprocal relations concerning Un,1 and Vn,1 can be simplified in
the summation formulae below.

Theorem 4.1 (Summation formulae). For each natural number n and
a trigonometric polynomial P (cos θ) of degree ≤ n + 1, the following
summation formulae hold :

(A) P (x) and n have the same parity :

(4.1)
n−1∑
k=0

(−1)k
P (cos(kπ/n))

cos2(kπ/n)− cos2 θ
=

2nP (cos θ)

sin 2θ sinnθ
.

(B) P (x) and n have the opposite parity :
(4.2)
n−1∑
k=0

(−1)k
P (cos(kπ/n)) cos(kπ/n)

cos2(kπ/n)− cos2 θ
=

nP (cos θ)

sin θ sinnθ
+ lim

x→∞

nP (coshx)

sinhx sinhnx
.

Then, letting m = 2 in Theorem 3.1, we see that n is odd. By
computing

U2,n = 0 and V2,n =
nP (0)

cos2 θ
(−1)(n−1)/2

as well as Un,2 = 0 for the even polynomials P (x), and Vn,2 = 0 for
the odd polynomials P (x), in view of the involution k → n− k on the
summation index, the remaining two reciprocal relations for Un,2 and
Vn,2 can be reformulated as the following summation formulae.
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Theorem 4.2 (Summation formulae). For each odd integer n and
a trigonometric polynomial P (cos θ) of degree ≤ n + 2, the following
summation formulae hold :

(A) P (x) is an odd function:
(4.3)
n−1∑
k=0

(−1)k
P (cos(kπ/n))

cos2(kπ/n)− cos2 θ
=

2nP (cos θ)

sin 2θ sinnθ
+ lim

x→∞

2nP (coshx)

sinh 2x sinhnx
.

(B) P (x) is an even function:

(4.4)
n−1∑
k=0

(−1)k
P (cos(kπ/n)) sec(kπ/n)

cos2(kπ/n)− cos2 θ

=
2nP (cos θ) sec θ

sin 2θ sinnθ
+

nP (0)

cos2 θ
(−1)(n+1)/2.

The four formulae displayed in the last two theorems are particularly
useful for evaluating finite trigonometric sums. Some of them are briefly
covered below.

4.1. Letting P (x) = cosnθ in (4.1), we find that the following trig-
onometric identity holds for each natural number n (both odd and
even):

(4.5)
n−1∑
k=0

1

cos2(kπ/n)− cos2 θ
=

2n cosnθ

sin 2θ sinnθ
.

This identity was used by Chu and Marini [10] to evaluate the positive
trigonometric sums below as polynomials of n:

A2λ(n) :=
∑

1≤k<n/2

sec2λ
kπ

n
,

B2λ(n) :=
∑

1≤k<n/2

csc2λ
kπ

n
,

C2λ(n) :=
∑

1≤k<n/2

tan2λ
kπ

n
,



RECIPROCAL RELATIONS FOR TRIGONOMETRIC SUMS 133

D2λ(n) :=
∑

1≤k<n/2

cot2λ
kπ

n
.

Note that the first two sums were also evaluated by Grabner and
Prodinger [24] through the contour integral method and Gauthier and
Bruckman [22] by applying derivative operators to sec2 θ and csc2 θ.
The closed formulae for these four sums are exemplified for λ = 1, 2, 3
as follows.

(A) n = 0 (mod 2): Chu and Marini [10, B1, B3]

A2(n) = B2(n) =
(n+ 2)(n− 2)

6
,

A4(n) = B4(n) =
(n+ 2)(n− 2)

90
(14 + n2),

A6(n) = B6(n) =
(n+ 2)(n− 2)

1890
(284 + 29n2 + 2n4);

(B) n = 0 (mod 2): Chu and Marini [10, B5, B7]

C2(n) = D2(n) =
(n− 1)(n− 2)

6
,

C4(n) = D4(n) =
(n− 1)(n− 2)

90

{
n2 + 3n− 13

}
,

C6(n) = D6(n) =
(n− 1)(n− 2)

1890

{
2n4 + 6n3 − 28n2 − 96n+ 251

}
.

(C) n = 1 (mod 2): Chu and Marini [10, A1]

A2(n) =
n2

2
,

A4(n) =
n2

6

{
2 + n2

}
,

A6(n) =
n2

30

{
8 + 5n2 + 2n4

}
.

(D) n = 1 (mod 2): Chu and Marini [10, A3]

B2(n) =
(n+ 1)(n− 1)

6
,

B4(n) =
(n+ 1)(n− 1)

90
(11 + n2),
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B6(n) =
(n+ 1)(n− 1)

1890

{
191 + 23n2 + 2n4

}
.

