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ON A SINE POLYNOMIAL OF TURÁN

HORST ALZER AND MAN KAM KWONG

ABSTRACT. In 1935, Turán proved that

Sn,a(x) =
n∑

j=1

(n+ a− j

n− j

)
sin(jx) > 0,

n, a ∈ N, 0 < x < π.

We present various related inequalities. Among others, we
show that the refinements

S2n−1,a(x) ≥ sin(x) and S2n,a(x) ≥ 2 sin(x)(1 + cos(x))

are valid for all integers n ≥ 1 and real numbers a ≥ 1 and
x ∈ (0, π). Moreover, we apply our theorems on sine sums to
obtain inequalities for Chebyshev polynomials of the second
kind.

1. Introduction. The sequence σn,k(z) is recursively defined by

σn,0(z) =
n∑

j=0

zj , σn,k(z) =
n∑

j=0

σj,k−1(z), k ∈ N.

Then, we have

σn,k(e
ix) =

n∑
j=0

(
n+ k − j

k

)
cos(jx) + i

n∑
j=1

(
n+ k − j

k

)
sin(jx).

In 1935, Turán [12] studied the imaginary part and proved by induction
on n and k the remarkable inequality

(1.1)
n∑

j=1

(
n+ k − j

k

)
sin(jx) > 0, n, k ∈ N, 0 < x < π.
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In the same paper, Turán presented an elegant inequality for a sine
sum in two variables. He demonstrated that the following companion
of (1.1) is valid:

(1.2)
n∑

j=1

(
n+ k − j

k

)
sin(jx) sin(jy)

j
> 0, n, k ∈ N, 0 < x, y < π.

Szegő [11] applied (1.1) with k = 2 to establish a theorem on
univalent functions. An extension of (1.1) with k = 2 was given by
Alzer and Kwong [3], whereas Alzer and Fuglede [1] offered a positive
lower bound for the sine polynomial in (1.1) under the assumption that
n, k ≥ 2. In fact, they proved that
(1.3)

n∑
j=1

(
n+ k − j

k

)
sin(jx) >

x(π − x)

π
, 2 ≤ n, k ∈ N, 0 < x < π.

The definition of the sums given in (1.1) and (1.2) requires that k
be a nonnegative integer. However, the identity(

n+ k − j

k

)
=

(
n+ k − j

n− j

)
reveals that, if we use the second binomial coefficient, then k can be any
real number. Therefore, it is natural to ask for all real parameters a
and b such that we have, for all integers n ≥ 1 and real numbers
x ∈ (0, π), y ∈ (0, π),

Sn,a(x) =

n∑
j=1

(
n+ a− j

n− j

)
sin(jx) > 0

and

Θn,b(x, y) =

n∑
j=1

(
n+ b− j

n− j

)
sin(jx) sin(jy)

j
> 0.(1.4)

In this paper, we solve both problems. Moreover, we provide several
closely related inequalities. Among others, we show that there exist
functions λ(x), µ(x) and λ∗(x, y), µ∗(x, y) such that the estimates

S2n−1,a(x) ≥ λ(x) > 0, S2n,a(x) ≥ µ(x) > 0
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and

Θ2n−1,a(x, y) ≥ λ∗(x, y) > 0, Θ2n,a(x, y) ≥ µ∗(x, y) > 0

are valid for all integers n ≥ 1 and real numbers a ≥ 1, x ∈ (0, π),
y ∈ (0, π).

In the next section, we collect some lemmas which are needed to
prove our main results given in Section 3. Finally, in Section 4, we
apply our theorems to obtain inequalities for sums involving Cheby-
shev polynomials of the second kind, and we also offer new integral
inequalities for these polynomials. Throughout, we maintain the nota-
tion introduced in this section.

For more information on inequalities for trigonometric sums and
polynomials, the interested reader is referred to the monograph by
Milovanović, Mitrinović, Rassias [9, Chapter 6].

2. Lemmas. The first lemma is due to Fejér [5].

Lemma 2.1. Let x ∈ (0, π), and let

(2.1) ϕn(x) = 2
n−1∑
j=1

sin(jx) + sin(nx).

