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THE PROBABILITY THAT THE NUMBER OF
POINTS ON A COMPLETE INTERSECTION

IS SQUAREFREE

ERIC SCHMIDT

ABSTRACT. We consider the asymptotic probability
that integers chosen according to a binomial distribution will
have certain properties: (i) that such an integer is not divisi-
ble by the kth power of a prime, (ii) that any k of s chosen
integers are relatively prime and (iii) that a chosen integer is
prime. We also prove an analog of the Dirichlet divisor prob-
lem for the binomial distribution. We show how these results
yield corresponding facts concerning the number of points on
a smooth complete intersection over a finite field.

1. Introduction. Let α ∈ (0, 1), and let n be a nonnegative integer.
The probability that n Bernoulli trials with chance of success α yield
precisely t successes is given by the binomial distribution. In [7],
Nymann and Leahey show that the probability that k integers chosen
according to the binomial distribution are relatively prime approaches
1/ζ(k) as n → ∞ with α fixed, where ζ is the Riemann zeta function.
The same authors, in [8], show likewise that an integer chosen according
to the binomial distribution is k-free, that is, not divisible by the kth
power of a prime, with probability 1/ζ(k) as n → ∞. These results
are analogous to classical results yielding the same limiting values
when the integers are chosen from a uniform distribution. We prove
further statements about choosing integers according to the binomial
distribution. We generalize the result on k-free integers to obtain
Theorem 3.1. We consider the analog of the Dirichlet divisor problem
for the binomial distribution, obtaining Theorem 4.2. The result on
relatively prime integers is generalized to consider choosing s integers
such that any k of them are relatively prime, yielding an analog of the
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result of [6]. Finally, we prove that the probability of choosing a prime
from the binomial distribution becomes arbitrarily small.

We now briefly describe our motivation in considering such ques-
tions. In [4], Bucur, et al., gave a probabilistic model for the number of
points on a smooth projective plane curve of degree d over a finite field
of order q. They showed, roughly, that the number of points approxi-
mately follows a binomial distribution and that the total error becomes
arbitrarily small if d and q vary in an appropriate fashion. Bucur and
Kedlaya generalized this result [5] showing that, in a similar manner,
the number of points on a smooth, projective, complete intersection of
hypersurfaces of specified degrees also follows a binomial model. Hence,
our results can be used to make statements concerning the probability
that randomly chosen smooth plane curves (more generally, complete
intersections) possess the previously mentioned properties. For exam-
ple, the probability that a smooth plane curve over Fq of degree d has
a squarefree number of points approaches 1/ζ(2) as q → ∞ and d ≫ q.
(More general and precise statements are given later.)

2. Notation and preliminaries. We employ the standard nota-
tion f(x) ∼ g(x), defined f(x)/g(x) → 1 as x → ∞.

Throughout, we consider a sequence {αn}n≥0 with αn ∈ (0, 1). We
will write βn = 1 − αn. We define the binomial probability mass
function

Bαn,n(t) =

(
n

t

)
αt
n(1− αn)

n−t,

for nonnegative integers t and Bαn,n(t) = 0 for negative t. Thus,
the parameter α varies depending upon n; this is essential to our
applications in Section 7. In order to simplify notation, we will set
Bn(t) = Bαn,n(t) and

Bn(S) =
∑
t∈S

Bn(t).

The binomial distribution has mean an = αnn and standard deviation
σn = (nαnβn)

1/2. It will be convenient to approximate the binomial
distribution with a normal distribution, with probability density func-

tion Nn(x) = (2πnαnβn)
−1/2e−(1/2)u2

n(x), where un(x) = (x− an)/σn.
The relationship between the binomial distribution and the normal ap-
proximation is given by the following.
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Theorem 2.1. ([9]). There is a constant λ2 ∈ R such that∑
j∈Z

|Bn(j)−Nn(j)| = |βn − αn|σ−1
n λ2 +O(σ−2

n ).

Proof. This is [9, Theorem 3], which also explicitly determines the
value of λ2. �

We will use the following generalization of a result of Nymann
and Leahey [7, Lemma 3]. Intuitively, it states that the probability
of a number chosen from a binomial distribution divisible by d is
approximately 1/d.

Lemma 2.2. Let

εn(d) =

( ∞∑
j=0

Bn(jd)

)
− d−1.

Then, |εn(d)| = O((αnβnn)
−1/2) uniformly in d as n → ∞.