(E) n = 1 (mod 2): Chu and Marini [10, A5]

C2(n) =
n(n− 1)

2
, cf., Berndt and Yeap [5];

C4(n) =
n(n− 1)

6

{
n2 + n− 3

}
,

C6(n) =
n(n− 1)

30

{
2n4 + 2n3 − 8n2 − 8n+ 15

}
.

(F) n = 1 (mod 2): Chu and Marini [10, A7]

D2(n) =
(n− 1)(n− 2)

6
, cf., Apostol [2];

D4(n) =
(n− 1)(n− 2)

90

{
n2 + 3n− 13

}
,

D6(n) =
(n− 1)(n− 2)

1890

{
2n4 + 6n3 − 28n2 − 96n+ 251

}
.

4.2. When n = 0 (mod 2) and P (x) = 1, we find from (4.1) that

(4.6)

n−1∑
k=0

(−1)k
1

cos2(kπ/n)− cos2 θ
=

2n

sin 2θ sinnθ
.

This formula can be used to evaluate the following trigonometric sums
as polynomials of n:

A2λ(n) :=
∑

1≤k<n/2

(−1)k−1 csc2λ
kπ

n
,

B2λ(n) :=
∑

1≤k<n/2

(−1)k−1 sec2λ
kπ

n
,

C2λ(n) :=
∑

1≤k<n/2

(−1)k−1 cot2λ
kπ

n
,

D2λ(n) :=
∑

1≤k<n/2

(−1)k−1 tan2λ
kπ

n
.

The formulae corresponding to λ = 1, 2, 3 are given as follows.
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(A) Chu and Marini [10, B2, B4]

A2(n) = (−1)n/2B2(n) =
(−1)n/2

2
+

2 + n2

12
,

A4(n) = (−1)n/2B4(n) =
(−1)n/2

2
+

88 + 40n2 + 7n4

720
,

A6(n) = (−1)n/2B6(n) =
(−1)n/2

2
+

3056 + 1344n2 + 294n4 + 31n6

30240
.

(B) Chu and Marini [10, B6, B8]

C2(n) = (−1)n/2D2(n) =
(n+ 2)(n− 2)

12
,

C4(n) = (−1)n/2D4(n) =
(n+ 2)(n− 2)

720

{
7n2 − 52

}
,

C6(n) = (−1)n/2D6(n) =
(n+ 2)(n− 2)

30240

{
31n4 − 464n2 + 2008

}
.

4.3. When n = 1 (mod 2) and P (x) = 1, we analogously find from
(4.2) that

(4.7)

n−1∑
k=0

(−1)k
cos(kπ/n)

cos2(kπ/n)− cos2 θ
=

n

sin θ sinnθ
.

This formula has been used by Chu and Marini [10, equation (A0.3a)]
to evaluate the following trigonometric sums as polynomials of n:

A2λ+1(n) :=
∑

1≤k<n/2

(−1)k−1 sec1+2λ kπ

n
,

B2λ(n) :=
∑

1≤k<n/2

(−1)k−1 cos
kπ

n
csc2λ

kπ

n
,

C2λ(n) :=
∑

1≤k<n/2

(−1)k−1 sec
kπ

n
tan2λ

kπ

n
,

D2λ(n) :=
∑

1≤k<n/2

(−1)k−1 cos
kπ

n
cot2λ

kπ

n
.

The formulae corresponding to λ = 1, 2, 3 are displayed as follows.
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(A) Chu and Marini [10, A2]

A1(n) =
1

2
+

n(−1)(n+1)/2

2
,

A3(n) =
1

2
+

n(−1)(n+1)/2

4

{
n2 + 1

}
,

A5(n) =
1

2
+

n(−1)(n+1)/2

48

{
5n4 + 10n2 + 9

}
.

(B) Chu and Marini [10, A4]

B2(n) =
n2 − 1

12
,

B4(n) =
n2 − 1

720

{
7n2 + 17

}
,

B6(n) =
n2 − 1

30240

{
31n4 + 178n2 + 367

}
.

(C) Chu and Marini [10, A6]

C0(n) =
1

2
+ (−1)(n+1)/2n

2
,

C2(n) = (−1)(n+1)/2n(n
2 − 1)

4
,

C4(n) = (−1)(n+1)/2n(n
2 − 1)

48

{
5n2 − 9

}
,

C6(n) = (−1)(n+1)/2n(n
2 − 1)

1440

{
61n4 − 214n2 + 225

}
.