Then, ϕn(x) > 0 for n = 1, 2 and ϕn(x) ≥ 0 for n ≥ 3.

In order to prove (2.1), Fejér made use of the identity

ϕn(x) = sin(x)

(
n+ 2

n−1∑
j=1

j∑
k=1

cos(kx)

)
which he obtained by comparing the coefficients of certain power series.
Here, we offer a different proof which is more elementary than Fejér’s
approach.

Proof. Multiplying both sides of (2.1) by sin(x/2) gives

sin(x/2)ϕn(x) =
n−1∑
j=1

2 sin(x/2) sin(jx) + sin(x/2) sin(nx)

=
n−1∑
j=1

(cos((j − 1/2)x)− cos((j + 1/2)x))
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+
1

2
(cos((n− 1/2)x)− cos((n+ 1/2)x))

= cos(x/2)− 1

2
cos((n− 1/2)x)− 1

2
cos((n+ 1/2)x)

= cos(x/2)− cos(x/2) cos(nx)

= cos(x/2)
(
1− cos(nx)

)
.

Since x ∈ (0, π), we conclude that ϕn(x) > 0 for n = 1, 2 and ϕn(x) ≥ 0
for n ≥ 3. �

Next, an identity is presented which will be a helpful tool not only
to establish our inequalities for trigonometric sums but also to cover
all cases of equality.

Lemma 2.2. Let ck, k = 1, . . . , n, be real numbers and

γk,n = ck + 2
n−k∑
j=1

(−1)jcj+k, k = 1, . . . , n.

Then,

(2.2)

n∑
j=1

cj sin(jx) =

n∑
j=1

γj,nϕj(x),

where ϕj(x) is defined in (2.1).

Proof. We have

n∑
j=1

γj,nϕj(x) =
n∑

j=1

cjϕj(x) + 2
n∑

j=1

(
ϕj(x)

n−j∑
k=1

(−1)kck+j

)

=

n∑
j=1

cjϕj(x) + 2

n∑
j=2

(
cj

j−1∑
k=1

(−1)j−kϕk(x)

)

= c1ϕ1(x) +

n∑
j=2

cj

(
ϕj(x) + 2

j−1∑
k=1

(−1)j−kϕk(x)

)

= c1 sin(x) +
n∑

j=2

cj sin(jx)

=
n∑

j=1

cj sin(jx). �
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Remark 2.3. An application of Lemmas 2.1 and 2.2 leads to a
result of Steinig [10], who proved that the sine polynomial in (2.2)
is nonnegative on (0, π), if γk,n ≥ 0, k = 1, . . . , n.

Lemma 2.4. Let ak, k = 1, . . . , n, n ≥ 3, be real numbers such that

2ak ≤ ak−1 + ak+1, k = 2, . . . , n− 1

and 0 ≤ 2an ≤ an−1. Then, for x ∈ (0, π),

(2.3) Ln(x) =

n∑
j=1

aj sin(jx)−
n−2∑
j=1

aj+2 sin(jx) ≥ 0.

Proof. Let x ∈ (0, π). We define

c̃j = aj − aj+2, j = 1, . . . , n− 2,

c̃n−1 = an−1, c̃n = an.

Then, we have

(2.4) Ln(x) =
n∑

j=1

c̃j sin(jx).

Let

γ̃k = ak − 2ak+1 + ak+2, k = 1, . . . , n− 2,

γ̃n−1 = an−1 − 2an, γ̃n = an.

By assumption,

(2.5) γ̃k ≥ 0, k = 1, . . . , n.

We have

γ̃k = c̃k + 2
n−k∑
j=1

(−1)j c̃j+k, k = 1, . . . , n,

so that Lemma 2.2 implies

(2.6)
n∑

j=1

c̃j sin(jx) =
n∑

j=1

γ̃jϕj(x).

Applying Lemma 2.1 and (2.5) reveals that the sum on the right-hand
side of (2.6) is nonnegative. From (2.4) and (2.6), we obtain (2.3). �
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Remark 2.5. We assume that Ln(x0) = 0 with x0 ∈ (0, π). The proof
of Lemma 2.4 shows that

(i) if n ≥ 3 and an > 0, then ϕn(x0) = 0.