Proof. Nymann and Leahey show, in the proof of [7, Lemma 3], that
|εn(d)| ≤ 3Bn(⌊(n+ 1)αn⌋). The result follows from Theorem 2.1. �

We will call a function on the nonnegative integers negligible if it is
O((αnn)

−c) for all c ∈ R. Some facts concerning negligible functions
are listed next.

Lemma 2.3. Let g(n) be bounded by a polynomial, and fix ε > 0. The
following functions are negligible:

(i) Nn(f(n)), if βnn → ∞ and |f(n)−αnn| ≥ (αnn)
1/2+ε for n ≫ 0,

(ii) Nn(t), for a fixed t ∈ R, if αnn → ∞,
(iii) Nn(n)g(n), if βnn

1−ε → ∞,
(iv) f(n)g(αnn), if f is negligible,
(v) f(n)g(n), if f is negligible and αnn

1−ε → ∞.

Proof.

(i) The second hypothesis shows that

Nn(f(n)) ≤ σ−1 exp(−(αnn)
ε/(2βn))
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for n ≫ 0. We can now verify the result if βn → 0, or if βn is bounded
away from 0, from which the general result follows.

(ii) For large fixed n, the function αn 7→ Nn(t) decreases near 1.
Thus, we may assume that βn is bounded away from 0, and the result
follows from (i).

(iii) For large fixed n, the function αn 7→ Nn(n) increases near 0.
Thus, we may assume that αn is bounded away from 0, and the result
follows readily.

(iv) Obvious.

(v) This follows since n = o ((αnn)
1/ε). �

3. Integers that are k-free. For k ≥ 2, a positive integer is said to
be k-free if it is not divisible by the kth power of a prime. Nymann and
Leahey determined [8] the probability that an integer chosen according
to the binomial distribution is k-free, assuming that α is constant. Here,
we prove the same by a different method, while allowing α to vary.

Theorem 3.1. Suppose that αnn → ∞, and βnn
1−2/k is bounded away

from 0. As n → ∞, the probability of an integer chosen according to
the binomial distribution being k-free tends to 1/ζ(k).

Proof. Let Sk(x) be the set of all k-free integers at most x and
fk(x) = #Sk(x). Using Theorem 2.1, we have

Bn(Sk(n)) =
∑

j∈Sk(n)

Nn(j) +O((αnβnn)
−1/2).

Now, fk(t) ∼ t/ζ(k) according to a classical result. Accordingly, we
apply summation by parts to obtain∑

j∈Sk(n)

Nn(j) = Nn(n)fk(n)−
∫ n

1

N ′
n(t)

(
t

ζ(k)
+Rk(t)

)
dt,

where Rk(t) is a remainder term to be described. The term Nn(n)fk(n)
is negligible (Lemma 2.3 (iii)). Moreover,

−
∫ n

1

N ′
n(t)

t

ζ(k)
dt =

1

ζ(k)

(
− (Nn(n)n−Nn(1)) +

∫ n

1

Nn(t) dt

)
.
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Here, Nn(n)n and Nn(1) are negligible. In order to show that

(3.1) lim
n→∞

∫ n

1

Nn(t) dt = 1,

perform a change of variables t = σnv + an to obtain

1√
2π

∫ (n−an)/σn

(1−an)/σn

e−(1/2)v2

dv.

Since the restrictions on αn and βn show that the limits of integration
approach −∞ and ∞, respectively, as n → ∞, (3.1) is established.

Now, we consider the remainder term. We have Rk(t) = O(gk(t)),

where gk(t) = t1/k exp(−Ak−3/2 log1/2 t) for some A, [10, page 213].
Therefore,∣∣∣∣ ∫ n

1

N ′
n(t)Rk(t) dt

∣∣∣∣ ≪ ∫ n

1

|N ′
n(t)|gk(t) dt

=

∫ an

1

N ′
n(t)gk(t) dt−

∫ n

an

N ′
n(t)gk(t) dt.

Integrating by parts and ignoring negligible terms, we obtain

2Nn(an)gk(an)−
∫ n

1

Nn(t)g
′
k(t) dt.

