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P-SPACES AND INTERMEDIATE RINGS
OF CONTINUOUS FUNCTIONS

WILL MURRAY, JOSHUA SACK AND SALEEM WATSON

ABSTRACT. A completely regular topological space X
is called a P-space if every zero-set in X is open. An
intermediate ring is a ring A(X) of real-valued continuous
functions on X containing all the bounded continuous
functions. In this paper, we find new characterizations of P-
spaces X in terms of properties of correspondences between
ideals in A(X) and z-filters on X. We also show that some
characterizations of P-spaces that are described in terms
of properties of C(X) actually characterize C(X) among
intermediate rings on X.

1. Introduction. Throughout this paper, we let X denote a com-
pletely regular (Hausdorff) topological space, also known as a Tychonoff
space. We say X is a P-space (pseudo-discrete space) if every zero-set
in X is open. Such spaces were introduced by Gillman and Henrik-
sen [8], who used a different but equivalent definition. Their defini-
tion is based on an observation by Kaplansky [11] that the ring C(X)
of continuous functions on a discrete space X has a certain algebraic
property. Further characterizations are given by Gillman and Jeri-
son [9]. An intermediate ring of continuous functions A(X) is a sub-
ring of C(X) that contains C*(X) (the ring of bounded functions in
C(X)). Intermediate rings have been extensively studied, for exam-
ple, in [2, 3, 5, 6, 7, 12, 13, 14]. This paper examines relationships
between P-spaces and intermediate rings of continuous functions.

For an intermediate ring A(X) there are two natural correspon-
dences, Z4 and 34, between the ideals of A(X) and the z-filters on

X (see [12, 14]). These correspondences extend to all intermediate
rings the well-known correspondences, described in [9, subsections 2.3,
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2L, for C*(X) and C(X), respectively. We give a new condition that
determines whether X is a P-space in terms of the correspondences
Z4 and 3 4, namely, X is a P-space if and only if Z4 and 3 4 coincide
for each intermediate ring A(X) (Theorem 2.3). Other new charac-
terizations are given: in terms of the ideals MY and O% for p € X
(Theorems 2.5 and 2.8), by the property that Z4 maps maximal ideals
to z-ultrafilters (Theorem 2.10), and by the property that every z-filter
is a Z4-filter (Theorem 2.12). We note that the analogous characteri-
zation of P-spaces in terms of 3 4-filters does not hold (Example 2.13).

There are a number of alternative characterizations of P-spaces
which are given in terms of algebraic properties of C(X). For example,
X is a P-space if and only if the ring C(X) is (von Neumann) regular,
equivalently, every prime ideal in C'(X) is maximal [9, Section 4J].
We show that some properties which characterize P-spaces X in terms
of C(X) actually characterize C'(X) among intermediate rings A(X)
when X is a given P-space. For example, the property that A(X) is
a regular ring characterizes C(X) among intermediate rings A(X) on
a given P-space X (Theorem 3.3). Other characterizations of C(X)
when X is a P-space are given: by the property that every z-ideal is a
Z a-ideal (3 4-ideal) (Theorem 3.7), and by the property that M% = O%
for every p € X (Theorem 3.10).

Although the property that every z-filter is a Z4-filter characterizes
P-spaces, we show that this property does not in general characterize
C(X) among intermediate rings when X is a P-space (Example 3.8).
Symmetrically, although the property that every ideal in A(X) is
a Za-ideal (34-ideal) characterizes C'(X) among intermediate rings
when X is a P-space, we show that this property does not, for every
intermediate ring A(X), characterize P-spaces (Example 2.15). In the
particular instance of A(X) = C(X), we do know that the property
that every ideal in C'(X) is a 3¢-ideal characterizes P-spaces (see [9,
4J] and [12, Corollary 2.4]). Furthermore, although our Theorem 2.5
tells us that the property that M% = O for every p € X characterizes
P-spaces, we show that this property does not characterize C(X)
among intermediate rings when X is a P-space (Example 3.11), and,
although the property M4 = O% for every p € BX characterizes
C(X) among intermediate rings when X is a P-space, we show that
this property does not characterize P-spaces (Example 3.9). In the
particular instance of A(X) = C(X), we do know that the property
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Property
To Characterize F I X B
P-spaces yes | no | yes | no
C(X) among A(X) for X a P-space | no | yes | no | yes

that M}, = OZ for every p € SX does characterize P-spaces [9, 7L]. In
order to summarize, we provide the above chart, where we abbreviate
by F the property that every z-filter is a Z4-filter, | the property that
every ideal is a Z4-ideal, X the property that MY = O for each p € X
and B the property that M% = O for each p € 3X. We mark by “no”
the boxes where there is an appropriate space X and rings A(X) in
which the property corresponding to the column does not characterize
the property corresponding to the row.