Moreover, since ϕ2(x0) > 0, we obtain that

(ii) if n = 3, then a2 − 2a3 = 0;
(iii) if n ≥ 4, then a2 − 2a3 + a4 = 0.

The next lemma plays an important role in the proofs of Theorems
3.1 and 3.2 given in the next section.

Lemma 2.6. For all integers n ≥ 3 and real numbers a ≥ 1, x ∈ (0, π),
we have

(2.7) Sn,a(x) ≥ Sn−2,a(x).

Proof. Let a ≥ 1. We define

ãj =

(
n+ a− j

n− j

)
, j = 1, . . . , n.

Then,

ãj−1 − 2ãj + ãj+1 =
a(a− 1)

(n− j + 1)!

n−j−1∏
ν=1

(n+ a− j − ν) ≥ 0,

j = 2, . . . , n− 1,

ãn−1 − 2ãn = a− 1, ãn = 1.

Since

Sn,a(x)− Sn−2,a(x) =
n∑

j=1

ãj sin(jx)−
n−2∑
j=1

ãj+2 sin(jx),

we conclude from Lemma 2.4 that (2.7) holds for x ∈ (0, π). �

Remark 2.7. Let n ≥ 3, a ≥ 1, x̃0 ∈ (0, π) and Sn,a(x̃0) = Sn−2,a(x̃0).
Remark 2.5 implies that a = 1 and ϕn(x̃0) = 0.
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3. Trigonometric sums. Our first two theorems show that Turán’s
inequality (1.1) can be refined if we assume that either n is odd or n is
even.

Theorem 3.1. For all odd integers n ≥ 1 and real numbers a ≥ 1,
x ∈ (0, π), we have

(3.1) Sn,a(x) ≥ sin(x).

Equality holds if and only if n = 1 or n = 3, a = 1, x = 2π/3.

Proof. Let n ≥ 3 be odd, a ≥ 1 and x ∈ (0, π). Applying Lemma 2.6
gives

Sn,a(x) ≥ S1,a(x) = sin(x).

Now, we discuss the cases of equality. A short calculation yields that

S3,1(2π/3) = sin(2π/3) =
1

2

√
3.

We assume that
Sn,a(x) = sin(x) = S1,a(x).

Case 1. n = 3. Applying Remark 2.7 leads to a = 1 and

ϕ3(x) = sin(x)(1 + 2 cos(x))2 = 0.

This gives x = 2π/3.

Case 2. n ≥ 5. From Lemma 2.6, we conclude that

S1,a(x) = Sn,a(x) ≥ S5,a(x) ≥ S3,a(x) ≥ S1,a(x).

Thus,
S3,a(x) = S1,a(x) and S5,a(x) = S3,a(x).

Applying Remark 2.7 yields

ϕ3(x) = 0 and ϕ5(x) = 0.

The first equation yields x = 2π/3. However, ϕ5(2π/3) =
√
3/2, a

contradiction. It follows that equality holds in (3.1) if and only if
n = 1 or n = 3, a = 1, x = 2π/3. �
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Theorem 3.2. For all even integers n ≥ 1 and real numbers a ≥ 1,
x ∈ (0, π), we have

(3.2) Sn,a(x) ≥ 2 sin(x)(1 + cos(x)).

Equality holds if and only if n = 2, a = 1 or n = 4, a = 1, x = π/2.

Proof. Let a ≥ 1 and x ∈ (0, π). Using (2.7) gives, for even n,
(3.3)
Sn,a(x) ≥ S2,a(x) = (1 + a) sin(x) + sin(2x) ≥ 2 sin(x)(1 + cos(x)).

We have

S2,1(x) = 2 sin(x)(1 + cos(x))

and

S4,1(π/2) = 2 sin(π/2)(1 + cos(π/2)) = 2.

Next, we assume that

(3.4) Sn,a(x) = 2 sin(x)(1 + cos(x)).