The term on the left is O((αnβnn)
−1/2gk(an)), which is o (1) using

gk(t) = o (t1/k) together with the restrictions on αn and βn. The
integral on the right may be replaced with∫ n

ℓn

Nn(t)g
′
k(t) dt,

where ℓn = an − a
3/4
n . (The error accrued from this replacement is

negligible since the integrand is negligible on the excluded interval,
and the width of the excluded interval is less than an.) Since g′k(t) =

O(t−1/2), this latter integral is bounded above by a constant times

ℓ−1/2
n

∫ n

ℓn

Nn(t) dt,

which goes to 0 since ℓn increases without bound. �
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4. The number-of-divisors function. The result here is not a
probability calculation, but it is of a similar flavor, which will be used
in Section 5. It concerns the function τ(n), the number of divisors
of n. For a function f , we write f(1)(x) = f(x+ 1)− f(x) for the first
differences of f . Similarly, f(2) denotes the first differences of f(1). In
this section, we will denote Nn simply by N . We will write

T (x) =
∑

1≤j≤x

τ(j).

Dirichlet showed that

T (x) = x log x+ (2γ − 1)x+∆(x),

where ∆(x) = O(
√
x), and γ is Euler’s constant [11]. We establish

an analog of this for the binomial distribution. Our argument here is
similar to, but more complex than, that of the previous section. First,
we need the following.

Lemma 4.1. If αnn → ∞ and βnn
1−ε → ∞, then, for t ∈ Z and

c ∈ R,
n∑

j=t

N(j) = 1 +O((αnn)
−c).

This may be proved using the Euler-Maclaurin summation formula
by an argument similar to that of [3, pages 43, 44].

We now turn to the main claim of this section.

Theorem 4.2. If αnn
1−ε → ∞ and βnn

1−ε → ∞, then

n∑
j=1

Bn(j)τ(j) = log(αnn) + 2γ +O((αnn)
−1/4β−1

n ).

Proof. From Theorem 2.1 and the estimate τ(x) = o (xη) for any
η > 0 [2, page 296], we have

n∑
j=1

Bn(j)τ(j) =
n∑

j=1

N(j)τ(j) + o ((α−1/2
n β−1/2

n n−1/2+η)).
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The restrictions on αn and βn show that the o-term is O((αnβnn)
−1/4).

Summation by parts yields

n∑
j=1

N(j)τ(j) = N(n)T (n)−
n−1∑
j=1

N(1)(j)T (j).

The term N(n)T (n) is negligible; thus, we are left to describe the
asymptotics of

(4.1) −
n−1∑
j=1

N(1)(j)T (j).

Now, we write T (j) as j log j + (2γ − 1)j + ∆(j). Each of the terms
yields a sum to examine. First, we have

(4.2) −
n−1∑
j=1

N(1)(j)j log j = −N(n)n log n+
n−1∑
j=1

N(j + 1)(j log j)(1).

Similar to the reasoning for the previous term, −N(n)n log n is negligi-
ble. As for the sum on the right, the mean value theorem implies that
log(j) + 1 ≤ (j log j)(1) ≤ log(j + 1) + 1. Therefore, a lower bound for
this sum is

(4.3)
n∑

j=2

N(j)(log(j − 1) + 1).

Writing log(j − 1) + 1 as (1 + log an) + (log(j − 1) − log an), the sum
breaks down into

n∑
j=2

N(j)(1 + log an),

which, from Lemma 4.1, is 1 + log an with negligible error, and

n∑
j=2

N(j)(log(j − 1)− log an).

With negligible error, we contract the range of summation to (an −
acn, an + acn) for some c in (1/2, 3/4). (Proof of negligibility : N(j) is
negligibly small on the excluded intervals, the logarithmic term is O(n)
and the range excluded has length less than n.) From the mean value
theorem, | log(j − 1) − log(an)| ≤ |(j − 1) − an|/an. For j in the new
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range of summation, |(j − 1)− an|/an ≤ ac−1
n + 1/an. Hence, the sum

is o ((αnn)
−1/4). Therefore, (4.3) converges to 1 + log an with error

o ((αnn)
−1/4). A similar argument shows that the upper bound

n∑
j=2

N(j)(1 + log j)

also converges to 1 + log an with the same error bound. Hence, (4.2)
itself does.

The second sum from (4.1) to examine is

−
n−1∑
j=1

N(1)(j)(2γ − 1)j = (2γ − 1)

(
−N(n)n+

n∑
j=1

N(j)

)
.

The term −N(n)n is negligible, and thus, from Lemma 4.1, we obtain
2γ − 1 in the limit.