2. Characterizations of P-spaces. For any real-valued continu-
ous function f on X, we define the zero-set of f to be

Z(f) = {r e X | f(z) =0},

and

ZIX]={Z(f)| f € C(X)}

to be the set of all zero-sets. The complement of a zero-set is called a
cozero-set. In this article, we use the following topological definition of
a P-space.

Definition 2.1. A completely regular space X is a P-space if every
zero-set in X is open.

An equivalent topological formulation of this definition is: X is a
P-space if every cozero-set in X is C-embedded [9, Section 4J]. There
are numerous characterizations of P-spaces in terms of properties of the
ring of all real-valued continuous functions on the space. For example
a P-space is defined in [9] to be a space X such that every prime ideal
in C(X) is maximal. We know of no previously given characterizations
of P-spaces which are expressed in terms of intermediate rings A(X).
In this section, we introduce several new characterizations of P-spaces,
all of which can be expressed in terms of intermediate rings A(X).
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2.1. The correspondences 34 and Z,. We give a characterization
of P-spaces in terms of the correspondences Z4 and 3 4.

Let A(X) be an intermediate ring of continuous functions. If
f € A(X) and F is a subset of X, we say that f is E-regular with
respect to A(X) if there exists g € A(X) such that fg =1 on E. We
use the correspondences Z4 and 3 4, introduced in [14, 12] respectively,
between ideals of A(X) and z-filters on X, that are defined as follows.
For f € A(X), we have

ZA(f) E{E € Z|X]| f is E-regular},
34(f) = {E € Z[X] | f is H-regular for every zero-set H C E°}.

For each ideal I C A(X), it is known that
zn=Uzan 1 feny
and

3a = UBan) [ Feq}

are z-filters on X ([12, Proposition 2.2] and [14, Theorem 1]). These
correspondences extend the well-known correspondences E and Z for
C*(X) and C(X), respectively, which are discussed in [9, subsections
2.3, 2L], to any intermediate ring A(X) ([12, Corollaries 1.3, 2.4]).

We begin with the following lemma, which clarifies the fourth and
fifth lines of the proof of [12, Theorem 2.3].

Lemma 2.2. Let f € C(X) be non-invertible, and let E = Z(f). Let
F € Z[X], such that ENF =(. Then, f is F-regular.

Proof. From [9, subsection 1.15], disjoint zero-sets are completely
separated. Let h : X — [0,1] be a separating function that is 0 on
Fand 1 on E. Let k = f2+ h. Then, Z(k) = (), and hence, k is
invertible. Since h(z) = 0 for all z € F, k(z) = f2(z) for all z € F.
Let g=k~!- f. Then, f(x)-g(z) =1forall x € F. |

Theorem 2.3. A completely regular space X is a P-space if and only
if for every intermediate ring A(X) we have
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3a(f) = Za(f)

for every non-invertible f € A(X).

Proof. We first observe that, if X is a P-space, then every zero-
set is both open and closed. Thus, if F is a zero-set in X, then the
characteristic function on E° is continuous.

=. Let X be a P-space, and let A(X) be an intermediate ring on
X. Suppose f € A(X) and E € 34(f). Then, f is invertible on every
zero-set H C E°. However, since E€ itself is a zero-set, it follows that
f is invertible on E€¢. This precisely means that E € Z4(f), which
shows that 34(f) € Za(f). Since the other containment always holds,
it follows that 34(f) = Za(f).

<. Suppose that, for every intermediate ring A(X) and for every
non-invertible f € A(X), we have 34(f) = Za(f). In particular, for
C(X) and for every f € C(X), we have 3¢(f) = Z¢(f). Now, suppose
that E is a zero-set in X, and let f € C(X) with E = Z(f). From
Lemma 2.2, f is invertible in C(X) on every zero-set H contained
in E¢, and thus, F € 3¢(f). It follows (by our hypothesis) that
E € Zo(f), which means that f is invertible on E€. Therefore, there
exists a g € C(X) such that fg = 1 on E¢, and of course, fg = 0 on
E = Z(f). Since fg is continuous on X, it follows that E is an open
set in X. This shows that every zero-set in X is open, and thus, X is
a P-space. ([l

Corollary 2.4. A completely reqular space X is a P-space if and only
if, for every intermediate ring A(X) and every ideal I in A(X), we
have SA[I] = ZA[I]

Proof.