Case 1. n = 2. We obtain

0 = S2,a(x)− 2 sin(x)(1 + cos(x)) = (a− 1) sin(x).

Thus, a = 1.

Case 2. n = 4. Applying (3.3) and (3.4) yields

S4,a(x) = S2,1(x).

It follows from Remark 2.7 that a = 1 and

ϕ4(x) = 8 sin(x)(1 + cos(x)) cos2(x) = 0.

Thus, x = π/2.

Case 3. n ≥ 6. From (2.7), (3.3) and (3.4) we conclude that

S4,a(x) = S2,a(x) and S6,a(x) = S4,a(x),

so that Remark 2.7 gives

ϕ4(x) = 0 and ϕ6(x) = 0.
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The first equation yields x = π/2, but ϕ6(π/2) = 2. Hence, equality
holds in (3.2) if and only if n = 2, a = 1 or n = 4, a = 1, x = π/2. �

Remark 3.3. From Theorems 3.1 and 3.2, we conclude that the esti-
mate

(3.5) Sn,a(x) > sin(x)min{1, 2 (1 + cos(x))}

is valid for n ≥ 1, a ≥ 1 and x ∈ (0, π). The lower bounds given in (1.3)
and (3.5) cannot be compared. Indeed, the function

x 7−→ x(π − x)

π
− sin(x)min{1, 2 (1 + cos(x))}

is negative on (0, x1) and positive on (x1, π), where x1 = 2.204 . . . .

The following extension of inequality (1.1) is valid.

Theorem 3.4. Let a be a real number. The inequality

(3.6) Sn,a(x) > 0

holds for all integers n ≥ 1 and real numbers x ∈ (0, π) if and only if
a ≥ 1.

Proof. From (3.5), we conclude that, if a ≥ 1, then (3.6) holds for
all n ≥ 1 and x ∈ (0, π). Conversely, let (3.6) be valid for all n ≥ 1 and
x ∈ (0, π). Since S2,a(π) = 0, we obtain

d

dx
S2,a(x)

∣∣∣
x=π

= 1− a ≤ 0.

Thus, a ≥ 1. �

Next, we present inequalities for the sine polynomial

S∗
n,a(x) =

n∑
j=1
j odd

(
n+ a− j

n− j

)
sin(jx).

Applications of Theorems 3.1 and 3.2 lead to counterparts of (3.1)
and (3.2).
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Theorem 3.5. For all odd integers n ≥ 1 and real numbers a ≥ 1,
x ∈ (0, π), we have

(3.7) S∗
n,a(x) ≥ sin(x).

Equality holds if and only if n = 1.

Proof. Let n ≥ 1 be odd and a ≥ 1, x ∈ (0, π). Inequality (3.1) leads
to

2S∗
n,a(x) = Sn,a(x) + Sn,a(π − x) ≥ sin(x) + sin(π − x) = 2 sin(x).

If equality holds in (3.7), then

Sn,a(x) = sin(x) and Sn,a(π − x) = sin(π − x).

From Theorem 3.1, we conclude that n = 1. �

Theorem 3.6. For all even integers n ≥ 2 and real numbers a ≥ 1,
x ∈ (0, π), we have

(3.8) S∗
n,a(x) ≥ 2 sin(x).

Equality holds if and only if n = 2, a = 1 or n = 4, a = 1, x = π/2.

Proof. Let n ≥ 2 be even and a ≥ 1, x ∈ (0, π). We apply (3.2) and
obtain

2S∗
n,a(x) = Sn,a(x) + Sn,a(π − x)

≥ 2 sin(x)(1 + cos(x)) + 2 sin(π − x)(1 + cos(π − x))

= 4 sin(x).

If n = 2, a = 1 or n = 4, a = 1, x = π/2, then equality is valid in (3.8).
Conversely, if equality holds in (3.8), then

Sn,a(x) = 2 sin(x)(1 + cos(x))

and

Sn,a(π − x) = 2 sin(π − x)(1 + cos(π − x)).

Applying Theorem 3.2 leads to n = 2, a = 1 or n = 4, a = 1,
x = π/2. �
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Now, we study the sine sum in two variables given in (1.4). The
following two theorems offer improvements of inequality (1.2).

