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ASYMPTOTICS OF THE EIGENVALUES OF
SELF-ADJOINT FOURTH ORDER DIFFERENTIAL
OPERATORS WITH SEPARATED EIGENVALUE

PARAMETER DEPENDENT BOUNDARY
CONDITIONS

MANFRED MÖLLER AND BERTIN ZINSOU

ABSTRACT. In this paper, an eigenvalue problem for
a regular fourth order ordinary differential equation is
considered, where one of the boundary conditions linearly
depends upon the eigenvalue parameter. The first four terms
in the asymptotic expansion of the eigenvalues are derived.

1. Introduction. Separation of variables for linear partial differen-
tial equations leads to ordinary differential equations with a spectral
parameter. For standard problems, this gives the well known Sturm-
Liouville problems, which have an operator realization A − zI with a
self-adjoint operator A, where z = λ2 and λ is the frequency parame-
ter in the separation of variables. However, if problems which possess
derivatives with respect to time in the boundary conditions are also
considered, then the operator realization may be of the form

(1.1) L(λ)y = λ2My − iαλKy −Ay.

The generalized Regge and vibrating beam problems investigated in
[3, 8] have operator representations of the form (1.1), where M , K
and A are self-adjoint, M ≥ 0, K ≥ 0 are bounded, M +K ≫ 0, A is
bounded below with compact resolvent and α is a positive constant.
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The generalized Regge problem is realized by a second order dif-
ferential operator, whereas the problem considered in [3] leads to a
boundary eigenvalue problem of the form

y(4) − (gy′)′ + hy = λ2y,(1.2a)

Bj(λ)y = 0, j = 1, 2, 3, 4,(1.2b)

where g ∈ C1[0, a] and h ∈ C[0, a] are real valued functions, a > 0, and
(1.2b) are separated boundary conditions. Boundary conditions (1.2b)
are taken at endpoint 0 for j = 1, 2 and at endpoint a for j = 3, 4, and
operators Bj are constant or linearly depend upon λ.

One particular set of boundary conditions has been considered in [3].
The question arises, for which sets of boundary conditions does the
problem (1.2) have a representation (1.1) as a pencil with self-adjoint
operators? In [4], necessary and sufficient conditions have been ob-
tained for a general class of boundary conditions. For some subclasses
of such boundary conditions which lead to self-adjoint operators in the
operator pencil (1.1), we have derived asymptotic expansions of the
eigenvalues in [5, 6, 7].

In this paper, we extend our previous work to a class of boundary
conditions where only one boundary condition depends upon the eigen-
value parameter. In Section 2, we construct the operator pencil, and
we introduce the class of boundary conditions to be considered. In
Section 3, we investigate the eigenvalues for the case g = h = 0. In
Section 4, we prove that the boundary value problem under investiga-
tion is Birkhoff regular. In Section 5, we derive the first four terms of
the eigenvalue asymptotics, and we compare them to those obtained in
our previous publications. We will also make some simple observations
regarding the inverse problem, that is, the question of which of the
parameters of the given class of problems can be recovered from their
spectra.

2. The quadratic operator pencil L. We recall that the quasi-
derivatives associated with (1.2a) are given by

y[0] = y, y[1] = y′, y[2] = y′′, y[3] = y(3) − gy′,

y[4] = y(4) − (gy′)′ + hy,
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see [9, page 26]. In this paper, we will consider a class of boundary
conditions (1.2b) determined by the following properties: Bj(λ)y =

y[pj ](aj) for j ∈ {1, 2, 3}, while B4(λ)y = y[p4](a4)+ iαλy
[q4](a4), where

aj = 0 for j = 1, 2, and aj = a for j = 3, 4, α > 0. In order to have
independent boundary conditions, we will assume that the numbers p1,
p2, as well as p3, p4, q4, are mutually disjoint and {p4, q4} = {1, 2}.

Recall that, in applications, using separation of variables, the param-
eter λ emanates from derivatives with respect to the time variable in
the partial differential equation and its boundary conditions, and it
is reasonable that the highest space derivative occurs in a term with-
out time derivative. Thus, the most relevant λ-dependent boundary
condition would have q4 < p4 such that q4 = 1 and p4 = 2. Further
assumptions on p1, p2, p3, p4 and q4 will be made later and will be jus-
tified by the requirement that the operators in the associated operator
pencil are self-adjoint.

Recall that the Sobolev space W 2
4 (0, a) is the set of (equivalence

classes of) functions y ∈ L2(0, a) such that, for j = 1, 2, 3, 4, the weak
derivatives y(j) belong to L2(0, a).

We denote by U the collection of the boundary conditions (1.2b) and
consider the linear operators A(U), K and M in the space L2(0, a)⊕C
with domains:

D(A(U)) =

{
ỹ =

(
y

y′(a)

)
: y ∈W 2

4 (0, a), y
[pj ](aj) = 0 for j = 1, 2, 3

}
D(K) = D(M) = L2(0, a)⊕ C,

given by

(A(U))ỹ =

(
y[4]

y′′(a)

)
for ỹ ∈ D(A(U)),

K =

(
0 0
0 1

)
and M =

(
I 0
0 0

)
.

It is easy to check that K ≥ 0, M ≥ 0, M +K = I and M |D(A(U)) > 0.
We associate a quadratic operator pencil

(2.1) L(λ, α) = λ2M − iαλK −A(U), λ ∈ C,

in the space L2(0, a) ⊕ C with the problem (1.2). We observe that
(2.1) is an operator representation of eigenvalue problem (1.2) in the
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sense that a function y satisfies (1.2) if and only if L(λ, α)ỹ = 0 with
ỹ = (y, y′(a)).