=. From Theorem 2.3, Z4(f) = 3a(f) for every f € I, hence
Zall] =Upes Za(f) = Uyer 3a(f) = 3all]-

<. Suppose that 34[I] = Z4[I] for every intermediate ring A(X)
and every ideal I in A(X). Consider the principal ideals Iy = (f),
for each non-invertible f € A(X). For any non-invertible f € A(X)
and for any g € A(X), we have Z4(fg) C Z4(f) (this follows from
[12, Lemma 1.5 (a)], which states that Z4(fg) = Za(f) A Z4(g)) and
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34(fg) € 34(f) (this similarly follows from [16, Corollary 13 (a)],
which states that 34(fg) = 34(f) A 34(g)). It follows that

Zally] = Za(f)
and

3allg] =3a(f)-
Thus, by hypothesis, 34(f) = Za(f) for every non-invertible f €
A(X). Then, by Theorem 2.3, X is a P-space. |

From [12, Theorem 3.1], we know that 34(f) = khZ4(f) for each
non-invertible f € A(X), where, for any z-filter F, the hull hF of F
is the set of all z-ultrafilters containing F, and, for every set i of z-
ultrafilters, the kernel kil of i is the intersection of all z-ultrafilters in
$1. Thus, Theorem 2.3 is equivalent to saying that X is a P space if and
only if, for every intermediate ring A(X) and non-invertible function
f e A(X),

Za(f) = khZa(f).

From Theorem 2.3, we know that, for any P-space X and any
intermediate ring A(X), Z4 = 34. Conversely, we do not know that X
is a P-space, given that Z4 = 34 for some arbitrary A(X). However,
the proof of Theorem 2.3 shows that, if Zo = 3¢, then X must be a
P-space.

2.2. The ideals M} and O for p € X. We consider, for each
p € X and intermediate ring A(X), the fixed maximal ideal M?%
of functions that vanish at p, and the ideal O of functions that
vanish on a neighborhood of p. (A fized ideal is an ideal I for which
({Z(f)| f eI} +#0.) In notation, for each p € X, let

M2 {f e AX):pe Z(f)}
OY = {f e AX):peint Z(f)}.

In Section 3.3, we examine extensions of these to p € fX. In the case
where A(X) = C(X) it is known that X is a P-space if and only if
MY = O for all p € X [9, Section 4J]. We extend this result to all
intermediate rings.
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Theorem 2.5. Let A(X) be an intermediate ring. Then, X is a P-
space if and only if MY = OY for every p € X.

Proof.

=. Suppose that X is a P-space, and let f € M4, p € X. So
f(p) = 0. However, since X is a P-space, Z(f) is an open set containing
p. Thus, f € OY. Therefore, M} C O%. Since the other containment
is always true, it follows that MY = O for all p € X.

<. Suppose that M% = O% for all p € X. Let E be a zero-set
in X. Since E is a zero-set, there is an f € C(X) with Z(f) = E;
we may assume (by replacing f with (f A 1) V —1, if necessary) that
f € C*(X) C A(X). Now, for every p € E, we have f € M} = OY, so
F is a neighborhood of each of its points. Thus, F is open. Therefore,
X is a P-space. O

We will show that 3 4 preserves this characterization, that is, X is
a P-space if and only if 34 (M%) = 34(0%). However, first we provide
for p € X alemma and general results regarding the images of M} and
O" under the correspondences 34 and Z4.

Lemma 2.6. If p € X and E is a zero-set neighborhood of p, then
there exists a continuous function h : X — [0,1] such that h =1 on E°
and h =0 on some zero-set neighborhood of p.

Proof. Let H ¥ c¢lx E¢. Since p ¢ H, it follows by complete
regularity that there is a function
f: X —10,1, f(p)=0, f=1on H.
The sets
F={reX:f(x) <3}

and

FB={zxeX: f(x)=1}

are disjoint zero-sets in X; thus, they are completely separated, that
is, there exists an

h:X —10,1]
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such that h =0 on F; and h =1 on Fy. Clearly E¢ C F5, and Fj is a
zero-set neighborhood of p. O

The first part of the next lemma is the special case where p € X
of [5, Theorem 4.1]; however, we give here a shorter and more direct
proof of this case.