Theorem 3.7. For all odd integers n ≥ 1 and real numbers a ≥ 1,
x, y ∈ (0, π), we have

(3.9) Θn,a(x, y) ≥ sin(x) sin(y).

Equality holds if and only if n = 1.

Proof. Let n ≥ 1 be odd and a ≥ 1. Since equality holds in (3.9), if
n = 1, we suppose that n ≥ 3. Applying Theorem 3.1 gives for x, y ∈ R
with 0 < x− y < π and 0 < x+ y < π:

Sn,a(x− y) + Sn,a(x+ y) ≥ sin(x− y) + sin(x+ y).

This leads to

(3.10)
n∑

j=1

(
n+ a− j

n− j

)
sin(jx) cos(jy) ≥ sin(x) cos(y).

Equality holds in (3.10) if and only if n = 3, a = 1 and x− y = 2π/3,
x + y = 2π/3, that is, x = 2π/3, y = 0. In order to obtain (3.9) we
integrate both sides of (3.10) with respect to y.

Let x0, y0 ∈ R with 0 < y0 ≤ x0 < π. We consider two cases.

Case 1. x0 ≤ π/2. Let 0 < y < y0. Then, 0 < x0 − y < x0 + y < π.
It follows from (3.10) with > instead of ≥ that
(3.11)∫ y0

0

n∑
j=1

(
n+ a− j

n− j

)
sin(jx0) cos(jy) dy >

∫ y0

0

sin(x0) cos(y) dy.

This leads to (3.9) with x = x0, y = y0 and > instead of ≥.

Case 2. π/2 < x0.

Case 2.1. y0 ≤ π−x0. Let 0 < y < y0. Then, 0 < x0−y < x0+y <
π, so that we obtain (3.11) and (3.9) with x = x0, y = y0 and > instead
of ≥.

Case 2.2. π − x0 < y0. We set x1 = π − x0 and y1 = π − y0. Let
0 < y < x1. Then, 0 < y1 − y < y1 + y < π. This leads to (3.11) with
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x1 instead of y0 and y1 instead of x0. Using

sin(jy1) = (−1)j−1 sin(jy0), j ∈ N,

and

sin(jx1) = (−1)j−1 sin(jx0), j ∈ N,

we obtain (3.9) with x = x0, y = y0 and > instead of ≥. �

Theorem 3.8. For all even integers n ≥ 2 and real numbers a ≥ 1,
x, y ∈ (0, π), we have

(3.12) Θn,a(x, y) ≥ 2 sin(x) sin(y)(1 + cos(x) cos(y)).

Equality holds if and only if n = 2, a = 1.

Proof. The proof is similar to that of Theorem 3.7. Therefore, we
only offer a proof sketch. Since

Θ2,a(x, y) = 2 sin(x) sin(y)

(
a+ 1

2
+ cos(x) cos(y)

)
,

we conclude that, if n = 2, then (3.12) is valid with equality if and only
if a = 1. Let n ≥ 4. Using Theorem 3.2, we obtain for x, y ∈ R with
0 < x− y < π and 0 < x+ y < π:
(3.13)

n∑
j=1

(
n+ a− j

n− j

)
sin(jx) cos(jy) ≥ 2 sin(x) cos(y) + sin(2x) cos(2y).

Equality holds in (3.13) if and only if n = 4, a = 1, x = π/2, y = 0.

Let x0, y0 ∈ R with 0 < y0 ≤ x0 < π. We assume that x0 ≤ π/2. If
0 < y < y0, then 0 < x0 − y < x0 − y < π. Next, we integrate both
sides of (3.13) (with x = x0 and > instead of ≥) from y = 0 to y = y0.
This gives

(3.14) Θn,a(x0, y0) > 2 sin(x0) sin(y0)(1 + cos(x0) cos(y0)).

By similar arguments, we conclude that (3.14) also holds if x0 >
π/2. �
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Let

Θ∗
n,a(x, y) =

n∑
j=1
j odd

(
n+ a− j

n− j

)
sin(jx) sin(jy)

j
.