The conditions under which the differential operator A(U) is self-
adjoint are given in the next theorem.

Theorem 2.1 ([4, Theorem 1.2]). Denote by P0 the set of p in
y[p](0) = 0 for the λ-independent boundary conditions and by Pa the
corresponding set for y[p](a) = 0. Then, the differential operator
A(U) associated with this boundary value problem is self-adjoint if and
only if p + q = 3 for all boundary conditions of the form y[p](aj) +

iαεjλy
[q](aj) = 0 and εj = 1 if q is even in the case aj = 0 or odd

in the case aj = a. Otherwise, εj = −1, {0, 3} ̸⊂ P0, {1, 2} ̸⊂ P0,
{0, 3} ̸⊂ Pa and {1, 2} ̸⊂ Pa.

Here, we observe that h = 0 in [4, Theorem 1.2]. However, it is
easy to see that [4, Theorem 1.2] also holds in the case h ̸= 0 since
the proof can easily be extended to that case as (hy, z) = (y, hz) for all
ỹ, z̃ ∈ D(A(U)). Alternatively, we observe that the multiplication op-
erator h is bounded and self-adjoint on L2(0, a) so that we may appeal
to [1, Theorem V.4.3].

Proposition 2.2. The operator pencil L(·, α) is a Fredholm-valued
operator function with index 0. The spectrum of the Fredholm operator
L(·, α) consists of discrete eigenvalues of finite multiplicities, and all
eigenvalues of L(·, α), α ≥ 0, lie in the closed upper half-plane and on
the imaginary axis and are symmetric with respect to the imaginary
axis.

Proof. As in [3, Section 3], we can argue that, for all λ ∈ C, L(λ, α)
is a relatively compact perturbation of L(0, 0), where L(0, 0) is well
known as a Fredholm operator. The statement on the location of the
spectrum now follows as in [3, Lemma 3.1]. �

It follows from Theorem 2.1 that we have eight different cases of
boundary conditions Bj(λ)y = 0. These boundary conditions are
determined by the values of p1, p2 and p3. Hence, we will consider
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Case 1: p1 = 0, p2 = 1, p3 = 0;

Case 2: p1 = 0, p2 = 1, p3 = 3;

Case 3: p1 = 0, p2 = 2, p3 = 0;

Case 4: p1 = 0, p2 = 2, p3 = 3;

Case 5: p1 = 1, p2 = 3, p3 = 0;

Case 6: p1 = 1, p2 = 3, p3 = 3;

Case 7: p1 = 2, p2 = 3, p3 = 0;

Case 8: p1 = 2, p2 = 3, p3 = 3.

The corresponding boundary operators are then

B1y = y(0) and B2y = y′(0) (Cases 1 and 2),(2.2)

B1y = y(0) and B2y = y′′(0) (Cases 3 and 4),(2.3)

B1y = y′(0) and B2y = y[3](0) (Cases 5 and 6),(2.4)

B1y = y′′(0) and B2y = y[3](0) (Cases 7 and 8),(2.5)

B3y = y(a) (Cases 1, 3, 5, 7),(2.6)

B3y = y[3](a) (Cases 2, 4, 6, 8),(2.7)

B4(λ)y = y′′(a) + iαλy′(a).(2.8)

3. Asymptotics of eigenvalues for g = 0 and h = 0. In this
section, we consider the boundary value problem (1.2) with g = h = 0.
We count all eigenvalues with their proper multiplicities and develop
a formula for the asymptotic distribution of the eigenvalues, which is
used to obtain the corresponding formula for general g. Observe that,
for g = h = 0, the quasi-derivatives y[j] coincide with the standard
derivatives y(j). We take the canonical fundamental system yj(·, λ),
j = 1, . . . , 4, of (1.2a) with y

(m)
j (0, λ) = δj,m+1 for m = 0, . . . , 3. It is

well known that the functions yj(·, λ) are analytic on C with respect
to λ. Setting

M(λ) = (Bi(λ)yj(·, λ))4i,j=1,

the eigenvalues of the boundary value problem (1.2) are the eigenvalues
of the analytic matrix function M , where the corresponding geometric
and algebraic multiplicities coincide, see [2, Theorem 6.3.2].
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Setting λ = µ2 and

y(x, µ) =
1

2µ3
sinh(µx)− 1

2µ3
sin(µx),

it is easy to see that

yj(x, λ) =: ỹj(x, µ) = y(4−j)(x, µ), j = 1, . . . , 4.

Since the first two rows ofM(λ) have exactly one entry 1 and all the
other entries 0, an expansion of M(λ) shows that detM(λ) = ±ϕ(µ),
where

ϕ(µ) = det

(
B3ỹσ(1)(·, µ) B3ỹσ(2)(·, µ)

B4(µ
2)ỹσ(1)(·, µ) B4(µ

2)ỹσ(2)(·, µ)

)
,

with

(σ(1), σ(2)) =


(3, 4) in Cases 1 and 2,

(2, 4) in Cases 3 and 4,

(1, 3) in Cases 5 and 6,

(1, 2) in Cases 7 and 8.

In view of (2.6), (2.7) and (2.8), this gives

ϕ(µ) = iαµ2
(
ỹ′σ(2)(a, µ)B3ỹσ(1)(a, µ)− ỹ′σ(1)(a, µ)B3ỹσ(2)(a, µ)

)
+ ỹ′′σ(2)(a, µ)B3ỹσ(1)(a, µ)− ỹ′′σ(1)(a, µ)B3ỹσ(2)(a, µ).