Thus far, we have found the main term log(αnn) + 2γ. In analyz-
ing (4.1), it remains to examine the sum

(4.4) −
n−1∑
j=1

N(1)(j)∆(j).

We show that (4.4) is O((αnn)
−1/4β−1

n ). In order to do this, we write
it as

−N(1)(n− 1)∆2(n− 1) +

n−2∑
j=1

N(2)(j)∆2(j),

where

∆2(j) =

j∑
i=1

∆(i).

As usual, −N(1)(n−1)∆2(n−1) is negligible. For the sum on the right,
we use a result from [11]:

∆2(j) =
1

2
j log j +

(
γ − 1

4

)
j +O(j 3/4).

Again, after substituting for ∆2(j), we divide into cases. First, letting



POINTS ON A COMPLETE INTERSECTION 2785

f(x) = x log x, we have

n−2∑
j=1

N(2)(j)f(j) = N(1)(n− 1)f(n− 1)−
n−2∑
j=1

N(1)(j + 1)f(1)(j).

Here, N(1)(n−1)f(n−1) is negligible, and the expression which remains
is

(4.5) −N(n)f(1)(n− 1) +N(2)f(2) +
n−2∑
j=1

N(j + 1)f(2)(j).

Ignoring the negligible terms, we consider the sum that remains. From
the mean value theorem,

f(2)(j) ≤ sup
x∈[j,j+1]

f ′
(1)(x) ≤ sup

y∈[j,j+2]

f ′′(y) = 1/j.

(There is no ambiguity since (f(1))
′ = (f ′)(1).) Hence, by restricting

the range of summation, we can prove that (4.5) is O(1/(αnn)). Next,

n−2∑
j=1

N(2)(j)j

is negligible, as j(2) = 0. Finally, we must consider

n−2∑
j=1

N(2)(j)O(j 3/4).

This is bounded above by a constant times

(4.6)
n−2∑
j=1

|N(2)(j)|j 3/4.

Now, the mean value theorem implies that sup |N(1)(j)| ≤ sup |N ′(j)| =
O(1/(αnn)). Moreover, N ′′ has exactly two zeros. Therefore, if we
define S = {j ∈ Z | sgnN(2)(j) ̸= sgnN(2)(j+1)}, then the size of S is
bounded above by a constant independent of n. Now, (4.6) is bounded
above by the sum of the usual negligible terms and of

2
∑
j∈S

|N(1)(j + 1)| j 3/4 +
n−2∑
j=1

|N(1)(j + 1)|(j 3/4)(1).
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The left sum is O((αnn)
−1/4β−1

n ). Since (j 3/4)(1) ≤ j −1/4, the sum on
the right is, besides negligible terms, bounded above by

2
∑
j∈U

N(j + 1)j −1/4 +
n−2∑
j=1

N(j + 1)(j −1/4)(1),

where U = {j ∈ Z | sgnN(1)(j) ̸= sgnN(1)(j+1)}. SinceN ′ has a single

root at an, the sum on the left is O((αnn)
−3/4β

−1/2
n ). Restricting the

range of summation, we see that the sum on the right is O((αnn)
−5/4).

This completes the proof. �

5. Integers k-wise relatively prime. In [12], Tóth determined
the probability that an s-tuple integer is pairwise coprime. Hu [6]
generalized this to the situation in which any k of the chosen integers
are coprime. Despite the generality of this result, we show here that
his argument can be made to apply to a binomial distribution instead
of a uniform distribution. In this section, we closely follow [6], making
changes when appropriate to our problem.

An s-tuple of integers is defined to be k-wise relatively prime if any
k of them are relatively prime, and to be k-wise relatively prime to
an integer u if any k of them, together with u, are relatively prime.
(These conditions hold vacuously if k > s. This observation allows us
to dispense with the multiple cases considered by Hu.) Hu found that
the probability of s integers being k-wise relatively prime when chosen
according to the uniform distribution is

As,k =
∏
p

(
1−

s∑
m=k

B1/p,n(m)

)
.

The main result of this section (Corollary 5.5) is that As,k is also the
probability that s integers are k-wise relatively prime when chosen
according to a binomial distribution. Note that the case s = k repro-
duces the results of [7].