Applying Theorems 3.7 and 3.8 we obtain the following companions
of (3.7) and (3.8).

Theorem 3.9. For all real numbers a ≥ 1 and x, y ∈ (0, π), we have

Θ∗
n,a(x, y) ≥ sin(x) sin(y), if n is odd(3.15)

and

Θ∗
n,a(x, y) ≥ 2 sin(x) sin(y), if n is even.(3.16)

Equality holds in (3.15) if and only if n = 1 and in (3.16) if and only
if n = 2, a = 1.

The proof of this theorem is quite similar to the proofs of Theorems
3.5 and 3.6; therefore, we omit the details. We conclude this section
with a generalization of inequality (1.2).

Theorem 3.10. Let a be a real number. The inequality

(3.17) Θn,a(x, y) > 0

holds for all integers n ≥ 1 and real numbers x, y ∈ (0, π) if and only
if a ≥ 1.

Proof. Let a ≥ 1. From Theorems 3.7 and 3.8 we conclude that
Θn,a(x, y) is positive for all n ≥ 1 and x, y ∈ (0, π). Conversely, if (3.17)
holds for all n ≥ 1 and x, y ∈ (0, π), then we have

Θ2,a(0, y) = 0

and
∂

∂x
Θ2,a(x, y)

∣∣∣
x=0

= sin(y)(1 + a+ 2 cos(y)) ≥ 0.

It follows that
1 + a+ 2 cos(y) ≥ 0.

We let y → π and obtain a− 1 ≥ 0. �
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4. Chebyshev polynomials. The Chebyshev polynomials of the
first and second kind, Tn(x) and Un(x), n = 0, 1, 2, . . . , are polynomials
in x of degree n, defined by

Tn(x) = cos(nt)

and

(4.1) Un(x) =
sin((n+ 1)t)

sin(t)
, x = cos(t), t ∈ [0, π].

They have remarkable applications in numerical analysis, approxi-
mation theory and other branches of mathematics. The main prop-
erties of these functions may be found, for instance, in Mason and
Handscomb [8].

Using the notation (4.1), we obtain from (1.1) the inequality

Λn,k(x) =
n∑

j=0

(
n+ k − j

n− j

)
Uj(x) > 0,(4.2)

0 ≤ n ∈ Z, k ∈ N, −1 < x < 1.

The results presented in Section 3 lead to inequalities for Chebyshev
polynomials of the second kind. As examples, we offer counterparts of
Theorems 3.1 and 3.2 which provide refinements of (4.2).

Theorem 4.1. For all even integers n ≥ 0 and real numbers a ≥ 1,
x ∈ (−1, 1), we have

Λn,a(x) ≥ 1.

Equality holds if and only if n = 0 or n = 2, a = 1, x = −1/2.

Theorem 4.2. For all odd integers n ≥ 1 and real numbers a ≥ 1,
x ∈ (−1, 1), we have

Λn,a(x) ≥ 2(1 + x).

Equality holds if and only if n = 1, a = 1 or n = 3, a = 1, x = 0.

The inequalities

(4.3) 0 <
n∑

j=1

sin(jx)

j
< π − x, n ∈ N, 0 < x < π,
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are classical results in the theory of trigonometric polynomials. In 1910,
Fejér conjectured the validity of the left-hand side. The first proofs were
published by Jackson [7] in 1911 and Gronwall [6] in 1912. The right-
hand side is due to Turán [13], who proved his inequality in 1938. The
following interesting companion of (4.3) was given by Carslaw [4] in
1917:

(4.4) 0 <
n∑

j=0

sin((2j + 1)x)

2j + 1
≤ 1, 0 ≤ n ∈ Z, 0 < x < π.

Equality holds if and only if n = 0, x = π/2 (also see [2]). We show
that applications of (4.3) and (4.4) lead to integral inequalities for the
Chebyshev polynomials.

Theorem 4.3. For all integers n ≥ 1 and real numbers x ∈ (0, 1), we
have

(4.5) arccos(x) <

∫ 1

x

U2n(t)√
1− t2

dt < π − arccos(x).