Each of the summands in ϕ is a product of a power in µ and a product
of two sums of a trigonometric and a hyperbolic function. The term
with the highest µ-power in ϕ(µ) occurs with

iαµ2
[
ỹ′σ(2)(a, µ)B3ỹσ(1)(a, µ)− ỹ′σ(1)(a, µ)B3ỹσ(2)(a, µ)

]
.

Hence, we shall investigate the zeros of

ϕ0(µ) = 2µ2
[
ỹ′σ(2)(a, µ)B3ỹσ(1)(a, µ)− ỹ′σ(1)(a, µ)B3ỹσ(2)(a, µ)

]
.

In the above eight cases we obtain:

Case 1. p1 = 0, p2 = 1, p3 = 0:

ϕ0(µ) =
1

2µ2
[(cosh(µa)− cos(µa))2

− (sinh(µa) + sin(µa))(sinh(µa)− sin(µa))]
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=
1

µ2
[1− cos(µa) cosh(µa)].

Case 2. p1 = 0, p2 = 1, p3 = 3:

ϕ0(µ) =
1

2
µ[(sinh(µa)− sin(µa))(cosh(µa)− cos(µa))

− (sinh(µa) + sin(µa))(cosh(µa) + cos(µa))]

= −µ[sin(µa) cosh(µa) + cos(µa) sinh(µa)].

Case 3. p1 = 0, p2 = 2, p3 = 0:

ϕ0(µ) =
1

2µ
[(sinh(µa) + sin(µa))(cosh(µa)− cos(µa))

− (sinh(µa)− sin(µa))(cosh(µa) + cos(µa))]

=
1

µ
[sin(µa) cosh(µa)− cos(µa) sinh(µa)].

Case 4. p1 = 0, p2 = 2, p3 = 3:

ϕ0(µ) =
1

2
µ2[(cosh(µa)− cos(µa))2 − (cosh(µa) + cos(µa))2]

= −2µ2 cos(µa) cosh(µa).

Case 5. p1 = 1, p2 = 3, p3 = 0:

ϕ0(µ) =
1

2
µ[(sinh(µa) + sin(µa))(cosh(µa) + cos(µa))

− (sinh(µa)− sin(µa))(cosh(µa)− cos(µa))]

= µ(sin(µa) cosh(µa) + cos(µa) sinh(µa)).

Case 6. p1 = 1, p2 = 3, p3 = 3:

ϕ0(µ) =
1

2
µ4[(sinh(µa) + sin(µa))2 − (sinh(µa)− sin(µa))2]

= 2µ4 sin(µa) sinh(µa).

Case 7. p1 = 2, p2 = 3, p3 = 0:

ϕ0(µ) =
1

2
µ2[(cosh(µa) + cos(µa))2

− (sinh(µa) + sin(µa))(sinh(µa)− sin(µa))]
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= µ2(cos(µa) cosh(µa) + 1).

Case 8. p1 = 2, p2 = 3, p3 = 3:

ϕ0(µ) =
1

2
µ5[(sinh(µa) + sin(µa))(cosh(µa) + cos(µa))

− (sinh(µa)− sin(µa))(cosh(µa)− cos(µa))]

= µ5(sin(µa) cosh(µa) + cos(µa) sinh(µa)).

Next, we give the asymptotic distributions of the zeros of ϕ0(µ) with
their proper count.

Lemma 3.1.

Case 1. p1 = 0, p2 = 1, p3 = 0: ϕ0 has a zero of multiplicity 2 at 0,
exactly one simple zero in each interval [2m(π/a), (2m + 1/2)(π/a)],
[(2m+3/2)(π/a), (2m+2)(π/a)], respectively, for nonnegative integerm
with asymptotics

µ̃k = (2k − 1)
π

2a
+ o(1), k = 1, 2, . . . ,

simple zeros at −µ̃k, µ̃−k = iµ̃k, −iµ̃k, for k = 1, 2, . . ., and no other
zeros.

Case 2. p1 = 0, p2 = 1, p3 = 3: ϕ0 has a zero of multiplicity 2 at 0
exactly one simple zero in each interval ((k−1/2)(π/a), (k+1/2)(π/a))
for positive integer k with asymptotics

µ̃k = (4k − 1)
π

4a
+ o(1), k = 1, 2, . . . ,

simple zeros at −µ̃k, µ̃−k = iµ̃k, −iµ̃k, for k = 1, 2, . . ., and no other
zeros.

Case 3. p1 = 0, p2 = 2, p3 = 0: ϕ0 has a zero of multiplicity 2 at 0,
exactly one simple zero in each interval ((k−1/2)(π/a), (k+1/2)(π/a))
for positive integer k with asymptotics

µ̃k = (4k + 1)
π

4a
+ o(1), k = 1, 2, . . . ,

simple zeros at −µ̃k, µ̃−k = iµ̃k, −iµ̃k, for k = 1, 2, . . ., and no other
zeros.
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Case 4. p1 = 0, p2 = 2, p3 = 3: ϕ0 has a zero of multiplicity 2 at 0,
simple zeros

µ̃k = (2k − 1)
π

2a
, k = 1, 2, . . . ,

simple zeros at −µ̃k, µ̃−k = iµ̃k, −iµ̃k, for k = 1, 2, . . ., and no other
zeros.