We use notation similar to Hu’s, namely, for a tuple u = (u1, . . . ,

uk−1), let S
(u)
s,k (n) denote the set of s-tuples of integers (a1, . . . , as) in

[1, n] that are k-wise relatively prime and i-wise relatively prime to ui

for 1 ≤ i ≤ k− 1. Define Q
(u)
s,k (n) = Bs

n(S
(u)
s,k (n)). For integers a, b > 0,

Hu defines (a, b] to be the product, over primes p dividing a, of the
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largest power of p dividing b. Set [b, a) = (a, b]. Define, for any positive
integer j,

j ∗ u =

(
u1(j, u2)

(j, u1]
, . . . ,

uk−2(j, uk−1)

(j, uk−1]
,

juk−2

(
∏k−1

i=2 [j, ui))(j, uk−1]

)
.

(Here (x, y) denotes gcd(x, y).) Importantly, if u is a pairwise coprime
tuple of positive integers, then so is j ∗ u.

Lemma 5.1. For u pairwise coprime,

Q
(u)
s+1,k(n) =

n∑
j=1

(j,u1)=1

Bn(j)Q
(j∗u)
s,k (n).

Proof. Hu [6, page 1265] observed that, for an (s+1)-tuple (s, as+1)

of integers in [1, n], we have (s, as+1) ∈ S
(u)
s+1,k(n) if and only if

(i) s is k-wise relatively prime;
(ii) for i ∈ [1, k − 2], we have that s is i-wise relatively prime to ui

and to (as+1, ui+1);
(iii) s is (k − 1)-wise relatively prime to uk−1 and to as+1; and
(iv) (as+1, u1) = 1.

This justifies the equalities

Q
(u)
s+1,k(n) =

n∑
as+1=1

(as+1,u1)=1

Bn(as+1)Q
(as+1∗′u)
s,k (n) =

n∑
j=1

(j,u1)=1

Bn(j)Q
(j∗′u)
s,k (n),

where j ∗′ u = (u1(j, u2), . . . , uk−2(j, uk−1), juk−1).

In order to complete the proof, we need only show that S
(j∗′u)
s,k (n) =

S
(j∗u)
s,k (n). The argument is contained in Hu [6, pages 1265, 1266]. (He

only claims that the sets have the same cardinality, but his argument
shows that they are the same set.) �
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Lemma 5.2. For integers u, m ≥ 1 with (m,u) = 1, we have

n∑
a=1

(a,u)=1
m|a

Bn(a) =
φ(u)

mu
+O((αnβnn)

−1/2θ(u)),

where φ is Euler’s totient function and θ(u) is the number of squarefree
divisors of u.

Proof. The desired sum equals

n∑
a=1
m|a

Bn(a)
∑

d|(a,u)

µ(d) =

n∑
a=1
m|a

Bn(a)
∑
d|a
d|u

µ(d) =
∑
d|u

µ(d)
∑
j≥1
md|j

Bn(j).

Applying Lemma 2.2, this is∑
d|u

µ(d)

(
1

md
+O((αnβnn)

−1/2)

)
=

1

m

∑
d|u

µ(d)

d
+O((αnβnn)

−1/2θ(u)).

Since ∑
d|u

µ(d)/d = φ(u)/u,

we are done. �

Lemma 5.3. Define

fs,k,i(ui) =
∏
p|ui

(
1−

∑k−1
m=i

(
s
m

)
(p− 1)k−1−m∑k−1

m=0

(
s
m

)
(p− 1)k−1−m

)

and

gs,i(d) = di
∏
p|d

i∑
m=0

(
s

m

)(
1− 1

p

)i−m
1

pm
.

Then, we have

fs,k,i(ui)

fs,k,i+1(ui)
=

∑
d|ui

µ(d)
(
s
i

)ω(d)

gs,i(d)
, i = 1, . . . , k − 2,
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and

fs,k,k−1(uk−1) =
∑

d|uk−1

µ(d)
(

s
k−1

)ω(d)

gs,k−1(d)
,

where ω(n) is the number of distinct prime factors of n. (When eval-
uating the above expressions we put 00 = 1.)

Proof. See [6, Lemma 4]. �

Theorem 5.4. Let δ(s, k) be the maximum value of
(
s−1
i

)
for 1 ≤ i ≤

k − 1. Suppose that αnn
1−ε → ∞ and βnn

1/4 → ∞. For s ≥ 1 and
k ≥ 2, uniformly in ui with the ui pairwise coprime, we have

Q
(u)
s,k (n) = As,k

k−1∏
i=1

fs,k,i(ui) +O((αnβnn)
−1/2θ(u1) log

δ(s,k) n).