Proposition 2.7. Let A(X) be an intermediate ring of continuous
functions. Then the following both hold for every p € X:

(a) ZalOf] = Za[M}].
(b) Za[O4] = 34[0%].

Proof.
(a) Since O% C MY, it is clear that
Z4[04] € Za[ME].

For the other containment, suppose that E € Z4[M%]. Then, there
exists an f € MY such that E € Z4(f). It follows that there is a
g € A(X) such that fg =1 on E°. Now, the set

F={zeX:|fg(z) <3}
is a zero-set neighborhood of p. Let
H={zeX:|fgx) >1}.

Since F' and H are disjoint zero-sets, they are completely separated
[9, subsection 1.15]; thus, there is a function h : X — [0,1] such that
h=0on F and h =1 on H. Clearly, h € O and E € Z4(h); thus,
EeZy [OZ].

(b) For each f € A(X), we have

Za(f) € 3a(f);

thus,
Za[0%] € 3410%).

For the other containment, let p € X, and suppose that E € 34[04].
Then, E € 34(f) for some f € OY. Thus, Z(f) is a zero-set
neighborhood of p, and, since E contains Z(f) by [18, Lemma 3.1]
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(which asserts that Z(f) =({E | E € 34(f)}), it follows that E is a
zero-set neighborhood of p. From Lemma 2.6, there exists an

h:X —[0,1]

such that A = 0 on some zero-set neighborhood of p and A =1 on E*.
Since h = 0 on a zero-set neighborhood of p, and since h is bounded,
it follows that h € O%. Further, since h = 1 on E€, it is clear that h
is E°-regular. By definition, this means that E € Z4(h). Therefore,
E € Z,[04]. |

Theorem 2.8. A completely reqular space X is a P-space if and
only if, for every intermediate ring A(X) and every p € X, we have
3a4[ME] = 34[0%].

Proof.

=. If X is a P-space, then, by Theorem 2.5, for each p € X,
M4 = O%, and hence, 34[M%] = 34[0].

<. Let A(X) be an intermediate ring. We claim that every F in
3a[M%4] is also a neighborhood of p. We first show that every E in
34[0%] is a neighborhood of p. Toward this end, let E € 34[04].
Then, E € 34(f) for some f € O%. We always have Z(f) C E.
However, f € OY; thus, Z(f) is a neighborhood of p. Therefore, E is
a neighborhood of p. It follows, by our hypothesis, that

3a[ME] = 34[04],

and that every E in 3 4[M?%] is also a neighborhood of p. This completes
the proof of the claim. In particular, the claim holds for A(X) = C(X).

Now, suppose that g € M. Thus, g(p) = 0. From Lemma 2.2, g is
invertible in C'(X) on every zero-set in the complement of Z(g); thus,
it follows that Z(g) € 34(g). Therefore, Z(g) € 34[M£], and thus, by
the claim, Z(g) is a neighborhood of p. It follows that every zero-set
in X is a neighborhood of each of its points. Therefore, every zero-set
in X is open, and thus, X is a P-space. O

2.3. Mapping maximal ideals to z-ultrafilters. The next theorem
characterizes P-spaces as those spaces X where, for any intermediate
ring A(X), the image under Z4 of a maximal ideal in A(X) is a 2-
ultrafilter on X.
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Lemma 2.9. If X is a P-space and E a zero-set in X, there exists a
function f € A(X) such that E = Z(f) and Z4(f) = (Z(f)).

Proof. Let E be a zero-set in X, and let f be the characteristic
function of E°. By definition, E € Z4(f), and hence, Z4(f) 2 (Z(f)).
From [15, Proposition 2.2], which asserts that

2(f) = (WE | E € Za()},
we have that Z4(f) C (Z(f)). O

The proof of the next theorem uses the following definition. For any
intermediate ring A(X) and z-filter F, let

ZY[FI={f € AX) | Za(f) C F}.

We define 3% similarly. According to [18, Theorem 5.2], if X is a P-
space and A(X) is a C-ring (a ring A(X) that is isomorphic to C(Y") for
some completely regular Y'), then Z4 maps each maximal ideal in A(X)
to a z-ultrafilter on X. The next theorem strengthens this result not to
depend upon A(X) being a C-ring and to give a full characterization
of X being a P-space. It also addresses [18, Problem 5.3].