(D) Chu and Marini [10, A8]

D2(n) =
n2 − 7

12
,

D4(n) =
7n4 − 110n2 + 463

720
,

D6(n) =
31n6 − 735n4 + 6489n2 − 20905

30240
.
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4.4. For m = n (mod 2) with m ≤ n, let P (x) = cosmθ in (4.1). The
corresponding formula reads

n−1∑
k=0

(−1)k
cos(mkπ/n)

cos2(kπ/n)− cos2 θ
=

2n cosmθ

sin 2θ sinnθ
.(4.8)

This formula may be utilized to evaluate the following trigonometric
sums:

n−1∑
k=1

k ̸=n/2

(−1)k cos
mkπ

n
sec2λ

kπ

n
,

n−1∑
k=1

(−1)k cos
mkπ

n
csc2λ

kπ

n
;

n−1∑
k=1

k ̸=n/2

(−1)k cos
mkπ

n
tan2λ

kπ

n
,

n−1∑
k=1

(−1)k cos
mkπ

n
cot2λ

kπ

n
.

Observing that cos(mkπ)/n can be expressed as a polynomial of de-
gree m in cos(kπ)/n, we can reduce the evaluation of these trigonomet-
ric sums to those examined in subsections 4.2 and 4.3. However, the
resulting expressions will not be reproduced due to their complexity.
When n is even, the second and fourth sums have been evaluated by
Cvijovic, et al., [12, 15] in terms of higher-order Bernoulli polynomials.

4.5. For m = n (mod 2) with m ≤ n, let P (x) = sinmθ/sin θ in (4.2).
The corresponding formula is given by

(4.9)

n−1∑
k=0

(−1)k
sin(mkπ/n) cot(kπ/n)

cos2(kπ/n)− cos2 θ
=

n sinmθ

sin2 θ sinnθ
.

This formula may be utilized to evaluate the following trigonometric
sums: n−1∑

k=1
k ̸=n/2

(−1)k sin
mkπ

n
sec2λ

kπ

n
cot

kπ

n
,
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n−1∑
k=1

k ̸=n/2

(−1)k sin
mkπ

n
tan1+2λ kπ

n
;

n−1∑
k=1

(−1)k sin
mkπ

n
csc2λ

kπ

n
cot

kπ

n
,

n−1∑
k=1

(−1)k sin
mkπ

n
cot1+2λ kπ

n
;

where the last one for even n may also be found in [12]. Since
sin(mkπ)/n can be written as sin(kπ)/n times a polynomial of degree
m−1 in cos(kπ)/n, the four sums displayed above can again be reduced
to those examined in subsections 4.2 and 4.3.

4.6. There are numerous articles dedicated to the evaluation of finite
trigonometric sums. For example, by utilizing the following four
formulae, it is possible to evaluate some similar sums appearing in [1,
9, 11, 14, 23].

(A) P (x) = sin θ sinmθ in (4.1) with m ̸≡2 n and m < n:

n−1∑
k=0

(−1)k
sin(mkπ/n) sin(kπ/n)

cos2(kπ/n)− cos2 θ
=

n sinmθ

cos θ sinnθ
.

(B) P (x) = cosmθ in (4.2) with m ̸≡2 n and m < n:

n−1∑
k=0

(−1)k
cos(mkπ/n) cos(kπ/n)

cos2(kπ/n)− cos2 θ
=

n cosmθ

sin θ sinnθ
.

(C) P (x) = sin 2θ sinmθ in (4.3) with mn ≡2 1 and m ≤ n:

n−1∑
k=0

(−1)k
sin(2kπ/n) sin(mkπ/n)

cos2(kπ/n)− cos2 θ
=

2n sinmθ

sinnθ
− 2nχ(m = n).

(D) P (x) = sin θ sinmθ in (4.4) with m ≡2 n and m ≤ n:

n−1∑
k=0

(−1)k
sin(mkπ/n) tan(kπ/n)

cos2(kπ/n)− cos2 θ
=

n sinmθ

cos2 θ sinnθ
+

n(−1)(m+n)/2

cos2 θ
.
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In addition, several variants of trigonometric sums exist that should
allow for recovery by our trigonometric formulae. We limit this to
stating the following examples from Berndt and Yeap [5] and Byrne
and Smith [6]

n∑
k=1

cot2
(2k − 1)π

4n
= 2n2 − n,(4.10)

n∑
k=1

sin
2mkπ

n
cot

kπ

n
= n− 2m;(4.11)

where the last one is due to Eisenstein (1844). The interested reader
may refer to [5, 6, 8, 25, 30] for proofs and further similar identities.
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