Proof. Our proof parallels that of [6, Theorem 1]. We proceed by
induction on s. For s = 1, Lemma 5.2 shows that

Q
(u)
s,k (n) =

φ(u1)

u1
+O((αnβnn)

−1/2θ(n)),

from which the result follows since A1,k = 1, f1,k,1(u1) = φ(u1)/u1 and
f1,k,i(u1) = 1 for i > 1.

Next, we will prove the result for s+1, assuming it for s. We obtain,
using Lemma 5.1,

Q
(u)
s+1,k(n) =

n∑
j=1

(j,u1)=1

Bn(j)Q
(j∗u)
s,k (n) =

n∑
j=1

(j,u1)=1

Bn(j)As,k

×
k−2∏
i=1

fs,k,i

(
u1(j, u2)

(j, u1]

)
fs,k,k−1

(
juk−1

(
∏k−1

i=2 [j, ui))(j, uk−1]

)
+O(Bn(j)(αnβnn)

−1/2θ(u1(j, u2)) log
δ(s,k) n)

= As,k

k−1∏
i=1

fs,k,i(ui)
n∑

j=1
(j,u1)=1

Bn(j)(∗)
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×
k−2∏
i=1

fs,k,i((j, ui+1))

fs,k,i+1((j, ui+1))
fs,k,k−1

(
j∏k−1

i=2 [j, ui)

)

+O

(
(αnβnn)

−1/2θ(u1) log
δ(s,k) n

n∑
j=1

Bn(j)θ(j)

)
.

Using Theorem 4.2, we have

n∑
j=1

Bn(j)θ(j) ≤
n∑

j=1

Bn(j)τ(j) = O(log n).

We also have

n∑
j=1

(j,u1)=1

Bn(j)
k−2∏
i=1

fs,k,i((j, ui+1))

fs,k,i+1((j, ui+1))
fs,k,k−1

(
j∏k−1

i=2 [j, ui)

)

=
n∑

j=1
(j,u1)=1

Bn(j)
k−2∏
i=1

∑
di|(j,ui+1)

µ(di)
(
s
i

)ω(di)

gs,i(di)

×
∑

dk−1|j/(
∏k−1

i=2 [j,ui))

µ(dk−1)
(

s
k−1

)ω(dk−1)

gs,k−1(dk−1)

=
∑

d1···dk−1e=j≤n
di|(j,ui+1), 1≤i≤k−2

dk−1|j/([j,u2)···[j,uk−1))
(j,u1)=1

Bn(j)
k−1∏
i=1

µ(di)
(
s
i

)ω(di)

gs,i(di)

=
∑

d1···dk−1≤n
di|ui+1, 1≤i≤k−2

(dk−1,ui)=1, 1≤i≤k−1

∑
e≤n/(d1···dk−1)

(e,u1)=1

Bn(d1 · · · dk−1e)
k−1∏
i=1

µ(di)
(
s
i

)ω(di)

gs,i(di)
.

Using Lemma 5.2, we have

n∑
j=1

(j,u1)=1

Bn(j)
k−2∏
i=1

fs,k,i((j, ui+1))

fs,k,i+1((j, ui+1))
fs,k,k−1

(
j∏k−1

i=2 [j, ui)

)
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=
∑

d1···dk−1≤n
di|ui+1, 1≤i≤k−2

(dk−1,ui)=1, 1≤i≤k−1

k−1∏
i=1

µ(di)
(
s
i

)ω(di)

gs,i(di)

×
(

φ(u1)

u1d1 · · · dk−1
+O((αnβnn)

−1/2θ(u1))

)
=

φ(u1)

u1

∑
d1···dk−1≤n

di|ui+1, 1≤i≤k−2
(dk−1,ui)=1, 1≤i≤k−1

k−1∏
i=1

µ(di)
(
s
i

)ω(di)

digs,i(di)

+O

(
(αnβnn)

−1/2θ(u1)
∑
d≤n

δ(s+ 1, k)ω(d)

d

)
,

since gs,i(di) ≥ di.