Theorem 2.10. Let A(X) be an intermediate ring. Then, X is a P-
space if and only if Z4[M] is a z-ultrafilter whenever M is a maximal
ideal in A(X).

Proof.

=. Let X be a P-space. From [5, Theorem 3.2(a)], there is a
unique z-ultrafilter U such that Z4[M] C U. Now, let E € Y. From
Lemma 2.9, there exists an f € A(X) such that Z4(f) = (E) CU. It
is easy to see that

M C Zi[Za[M]] € Z57[U].

Since M is maximal, and from [15, Theorem 2.3], Z% [U] is a proper
ideal M = Z¥ [U]. It follows that f € M; thus, E € Z4[M]. Therefore,
ZaM]=U.

<. Suppose that Z4[M] is a z-ultrafilter whenever M is a maximal
ideal in A(X). Let p € X, and consider the maximal ideal M.
By hypothesis, Z4[M%] is a z-ultrafilter; therefore, it must be that
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ZaMY] = U,, where U, is the z-ultrafilter consisting of all zero-
sets containing p. From Proposition 2.7, it follows that Z4[0%] =
U,. However, Z4][0%] consists of all zero-set neighborhoods of p,
except that, since Z4[0%] = U, it follows that U, consists of zero-set
neighborhoods of p. Thus, every zero-set containing p is a neighborhood
of p. Therefore, X is a P-space. O

Theorem 2.10 no longer holds if Z,4 is replaced by 3 4. For example,
by [9, subsection 2.5] and [12, Theorem 2.3], for any completely regular
space X, 3¢(M) = Z(M) is a z-ultrafilter for any maximal ideal M of
C(X).

2.4. Z,- and 34-filters; Z,4- and 34-ideals. By a Z4-filter, we
mean a z-filter F with the property that Z4Z% [F] = F. Similarly, F
is a 34-filter if 343% [F] = F. The next proposition follows from the
proof of (a) < (b) of [18, Theorem 4.2] (although [18, Theorem 4.2]
is stated for A(X) a C-ring, the part (a) < (b) does not require that
A(X) be a C-ring).

Proposition 2.11. The following are equivalent for any intermediate
ring A(X):

(a) Ewery z-filter on X is a 3-filter.
(b) For every zero-set E in X, there exists an f € A(X) such that
E=Z(f) and 3a(f) = (Z(f))-

Note that, if A(X) = C(X), then every z-filter is a 3 4-filter since,
in this case, 34 = Z, and it is known that ZZ“[F] = F for every
z-filter F ([9, subsection 2.5]). In general, for intermediate rings, we
have the following result.

Theorem 2.12. Let A(X) be an intermediate ring. Then, X is a
P-space if and only if every z-filter on X is a Z4-filter.

Proof.

=. Suppose that X is a P-space. From Lemma 2.9 and Theorem 2.3,
for every zero-set E, there exists a function f € A(X) such that
E = Z(f) and 34(f) = (Z(f)). Then, by Proposition 2.11, every
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z-filter is a 3 4-filter. From Theorem 2.3, 34 = Z4, and hence, every
z-filter is also a Z4-filter.

<. Suppose that A(X) is such that every z-filter on X is a Z4-
filter. Let M be a maximal ideal, and let U be the unique z-ultrafilter
containing Z4[M], see [5, Theorem 3.2(a)]. From [12, Theorem 4.4],
Z5 U] is a maximal ideal. It is easy to see that M = Z U] (it is
always the case that M C Z¥ Z4[M]). Since U is a Z-filter, we then
have that
ZAM]=ZAZ U =U,

that is, Z4 maps maximal ideals to z-ultrafilters. Hence, it follows by
Theorem 2.10 that X is a P-space. O

The right-to-left direction of this theorem would not be true if we
were to replace Z4 by 34. For A(X) = C(X), every z-filter is a
3a-filter, even if X is not a P-space. And, if A(X) # C(X), the
right-to-left direction does not hold for 3 4-filters, as the next example
shows.