If x ∈ (−1, 0), then (4.5) holds with > instead of <.

Proof. Let t ∈ (0, π) and

Fn(t) =
n∑

j=1

sin(2jt)

j
.

Then,

F ′
n(t) = 2

n∑
j=1

cos(2jt) =
sin((2n+ 1)t)

sin(t)
− 1 = U2n(cos(t))− 1.

This gives, for z ∈ (0, π):

Fn(z) =

∫ z

0

F ′
n(t) dt =

∫ z

0

U2n(cos(t)) dt− z =

∫ 1

cos(z)

U2n(t)√
1− t2

dt− z.

If x ∈ (0, 1), then arccos(x) ∈ (0, π/2). Using (4.3) leads to

0 < Fn(arccos(x)) =

∫ 1

x

U2n(t)√
1− t2

dt− arccos(x) < π − 2 arccos(x).

This implies (4.5).



16 HORST ALZER AND MAN KAM KWONG

We define for x ∈ (−1, 1):

Gn(x) = arccos(x)−
∫ 1

x

U2n(t)√
1− t2

dt and w(x) = arccos(x)− π

2
.

Applying

(4.6) w(x) + w(−x) = 0

and ∫ 1

0

U2n(t)√
1− t2

dt =
π

2

yields

Gn(x)+Gn(−x)=

(
2

∫ 1

0

−
∫ 1

x

−
∫ 1

−x

)
U2n(t)√
1−t2

dt =

(∫ x

0

−
∫ 0

−x

)
U2n(t)√
1−t2

dt.

Since U2n is an even function, we obtain∫ x

0

U2n(t)√
1− t2

dt =

∫ x

0

U2n(−t)√
1− t2

dt =

∫ 0

−x

U2n(t)√
1− t2

dt.

Thus,

(4.7) Gn(x) +Gn(−x) = 0.

Using (4.6) and (4.7) gives that the function

Hn(x) = Gn(x)− 2w(x)

satisfies

(4.8) Hn(x) +Hn(−x) = 0.

From (4.5), (4.7) and (4.8), we conclude that, for x ∈ (−1, 0), we have

−Gn(x) = Gn(−x) < 0 < Hn(−x) = −Hn(x).

This leads to (4.5) with > instead of <. �

Remark 4.4. The functions

x 7−→
∫ 1

x

Un(t)√
1− t2

dt− arccos(x), n = 3, 7, 11,
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and

x 7−→ π − arccos(x)−
∫ 1

x

Un(t)√
1− t2

dt, n = 1, 5, 9,

attain positive and negative values on (0, 1). This implies that in
general Theorem 4.3 is not true for Chebyshev polynomials of odd
degree.

We conclude this paper with a theorem which offers sharp upper and
lower bounds for an integral involving the Chebyshev polynomials of
the first and second kind.

Theorem 4.5. For all integers n ≥ 0 and real numbers x ∈ (−1, 1),
we have

(4.9) 0 <

∫ 1

x

Tn+1(t)Un(t)√
1− t2

dt ≤ 1.

Equality holds on the right-hand side if and only if n = 0, x = 0.

Proof. Let x ∈ (−1, 1). Since T1(t) = t and U0(t) = 1, we obtain∫ 1

x

T1(t)U0(t)√
1− t2

dt =
√
1− x2.

This leads to (4.9) with n = 0.

Let n ≥ 1. We denote the sine sum in (4.4) by In(x). Then, for
t ∈ (0, π),

I ′n(t) =

n∑
j=0

cos((2j + 1)t) =
cos((n+ 1)t) sin((n+ 1)t)

sin(t)

= Tn+1(cos(t))Un(cos(t)).

Hence, we obtain for z ∈ (0, π):

In(z) =

∫ z

0

I ′n(t) dt =

∫ 1

cos(z)

Tn+1(t)Un(t)√
1− t2

dt,

so that (4.4) (with < instead of ≤) gives

0 < In(arccos(x)) =

∫ 1

x

Tn+1(t)Un(t)√
1− t2

dt < 1. �
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