Case 5. p1 = 1, p2 = 3, p3 = 0: ϕ0 has a zero of multiplicity 2 at 0,
exactly one simple zero in each interval ((k−1/2)(π/a), (k+1/2)(π/a))
for positive integer k with asymptotics

µ̃k = (4k − 1)
π

4a
+ o(1), k = 1, 2, . . . ,

simple zeros at −µ̃k, µ̃−k = iµ̃k, −iµ̃k, for k = 1, 2, . . ., and no other
zeros.

Case 6. p1 = 1, p2 = 3, p3 = 3: ϕ0 has a zero of multiplicity 6 at 0,
simple zeros

µ̃k = (k − 1)
π

a
, k = 2, 3, . . . ,

simple zeros at −µ̃k, µ̃−k = iµ̃k, −iµ̃k, for k = 2, 3, . . ., and no other
zeros.

Case 7. p1 = 2, p2 = 3, p3 = 0: ϕ0 has a zero of multiplicity 2 at 0,
exactly one simple zero in each interval [(2k+1/2)(π/a), (2k+1)(π/a)]
and [(2k + 1)(π/a), (2k + 3/2)(π/a)], respectively, for nonnegative in-
teger m with asymptotics

µ̃k = (2k − 1)
π

2a
+ o(1), k = 1, 2, . . . ,

simple zeros at −µ̃k, µ̃−k = iµ̃k, −iµ̃k, for k = 1, 2, . . ., and no other
zeros.

Case 8. p1 = 2, p2 = 3, p3 = 3: ϕ0 has a zero of multiplicity 6 at 0,
exactly one simple zero in each interval ((k−1/2)(π/a), (k+1/2)(π/a))
for positive integer k with asymptotics

µ̃k = (4k − 5)
π

4a
+ o(1), k = 2, 3, . . . ,

simple zeros at −µ̃k, µ̃−k = iµ̃k, −iµ̃k, for k = 2, 3, . . ., and no other
zeros.
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Proof. The result is obvious in Cases 4 and 6.

For Case 2, it is easy to see that ϕ0 has a zero of multiplicity 2 at 0.
Next we are going to find the zeros of ϕ0 on the positive real axis. It
is easily observed that, for µ ̸= 0, ϕ0(µ) = 0 implies cosh(µa) ̸= 0 and
cos(µa) ̸= 0, whence the positive zeros of ϕ0 are those µ > 0 for which
tan(µa) + tanh(µa) = 0. Since tan′(µa) ≥ 1 and tanh′(µa) ≥ 0 for
µ ∈ R, the function

µ 7−→ tan(µa) + tanh(µa)

is increasing with positive derivative on each interval((
k − 1

2

)
π

a
,

(
k +

1

2

)
π

a

)
, k ∈ Z.

On each of these intervals, the function moves from −∞ to ∞; thus, we
have exactly one simple zero µ̃k of tan(µa) + tanh(µa) in each interval((

k − 1

2

)
π

a
,

(
k +

1

2

)
π

a

)
,

where k is a positive integer, and no zero in (0, π/2a). Since tanh(µa) →
1 as µ→ ∞, we have

µ̃k = (4k − 1)
π

4a
+ o(1), k = 1, 2, . . . .

The location of the zeros on the other three half-axes follows by
repeated application of ϕ0(iµ) = −ϕ0(µ).

The proof will be complete if we show that all zeros of ϕ0 lie on the
real or the imaginary axis. To this end, we observe that the product-
to-sum formula for trigonometric functions gives

ϕ0(µ) = −µ[cosh(µa) sin(µa) + sinh(µa) cos(µa)](3.1)

= − 1
2µ[sin((1 + i)µa) + sin((1− i)µa)

− i sin((1 + i)µa) + i sin((1− i)µa)]

= − 1
2µ[(1− i) sin((1 + i)µa) + (1 + i) sin((1− i)µa))]

Setting (1 + i)µa = x+ iy, x, y ∈ R, it follows for µ ̸= 0 that

ϕ0(µ) = 0 =⇒ | sin((1 + i)µa)| = | sin((1− i)µa)|(3.2)

⇐⇒ | sin(x+ iy)| = | sin(y − ix)|
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⇐⇒ cosh2 y − cos2 x = cosh2 x− cos2 y

⇐⇒ cosh2(|y|) + cos2(|y|) = cosh2(|x|) + cos2(|x|)

Since cosh2 x + cos2 x = 1/2 cosh(2x) + 1/2 cos(2x) + 1 has a positive
derivative on (0,∞), this function is strictly increasing, and ϕ0(µ) = 0
therefore implies by (3.2) that |y| = |x|, and thus, y = ±x. Then,

µ =
x+ iy

(1 + i)a
=

1± i

1 + i

x

a

is either real or pure imaginary.

Cases 5 and 8 easily follow from the result for Case 2.

For Case 3, a power series expansion shows that ϕ0 has a zero of
multiplicity 2 at 0. For the zeros on the positive real axis we merely
need to replace the function

µ 7−→ tan(µa) + tanh(µa)

in the proof of Case 2 by

µ 7−→ tan(µa)− tanh(µa)

and observe that tanh′(µa) < 1. Furthermore, in this case, we have a
representation of ϕ0 similar to (3.1), except that, on the right hand side,
the factors 1−i and 1+i in front of the sine functions are interchanged.
Hence, (3.2) also holds in this case, and all zeros must be real or pure
imaginary.