If we define

hs,i(p) =

(
1−

(
s

i−1

)
p
∑i−1

m=0

(
s
m

)
(p− 1)i−1−m

)
,

we have

φ(u1)

u1

∑
di|ui+1, 1≤i≤k−2

(dk−1,ui)=1, 1≤i≤k−1

k−1∏
i=1

µ(di)
(
s
i

)ω(di)

digs,i(di)

=
φ(u1)

u1

k−1∏
i=2

∏
p|ui

hs,i(p)
∏

p -u1···uk−1

hs,k(p)

=

k−1∏
i=1

∏
p|ui

hs,i(p)(hs,k(p))
−1

∏
p

hs,k(p),

together with the error terms

O

(∑
d>n

δ(s+1, k)ω(d)

d2

)
=O

(∑
d>n

τδ(s+1,k)(d)

d2

)
=O(n−1 logδ(s+1,k)−1 n),
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from [12, Lemma 3 (b)], and

O

(
(αnβnn)

−1/2θ(u1)
∑
d≤n

δ(s+ 1, k)ω(d)

d

)

= O

(
(αnβnn)

−1/2θ(u1)
∑
d≤n

τδ(s+1,k)(d)

d

)
= O((αnβnn)

−1/2θ(u1) log
δ(s+1,k) n),

from [12, Lemma 3 (a)]. We substitute into (∗) to obtain

Q
(u)
s+1,k(n) = As,k

∏
p

hs,k(p)

k−1∏
i=1

fs,k,i(ui)
∏
p|ui

hs,i(p)(hs,k(p))
−1

+O(n−1 logδ(s+1,k)−1 n)

+O((αnβnn)
−1/2θ(u1) log

δ(s+1,k) n)

+O((αnβnn)
−1/2θ(u1) log

δ(s,k)+1 n)

= As+1,k

k−1∏
i=1

fs+1,k,i(ui)+O((αnβnn)
−1/2θ(u1) log

δ(s+1,k) n).

This establishes the claim for s+ 1. �

Corollary 5.5. If αnn
1−ε → ∞ and βnn

1/4 → ∞, then the probability
that s integers chosen according to the binomial distribution are k-wise
relatively prime approaches As,k, as n → ∞.

6. Prime numbers. Let Π be the set of all prime numbers. Here,
we seek information on the behavior of Bn(Π), as n → ∞. We can
show that Bn(Π) → 0. If we use the prime number theorem, we can
deduce a bit more, as follows.

Theorem 6.1. If αnn → ∞ and βnn
1−ε → ∞, then

lim sup
n→∞

Bn(Π) log log(αnn) ≤ 1.

Proof. (The germ of this proof is found in [1, pages 101–103].) Let
xn = (αnn)

1/2. For any j, denote the primorial, the product of all
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primes at most j, by j#. Let pm denote the mth prime. For any n, let
h(n) be such that yn = ph(n)# is the least primorial not less than xn.

Now, for m ≫ 0, we have pm# > p2m+1 [10, page 246]. Therefore, for

n ≫ 0, we have ph(n) < x
1/2
n ; thus, yn < x

3/2
n . Write

Bn(Π) =
∑

2≤p≤yn

Bn(p) +
∑
p>yn

Bn(p).

Using Theorem 2.1, we obtain

∑
2≤p≤y

Bn(p) ≤
y∑

j=2

Bn(j) =

y∑
j=2

Nn(j) +O((αnβnn)
−1/2).

The sum on the right is bounded by ynNn(yn). Since yn < a
3/4
n , we

see that ynNn(yn) is negligible.

Now, for primes p > yn, we have (p, yn) = 1. Hence, from Lem-
ma 5.2,∑

p>yn

Bn(p) ≤
n∑

j=1
(j,yn)=1

Bn(j) =
φ(yn)

yn
+O((αnβnn)

−1/2θ(yn)).

We know that θ(yn) = o(yηn), for all η > 0, so the O-term is o (1).
According to one version of the prime number theorem [2, page 79],
ph(n) ∼ log yn; thus,

φ(yn)

yn
=

h(n)∏
i=1

(
1− 1

pi

)
≤

( ph(n)∑
j=1

1

j

)−1

∼ 1

log ph(n)

∼ 1

log log yn
<

1

log log xn
∼ 1

log log(αnn)
. �

7. Applications. Here, we show how the results obtained in the
previous sections may be applied to complete intersections over finite
fields. Consider an integer m ≥ 1. Let Sd be the set of homogeneous
polynomials F (X0, . . . , Xm) of degree d over Fq. For F ∈ Sd, let HF

denote the hypersurface F (X0, . . . , Xm) = 0. For a prime power q, we
let

νq = #Pm(Fq) = 1 + q + q2 + · · ·+ qm.
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We also denote by p the characteristic of Fq. The key theorem is the
following.