Example 2.13. Let X = (0,1)U{2,3,4,...}, and note that a zero-set
E in X is of the form E = FE; U Fy where Ej is a zero-set in (0, 1) and
Es is any subset of {2,3,4,...}. Let A(X) be the ring of all continuous
functions on X that are bounded on {2, 3,4,...}. Then, for every zero-
set F = Fy U FE5, define a function f : X — R as follows:

Jgl@) ifo<z<1
f(ﬂﬁ)—{XF(x) if x €{2,3,4,...},

where g is any continuous function on (0,1) where Z(g) = F; and xr
is the characteristic function on F' = (E3)¢. Clearly, f € A(X). More-
over, Z(f) = E and 34(f) = (Z(f)). Then, from Proposition 2.11,
every z-filter on X is a 3 s-filter. However, X is not a P-space.

Anideal I'is a Z4-ideal if Z57 Z4[I] = I; equivalently, I is a Z4-ideal
if f € I whenever Z4(f) C Z4(I). We analogously define a 3 4-ideal.

Theorem 2.14. Let A(X) be an intermediate ring such that every
ideal in A(X) is a Z4-ideal (3 a-ideal). Then, X is a P-space.
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Proof. Suppose that every ideal is a Z4-ideal. Let p € X. From
Proposition 2.7, we have Z4[0%] = Z4[M"]. Hence,

Zy Z4(0%] = Zi Za[M].

By hypothesis, O and M¥ are Z4-ideals, which yields the first and
third equalities of:

OY = Z37 Z4|0%) = Zi Za[MY] = M.
Thus, X is a P-space by Theorem 2.5.

Now, suppose that every ideal is a 34-ideal. Again, let p € X, and
consider the ideal O%. By hypothesis, O% is a 3 a-ideal. Thus,

(2.1) 34 3a[0%] = O

From Proposition 2.7, we have 34[0%] = Z4[M%]; thus, we can write
(2.1) as

(2.2) 3G ZaMY] =08

However, 3% Z4[M%] = MY also since, by [5, Theorem 3.2(a)],
Za[M%] is the unique z-ultrafilter containing M?%, and thus, by [12,
Proposition 4.4], 35 Z4[MY%] is a maximal ideal which must contain
O (by (2.2)). Therefore, that maximal ideal must be M%, that is,

(2.3) 3G ZaMY] = MY

From (2.2) and (2.3), it follows that O = M’ for every p € X. Thus,
X is a P-space by Theorem 2.5. O

The converse of Theorem 2.14 is not true in general; the next
example shows why:.

Example 2.15. Let X = N be the set of positive integers, and let
A(X) = C*(X). Note that X is discrete, and hence, a P-space. Let
I = (1/n) be the ideal generated by f(n) = 1/n. Note that 1/\/n ¢ I,
for otherwise, there would be a function g such that gf = g/n =1//n.
However, then g = 4/n, is unbounded, and hence, not in C*(X).
It is easy to see from the definition that 34(f) = 34(f?) for any
f € A(X), and hence, we have that 34(1/n) = 34(1/v/n). Thus,
34(1/y/n) € 34(I). We conclude that I is not a 3 4-ideal. The same
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argument applies if 34 is replaced by Z4 (also recall by Corollary 2.4
that BA(I) = ZA([))

3. Characterizing C(X) among intermediate rings on P-
spaces. Several characterizations of C(X) among its subrings are
known (see [4, 17, 18]). In this section, we show that several of the
characterizations of P-spaces in terms of the ring structure of C'(X)
actually characterize C'(X) among intermediate rings on the P-space X.

3.1. Algebraic characterizations. A commutative ring R is (von-
Neumann) regular if, for every = € R, there exists a y € R such that
x = x%y. We first recall that it is well known that X is a P-space if
and only if C'(X) is a regular ring [9, subsection 4J]. We show that any
proper intermediate ring is never a regular ring.

The next lemma is immediate from [19, pages 293, 294, Problem
44C]; however, we give short proof of it here.

Lemma 3.1. If A(X) # C(X), then there exists an f € A(X) such
that f is never zero and f is not invertible in A(X).

Proof. Let g € C(X) \ A(X). It can be assumed that g > 0, for, if

def

not, g must be replaced by one of g1 o gVO0orgs=—gV0. (Both g
and go cannot be in A(X), since then g = g1 — g2 would be in A(X).)
Now, g+1 ¢ A(X); thus, let f =1/(g+1). Then, f € C*(X) C A(X),
f never vanishes and f is not invertible in A(X). O

Proposition 3.2. If A(X) # C(X), then A(X) is not a reqular ring.