In Case 7, it is easy to see that ϕ0 has a zero of multiplicity 2
at 0. Next, we shall find the zeros of ϕ0 on the positive real axis. Let
f(µ) = cos(µa) cosh(µa) + 1 and

Im,j =

[(
2m+

j

2

)
π

a
,

(
2m+

j + 1

2

)
π

a

]
,

m = 0, 1, . . ., j = 0, 1, 2, 3. The zeros in C\{0} of ϕ0 are the zeros of f .
It is obvious that, for all m and µ ∈ Im,0 ∪ Im,3, f(µ) ≥ 1. On Im,1,
µ 7→ cos(µa) decreases and is negative, while µ 7→ cosh(µa) increases
and is positive so that f decreases. At the endpoints of this interval f
has the values f((2m + 1/2)(π/a)) = 1 and f((2m + 1)(π/a)) =
− cosh((2m+1)π) + 1 < 0. Hence, f has exactly one simple 0 on Im,1.
From f ′′(µ) = −2a2 sin(µa) sinh(µa), we see that f is strictly convex
on Im,2 with f((2m + 1)(π/a)) = − cosh((2m + 1)π) + 1 < 0 and
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f((2m+3/2)(π/a)) = 1. Hence, f has exactly one simple zero on Im,2.
Since

− 1

cosh(µa)
−→ 0 as µ→ ∞,

we have

µ̃1
m =

(
2m+

1

2

)
π

a
+ o(1)

and

µ̃2
m =

(
2m+

3

2

)
π

a
+ o(1),

m = 0, 1, . . . . The location of the zeros on the other three half-axes
follows by repeated application of ϕ0(iµ) = −ϕ0(µ).

The proof for Case 7 will be complete if we show that all zeros of ϕ0
lie on the real or the imaginary axis. To this end, we observe that the
operator associated with the eigenvalue problem
(3.3)

y(4) = τy, y′′(0) = 0, y(3)(0) = 0, y(a) = 0, y′(a) = 0,

is self-adjoint, see Theorem 2.1. It is easy to see that this operator
is non-negative. The substitution τ = µ4 shows that f , as a function
of µ, is the characteristic function of problem (3.3). Hence, the zeros
of f are fourth roots of nonnegative real numbers, which means that
all zeros of f are real or pure imaginary.

For Case 1, it is easy to see that 0 is a zero of ϕ0 of multiplicity 2.
Let g(µ) = cos(µa) cosh(µa)−1. The zeros of ϕ0 are the zeros of g. An
obvious modification of the proof of Case 7 shows that g has no zeros in
the interval Im,1 and Im,2, whereas g has simple zeros in the intervals
Im,0 and Im,3. The reasoning for the asymptotics and the zeros on the
other three semiaxes is the same as in the proof of Case 7. In order to
complete the proof, observe that, as for (3.3), the eigenvalues of
(3.4)

y(4) = τy, y(0) = 0, y′(0) = 0, y(a) = 0, y′(a) = 0,

are nonnegative real numbers. Hence, the eigenvalues of problem (3.4)
are real and nonnegative. The substitution τ = µ4 shows that

µ 7−→ µ−4g(µ)
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is the characteristic function of problem (3.4) so that all zeros of g are
real or pure imaginary. �

Proposition 3.2. For g = 0 and h = 0, there exists a positive integer

k0 such that the eigenvalues λ̂k, k ∈ Z, counted with multiplicity, of
problem (1.2), where B1(λ)y = y[p1](0), B2(λ)y = y[p2](0), B3(λ)y =
y[p3](a) and B4(λ)y = y′′(a)+iαλy′(a), α > 0, can be indexed in such a

way that the eigenvalues λ̂k are pure imaginary for |k| < k0 and satisfy

λ̂−k = −λ̂k and ℑλk ≥ 0 for k ≥ k0. For k > 0, we can write λ̂k = µ̂2
k,

where the µ̂k have the following asymptotic representation as k → ∞:

Case 1. p1 = 0, p2 = 1, p3 = 0:

µ̂k = (2k − 1)
π

2a
+ o(1);

Case 2. p1 = 0, p2 = 1, p3 = 3:

µ̂k = (4k − 1)
π

4a
+ o(1);

Case 3. p1 = 0, p2 = 2, p3 = 0:

µ̂k = (4k + 1)
π

4a
+ o(1);

Case 4. p1 = 0, p2 = 2, p3 = 3:

µ̂k = (2k − 1)
π

2a
+ o(1);

Case 5. p1 = 1, p2 = 3, p3 = 0:

µ̂k = (4k − 1)
π

4a
+ o(1);

Case 6. p1 = 1, p2 = 3, p3 = 3:

µ̂k = (k − 1)
π

a
+ o(1);

Case 7. p1 = 2, p2 = 3, p3 = 0:

µ̂k = (2k − 1)
π

2a
+ o(1);
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Case 8. p1 = 2, p2 = 3, p3 = 3:

µ̂k = (4k − 5)
π

4a
+ o(1).

In particular, the number of pure imaginary eigenvalues is odd in each
case.

Proof. In each case, we will show that the zeros of ϕ are asymptoti-
cally close to the zeros of ϕ0. We begin with Case 8. Since the remaining
cases are very similar, we will only indicate the changes needed in the
other seven cases.

Case 8. A straightforward calculation gives

ϕ(µ) = 1
2 iαµ

5(sin(µa) cosh(µa) + cos(µa) sinh(µa))(3.5)

− 1
2µ

4(1− cos(µa) cosh(µa)).

Up to the constant factor (iα)/2, the first term equals ϕ0(µ). It follows
that, for µ with ϕ0(µ) ̸= 0, sin(µa) ̸= 0 and sinh(µa) ̸= 0, we have

ϕ1(µ) =
2ϕ(µ)− iαϕ0(µ)

ϕ0(µ)
=

1

µ

1

tan(µa) + tanh(µa)
(3.6)

− 1

µ

1

tan(µa) + tanh(µa)

1

cos(µa) cosh(µa)
.