Theorem 7.1. Let 1 ≤ j ≤ m be an integer, and consider tuples
d = (d1, . . . , dj) of positive integers such that (m+1)νq < d1 ≤ · · · ≤ dj.
For any

f = (f1, . . . , fj) ∈ Sd1 × · · · × Sdj ,

let
Hf = Hf1 ∩ · · · ∩Hfj .

Consider some R ⊆ Pm(Fq) of size t. Suppose q, d1, . . . , dj vary such

that d1 → ∞ and dj = o ((qd1/max(m+1,p))1/m). Then, the probability
that a smooth Hf of dimension m − j contains the points of R but no
other point of Pm(Fq) is(

q−jL(q,m, j)

1− q−j + q−jL(q,m, j)

)t(
1− q−j

1− q−j + q−jL(q,m, j)

)νq−t

+O((d1 − (m+ 1)νq + 1)−(2j−1)/m + dmj q−d1/max(m+1,p)),

where

L(q,m, j) =

j−1∏
i=1

(1− q−(m−i)).

Proof. This follows from [5, Theorem 1.2 and Corollary 1.3], cf.,
the discussion preceding Section 3 on pages 551, 552. Note that there
is a small error in the statement of Corollary 1.3. In order to ensure
smoothness at all points of the complete intersection, we must take z
to be at least (m+1)g+h when applying Theorem 1.2. Thus, g should
be replaced with (m+ 1)g in the error term. �

Theorem 7.1 states, in essence, that the distribution of the number
of points on a smooth complete intersection over a finite field Fq is
approximately a binomial distribution with parameter

αq = (q−jL(q,m, j))/(1− q−j + q−jL(q,m, j)).

When applying this theorem, restrictions need to be made on the
behavior of the degrees of the hypersurface sections relative to the
order q of the field such that the error term goes to 0.
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Theorem 7.2. Fix m ≥ 2 and 1 ≤ j ≤ m − 1. Suppose that {qi}i≥1

is a sequence of prime powers increasing to infinity, and suppose the
integers di,1 ≤ · · · ≤ di,j go to infinity in such a way that

di,1/2
mνqi

/(2j−1) −→ ∞

and
di,j = o ((2−νqi q

di,1/max(m+1,p)
i )1/m).

For a fixed k ≥ 2, the probability that a smooth complete intersection
(formed by intersecting hypersurfaces of degrees di,1, . . . , di,j) has the
number of points k-free is, in the limit, 1/ζ(k).

Proof. For any n ≥ q1, let the integer r(n) be maximal such that
νqr(n)

does not exceed n. Let

αn = (q−j
r(n)L(qr(n),m, j))/(1− q−j

r(n) + q−j
r(n)L(qr(n),m, j)).

We have αn = Ω(n−j/m), and thus, Theorem 3.1 tells us that, as
n → ∞, the probability of integers chosen according to the binomial
distribution being k-free approaches 1/ζ(k). From Theorem 7.1, this
is also true of the number of points on a smooth complete intersection
since our hypotheses ensure that the error term in the theorem (multi-
plied by 2

νqr(i) , the maximum number of choices for R in the theorem)
goes to 0. �

Theorem 7.3. Fix m ≥ 2, s ≥ 2, k ≥ 2 and 1 ≤ j ≤ m− 1. Suppose
that {qi}i≥1 is a sequence of prime powers increasing to infinity, and
suppose that the integers di,1 ≤ . . . ≤ di,j go to infinity in such a way
that

di,1/2
mνqi

/(2j−1) −→ ∞

and
di,j = o ((2−νqi q

di,1/max(m+1,p)
i )1/m).

The probability that s smooth complete intersections H1, . . . , Hs (formed
by intersecting hypersurfaces of degrees di,1, . . . , di,j) have the numbers
of points on H1, . . . , Hs to be k-wise relatively prime is, in the limit,
the number As,k defined in Section 5.

Proof. Similar to the previous theorem. �
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We may also prove a similar theorem based on Theorem 6.1. (We do
not give the full statement.) The restrictions on qi, di,1, . . . , di,j in these
theorems heavily depend upon the error term in [5, Theorem 1.2]. If
a better error term were found, this could imply a relaxation on these
restrictions.
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