Proof. Suppose that A(X) is a regular ring. From Lemma 3.1, there
exists an f € A(X) such that f is never zero and f is not invertible
in A(X). Since A(X) is regular, there exists an fy € A(X) such that
f?fo(z) = f(x) for all x € X. Since f(z) is never zero on X, we can
divide by f(x) to get ffo(x) = 1. Hence, this means that f is invertible
in A(X), a contradiction. O

Theorem 3.3. Let X be a P-space and A(X) an intermediate ring.
Then, A(X) = C(X) if and only if A(X) is a regular ring.
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Proof. It A(X) = C(X), then A(X) is a regular ring [9, Section 4J]].
If A(X) # C(X), then A(X) is not a regular ring by Proposition 3.2.
(|

Remark 3.4. From [10, Theorem 1.16], any commutative ring R that
has no non-zero nilpotents is regular if and only if every prime ideal
of R is maximal. Since intermediate rings have no non-zero nilpotents,
an intermediate ring A(X) is regular if and only if every prime ideal
in A(X) is maximal. Thus, Theorem 3.3 is equivalent to the assertion
that, when X is a P-space, then A(X) = C(X) if and only if every
prime ideal in A(X) is maximal.

We now give an alternative proof that, if A(X) # C(X), then there
exists a prime ideal that is not maximal. This property was first
proven in [1] using a different method than that used in this paper.
In the following proof, we specify such a prime ideal. Let A(X) be an
intermediate ring of continuous functions, and let F be a z-filter on X.
Define

(3.1) I(F)E{fe AX): Z(f) € F}.

Note that Io(F) is an ideal in A(X) and, in general, Io(F) C 3% (F).
If A(X) = C(X), then Iy(F) =3% (F) since, in this case, for each
f € C(X), we have 3¢(f) = (Z(f)). In general, we have the following.

Proposition 3.5. Let A(X) be an intermediate ring, and let G be a
prime z-filter on X. Then, 1o(G) is a prime ideal in A(X).

Proof. Suppose that f,g € A(X) and fg € Iy(G). Then Z(fg) € G.
However, Z(fg) = Z(f) U Z(g) so Z(f) U Z(g) € G; and, since G is a
prime z-filter, it follows that Z(f), say, belongs to G. Then, f € I(G).
Therefore, Iy(G) is a prime ideal. O

We use Proposition 3.5 to give an alternative proof for [1, Theorem
3.2].

Proposition 3.6. If A(X) # C(X), then A(X) contains a nonmazi-
mal prime ideal.
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Proof. It A(X) # C(X), then A(X) contains a non-invertible func-
tion f which never vanishes. Let U be any z-ultrafilter containing
ZA(f). Then, Iy(U) is, by Proposition 3.5, a prime ideal, and it is not
maximal since the ideal Z¥ [U] properly contains Io(Uf) (in particular,
f € Z U], except that, as f never vanishes, f ¢ Io(U)). O

3.2. Z4- and 34-ideals; Z4- and 3 4-filters. It is known from [9,
Section 4J] that X is a P-space if and only if every ideal in C(X)
is a z-ideal. Noting that the z-ideals coincide with 3c-ideals, we see
that the next theorem shows that C'(X) is the only intermediate ring
for which this holds. In particular, we show that the property that
every z-ideal is a Z4-ideal (which guarantees X to be a P-space by
Theorem 2.14) also characterizes C'(X) among all intermediate rings
when X is a P-space.

Theorem 3.7. Let X be a P-space and A(X) an intermediate ring.
Then, A(X) = C(X) if and only if every ideal in A(X) is a Z4-ideal
(34-tdeal).

Proof. Suppose that A(X) = C(X). Then, by [12, Corollary 2.4]
(which states that, for any ideal I in C(X), 3¢[I] = Z[I]), any z-ideal
is a 3¢-ideal. Since X is a P-space, every ideal is a z-ideal according
to [9, page 211]. Thus, every ideal is a 3¢-ideal. From Theorem 2.3,
Za(f) = 3a(f) for all f € A(X). Hence, every ideal is also a Zx-ideal.

Conversely, suppose that A(X) # C(X). Then, A(X) contains a
non-invertible function f which never vanishes. Let F = Z4(f), and
let Io(F) be defined according to equation (3.1). Now, F C Z4[Io(F)]
since X is a P-space, and hence, for each E € F, the characteristic
function xge of the complement of E is in Ip(F) and

E € Z5(xge) C Za[lo(F)).