Fix ε ∈ (0, π/4a), for k = 2, 3, . . . . Let Rk,ε be the boundaries of
the squares determined by the vertices (4k − 5)(π/4a)± ε± iε, k ∈ Z.
These squares do not intersect due to ε < π/2a. Since tan z = −1 if
and only if z = jπ − π/4 and j ∈ Z, it follows from the periodicity of
tan that the number

C1(ε) = 2min{| tan(µa) + 1| : µ ∈ Rk,ε}

is positive and independent of ε. Since

tanh(µa) −→ 1

uniformly in the strip{
µ ∈ C : Re µ ≥ 1, |Im µ| ≤ π

4a

}
as |µ| → ∞,
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there is an integer k1(ε) such that

| tan(µa) + tanh(µa)| ≥ C1(ε) for all µ ∈ Rk,ε with k > k1(ε).

By periodicity, there is a number C2(ε) > 0 such that | cos(µa)| > C2(ε)
for all µ ∈ Rk,ε and all k. Observing that | cosh(µa)| ≥ | sinh(ℜµa)|,
it follows that there exists k2(ε) ≥ k1(ε) such that, for all µ on the
squares Rk,ε with k ≥ k2(ε), the estimate |ϕ1(µ)| < α holds. We can
assume from Lemma 3.1 that µ̃k is inside of Rk,ε and no other zero of
ϕ0 has this property. By definition of ϕ1 in (3.6) we have

ϕ(µ) = 1
2 (ϕ1(µ) + iα)ϕ0(µ) for µ ∈ Rk,ε.(3.7)

Hence, it follows from Rouché’s theorem that there is exactly one
(simple) zero µ̂k of ϕ in each Rk,ε for k ≥ k2(ε). In view of ϕ0(iµ) =
−ϕ0(µ) and ϕ1(iµ) = −ϕ1(µ) for all µ ∈ C, the same reasoning applies
to the corresponding squares along the positive imaginary semiaxis.
Observing that ϕ is an even function, it follows that the same estimate
applies to the corresponding squares along the other two remaining
semiaxes. Therefore, ϕ has zeros ±µ̂k, ±µ̂−k for k > k2(ε) with the
same asymptotic behavior as the zeros ±µ̃k, ±iµ̃k of ϕ0, stated in
Lemma 3.1.

Next, we shall estimate ϕ1 on the squares Sk, k ∈ N, whose vertices
are ±k(π/a)± ik(π/a). For k ∈ Z and γ ∈ R,

(3.8) tan

((
kπ

a
+ iγ

)
a

)
= tan(iγa) = i tanh(γa) ∈ iR.

Therefore, we have, for µ = kπ/a+ iγ where k ∈ Z and γ ∈ R, that

(3.9) | tan(µa)| < 1 and | tan(µa)± 1| ≥ 1.

For µ = x+ iy, x, y ∈ R and x ̸= 0, we have

(3.10) tanh(µa) =
e(ax+iay) − e−(ax+iay)

e(ax+iay) + e−(ax+iay)
−→ ±1

uniformly in y as x → ±∞. Hence, there is a k̃1 > 0 such that, for all

k ∈ Z, |k| ≥ k̃1 and γ ∈ R,

(3.11)

∣∣∣∣ tanh((kπa + iγ

)
a

)
− sgn(k)

∣∣∣∣ < 1

2
.
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It follows from (3.9) and (3.11) for µ = kπ/a+ iγ, k ∈ Z, |k| ≥ k̃1 and
γ ∈ R that

(3.12) | tan(µa) + tanh(µa)| ≥ 1

2
.

Furthermore, we shall use the estimates∣∣∣∣ cosh((kπa + iγ

)
a

)∣∣∣∣ ≥ | sinh(kπ)|,(3.13) ∣∣∣∣ cos((kπa + iγ

)
a

)∣∣∣∣ = cosh(γa) ≥ 1,(3.14)

which hold for all k ∈ Z and all γ ∈ R. Therefore, it follows from
(3.12)–(3.14) and the corresponding estimates with µ replaced by iµ

that there is a k̂1 ≥ k̃1 such that |ϕ1(µ)| < α for all µ ∈ Sk with

k > k̂1. Again, from (3.7) and Rouché’s theorem we conclude that the
functions ϕ0 and ϕ have the same number of zeros in the square Sk, for

k ∈ N with k ≥ k̂1.

Since ϕ0 has 4k+2 zeros inside Sk, and thus 4k+2+ 4 zeros inside
of Sk+1, it follows that ϕ has no large zeros other than the zeros ±µ̂k

found above for |k| sufficiently large, and that there are µ̂k for small |k|
such that the λ̂k = µ̂2

k account for all eigenvalues of problem (1.2) since
each of these eigenvalues gives rise to two zeros of ϕ, counted with
multiplicity. By Proposition 2.2, all eigenvalues with nonzero real part
occur in pairs

λ̂k, −λ̂k with ℜλ̂k ≥ 0,

which shows that we can index all such eigenvalues as λ̂−k = −λ̂k.
Since an odd number of indices remain, the number of pure imaginary
eigenvalues must be odd.

The functions ϕ in Cases 2, 3 and 5 are, respectively, the following:

Case 2.