Thus, f € Z5 Za[lo(F)]. However, f ¢ Iy(F) since f never vanishes.
Hence, Ip(F) is not a Z4-ideal. The same argument holds when Z4 is
replaced by 3 4. O

Next, we note that the condition that every z-filter be a Z-filter
(34-filter) does not characterize C'(X) among intermediate rings. The
following example provides a reason.
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Example 3.8. Consider X = N, which is discrete, and hence, a P-
space. Consider A(X) = C*(X). Let E be any subset of X (as X
is discrete, E is a zero-set), and let f = xge be the binary-valued
characteristic function on the complement of E. Then, Z(f) = E,
and clearly, 34(f) = (Z(f)). Then, by Proposition 2.11, every z-
filter is a 34-filter. However, clearly, A(X) # C(X). Hence, the
property that every z-filter be a 3 4-filter does not characterize C'(X)
among intermediate rings when X is a P-space. From Theorem 2.3, the
property that every z-filter be a Z4-filter does not characterize C(X)
among intermediate rings when X is a P-space either.

3.3. The ideals M} and OY for p € fX. The ideals O defined
for p € X in Section 2.3 can be defined for any p € SX by using
the characterization for maximal ideals given in [16], as follows. For
p € BX, let

MY ={f € A(X) |p € h2a(f)}
Oh ={f€AX)|peinthZas(f)}

This coincides with the definition in [5, 13] and agrees with our
definition in subsection 2.2 when p € X.

We know from [9, Section 7L] that the property that X is a P-
space can be characterized by the property that M¢ = OF for all
p € BX, and we know, from [9, §4J], that the property that X is a
P-space can also be characterized by M¥ = Of, for all p € X. We
showed in Theorem 2.5 that the characterization in terms of p € X can
be extended from C(X) to all intermediate rings. The next example,
however, shows that the characterization in terms of p € X does not
extend to all intermediate rings.

Example 3.9. Let X = N, which is discrete, and hence, a P-space. Let
A(X) = C*(X). We show that a p € BX exists such that M4 # O,
and hence, the property M% = O for all p € BX does not characterize
P-spaces. It follows from [9, Section 4K1] that C'(5N) is not a regular
ring, and hence, by [9, Section 4J], that SN is not a P-space. From
Theorem 2.5, there is a point p € 8X such that M&BN) =+ OPC(BN).
Then, however, as A(X) (which is equal to C*(N)) is isomorphic to
C(BN), it follows that M% # OY for some p € fX.
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In Example 3.9, we could have used Theorem 3.3 instead of [9,
Section 4K1] to show that C(SN) is not a regular ring by observing
that C*(N) £ C(N) (and hence by Theorem 3.3, C*(N) is not regular)
and that C*(N) is isomorphic to C(N).

According to the next theorem, the condition M% = O for p € fX
characterizes C(X) among intermediate rings A(X) when X is a P-
space. This highlights, in the event that A(X) # C(X), the significance
of the two cases p ranging over X and p ranging over 5X.

Theorem 3.10. Let X be a P-space and A(X) an intermediate ring.
Then, A(X) = C(X) if and only if, for all p € BX, M} = OY.

Proof. If A(X) = C(X), then MY = OY for every p € X [9,
Section 7L]. Suppose that A(X) # C(X). Then, there exists a function
f € A(X) that is not invertible in A(X) but never vanishes. Let U,
be a z-ultrafilter such that U, O Z4(f). Thus, f € M%. Note that,
as f(x) # 0 for all x € X, Z4(f) (and any z-filter containing it) must
be a free z-filter; hence, hZ4(f) C X \ X. Then, since X is dense in
BX, hZ4(f) has empty interior. Thus, by definition, f ¢ O%. O

We see that this characterization of C(X) does not hold if the
condition that p € BX is replaced by the condition that p € X.

Example 3.11. Let X = N, and let A(X) = C*(X). Recall that N
is discrete, and hence, is a P-space. Furthermore, since N is discrete,
for every subset E C N, E = int E. Hence, by definition, M} = O
for all p € X and for any intermediate ring A(X), in particular, where
A(X) = C*(X). Clearly, however, C(N) # C*(N). Therefore, the
condition that MY = O for every p € X does not characterize C'(X)
among intermediate rings when X is a P-space.
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