ϕ(µ) = − 1
2 iαµ(sin(µa) cosh(µa) + cos(µa) sinh(µa))(3.15)

− 1
2 (1 + cos(µa) cosh(µa)).

Case 3.

ϕ(µ) =
iα

2µ
(sin(µa) cosh(µa)− cos(µa) sinh(µa))(3.16)
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+
1

µ2
sin(µa) sinh(µa).

Case 5.

ϕ(µ) = 1
2 iαµ(sin(µa) cosh(µa) + cos(µa) sinh(µa))(3.17)

+ cos(µa) cosh(µa).

Then, all of the estimates are as in Case 8, and the results, respectively,
in Cases 2, 3 and 5 immediately follow from that in Case 8.

Case 6. A straightforward calculation gives

ϕ(µ) = iαµ4 sin(µa) sinh(µa)(3.18)

+ 1
2µ

3(sin(µa) cosh(µa) + cos(µa) sinh(µa)).

Then,

ϕ1(µ) =
2ϕ(µ)− iαϕ0(µ)

ϕ0(µ)
=

1

2µ
(coth(µa) + cot(µa)).

The result follows similarly as in the proof of Case 8, replacing µ by
µ± (π/2) and µ± i(π/2), respectively.

Case 4. The function ϕ in this case is

ϕ(µ) = −iαµ2 cos(µa) cosh(µa)(3.19)

+ 1
2µ(sin(µa) cosh(µa)− cos(µa) sinh(µa)).

The result is similar to Case 6 with each trigonometric and hyperbolic
function replaced by its derivative.

Case 7. A straightforward calculation gives

ϕ(µ) = 1
2 iαµ

2(cos(µa) cosh(µa) + 1)(3.20)

− 1
2µ(sin(µa) cosh(µa)− cos(µa) sinh(µa)).

Then,

ϕ1(µ) =
2ϕ(µ)− iαϕ0(µ)

ϕ0(µ)

=
1

µ
(tanh(µa)− tan(µa))

− 1

µ

tanh(µa)− tan(µa)

cos(µa) cosh(µa) + 1
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Observing that, in the strip {µ = x + iy : x ≥ 1, |y| ≤ π/2a}, we have
| tan(µa)| < C1 and | tanh(µa)| < C2 with suitable constants Cj , the
result follows with the proof similar to that for Case 8.

Case 1. The function ϕ in this case is

ϕ(µ) =
1

2µ2
iα(1− cos(µa) cosh(µa))(3.21)

+
1

2µ3
(sin(µa) cosh(µa)− cos(µa) sinh(µa)),

and reasoning as in Case 7 completes the proof. �

4. Birkhoff regularity. We refer to [2, Definition 7.3.1] for the
definition of Birkhoff regularity.

Proposition 4.1. The boundary value problem (1.2a), (2.2)–(2.8) is
Birkhoff regular for α > 0 with respect to the eigenvalue parameter µ
given by λ = µ2.

Proof. The characteristic function of (1.2a) as defined in [2, (7.1.4)]
is π(ρ) = ρ4 − 1, and its zeros are ik−1, k = 1, . . . , 4. We can choose

C(x, µ) = diag(1, µ, µ2, µ3)(i(k−1)(j−1))4k,j=1

according to [2, Theorem 7.2.4.A]. The boundary conditions (2.2)–(2.8)
can be written in the form

Bj(λ)y = B̂j(µ)(y(aj), y
′(aj), y

′′(aj), y
(3)(aj)), j = 1, 2, 3, 4,

where

B̂3(µ) =

{
ε⊤1 for Cases 1, 3, 5, 7,

(0,−g(a), 0, 1) for Cases 2, 4, 6, 8,

B̂j(µ) = ε⊤pj+1 for j = 1, 2,

B̂4(µ) = (0, iαµ2, 1, 0).
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Thus, the boundary matrices defined in [2, (7.3.1)] are given by

W (0)(µ) =


B̂1(µ)

B̂2(µ)
0
0

C(0, µ) =


µp1 µp1ip1 µp1i2p1 µp1i3p1

µp1 µp2ip1 µp2i2p2 µp2i3p2

0 0 0 0
0 0 0 0

 ,

W (1)(µ) =


0
0

B̂3(µ)

B̂4(µ)

C(a, µ) =


0 0 0 0
0 0 0 0
γ1 γ2 γ3 γ4
β1 β2 β3 β4

 ,

where γj = 1 for Cases 1, 3, 5 and 7 and γj = (−i)j−1µ3+ij+1g(a)µ for
Cases 2, 4, 6 and 8; furthermore, βj = ijαµ3 + (−1)j−1µ2. Choosing

C2(µ) = diag(µp1 , µp2 , µp3 , µ3), it follows that C2(µ)
−1W (j)(µ) =

W
(j)
0 +O(µ−1), where

W
(0)
0 =


1 ip1 i2p1 i3p1

1 ip2i2p2 i3p2

0 0 0 0
0 0 0 0

 , W
(1)
0 =


0 0 0 0
0 0 0 0
1 ip3 i2p3 i3p3

iα −α −iα α

.
The Birkhoff matrices are

(4.1) W
(0)
0 ∆j +W

(1)
0 (I −∆j),

where ∆j , j = 1, 2, 3, 4, are the 4 × 4 diagonal matrices with two
consecutive ones and two consecutive zeros in the diagonal in a cyclic
arrangement, see [2, Proposition 4.1.7, Definition 7.3.1]. It is easy to
see that, after a permutation of columns, the matrices (4.1) are block
diagonal consisting of 2× 2 blocks taken from two consecutive columns

(in the sense of cyclic arrangement) of the first two rows of W
(0)
0 and

the last two rows of W
(1)
0 , respectively. Hence, the determinants of the

Birkhoff matrices (4.1) are∣∣∣∣i(j−1)p1 ijp1

i(j−1)p2 ijp2

∣∣∣∣ ∣∣∣∣i(j+1)p3 i(j+2)p3

ij+2α ij+3α

∣∣∣∣
= −ij(p1+p2+p3+1)+p3(i− ip3)(i−p1 − i−p2)α ̸= 0.

Thus, the problem (1.2a), (2.2)–(2.8) is Birkhoff regular. �
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5. Asymptotic expansions of eigenvalues. Let D, as a function
of µ with λ = µ2, be the characteristic function of problem (1.2a),
(2.2)–(2.8) with respect to the fundamental system yj , j = 1, 2, 3, 4,

with y
[m]
j (0) = δj,m+1 for m = 0, 1, 2, 3, and δ is the Kronecker delta.

Denote by D0 the corresponding characteristic function for g = 0. Note
that the characteristic functionsD0 and ϕ0 considered in Section 3 have
the same zeros, counted with multiplicity. Due to Birkhoff regularity,
g influences only lower order terms in D, see [2, subsections 4.3, 7.3].
Therefore, it may be inferred that, outside of the interior of the small
squares Rk, −Rk, iRk, −iR−k around the zeros of D0,

|D(µ)−D0(µ)| < |D0(µ)|

if |µ| is sufficiently large. Since the fundamental system yj , j = 1, 2, 3,
4, analytically depends upon µ, D and D0 are also analytic functions.
Hence, applying Rouché’s theorem both to the large squares Sk and
to the small squares, which are sufficiently far away from the origin, it
follows that the eigenvalues of the boundary value problem for general g
have the same asymptotic distribution as those for g = h = 0, whence
Proposition 3.2 leads to

Proposition 5.1. For g ∈ C1[0, a] and h ∈ C[0, a], there exists a
positive integer k0 such that the eigenvalues λk, k ∈ Z, counted with
multiplicity, of problem (1.2a), (2.2)–(2.8), can be enumerated in such
a way that the eigenvalues λk are pure imaginary for |k| < k0, and
λ−k = −λk for k ≥ k0. For k > 0, we can write λk = µ2

k, where the µk

have the following asymptotic representation as k → ∞:

Case 1. p1 = 0, p2 = 1, p3 = 0:

µk = (2k − 1)
π

2a
+ o(1);

Case 2. p1 = 0, p2 = 1, p3 = 3:

µk = (4k − 1)
π

4a
+ o(1);

Case 3. p1 = 0, p2 = 2, p3 = 0:

µk = (4k + 1)
π

4a
+ o(1);
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Case 4. p1 = 0, p2 = 2, p3 = 3:

µk = (2k − 1)
π

2a
+ o(1);

Case 5. p1 = 1, p2 = 3, p3 = 0:

µk = (4k − 1)
π

4a
+ o(1);

Case 6. p1 = 1, p2 = 3, p3 = 3:

µk = (k − 1)
π

a
+ o(1);

Case 7. p1 = 2, p2 = 3, p3 = 0:

µk = (2k − 1)
π

2a
+ o(1);

Case 8. p1 = 2, p2 = 3, p3 = 3:

µk = (4k − 5)
π

4a
+ o(1).

In particular, the number of pure imaginary eigenvalues is odd in each
case.

In the remainder of the section we shall establish more precise
asymptotic expansions of the eigenvalues. According to [2, Theorem
8.2.1], (1.2a) has an asymptotic fundamental system {η1, η2, η3, η4} of
the form

(5.1) η(j)ν (x, µ) = δν,j(x, µ)e
iν−1µx, ν = 1, . . . , 4, j = 0, . . . , 3,

where
(5.2)

δν,j(x, µ)=

[
dj

dxj

]{ 2∑
r=0

(µiν−1)−rφr(x)e
iν−1µx

}
e−iν−1µx+ {o(µ−2+j)}∞,

and [dj/dxj ] means that we omit those terms of the Leibniz expansion

which contain a function φ
(k)
r with k > 4 − r, where {o(·)}∞ means

that the estimate is uniform in x.

Since the coefficient of y(3) in (1.2a) is 0, we have φ0(x) = 1, see [2,
(8.2.3)].
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We now determine the functions φ1 and φ2. In this regard, observe
that n0 = 0 and l = 4 in the notation of [2, (8.1.2), (8.1.3)], also see
[2, Theorem 8.1.2]. From [2, (8.2.45)], we know that

(5.3) φr = φ1,r = εT1V Q
[r]ε1,

where εν is the νth unit vector in C4, V = (i(j−1)(k−1))4j,k=1 and Q[r]

are 4 × 4 matrices given by [2, (8.2.28), (8.2.33), (8.2.34)], that is,
Q[0] = I4,

Ω4Q
[1] −Q[1]Ω4 = Q[0]′ = 0,(5.4)

Ω4Q
[2] −Q[2]Ω4 = Q[1]′ − 1

4
gΩ4εε

⊤Ω−2
4 Q[0],(5.5)

0 = εTν

(
Q[2]′ +

1

4

2∑
j=1

k3−jΩ4εε
TΩ−1−j

4 Q[2−j]

)
εν ,(5.6)

ν = 1, 2, 3, 4, where k2 = −g, k1 = −g′, Ω4 = diag(1, i,−1,−i) and
εT = (1, 1, 1, 1). Let G(x) =

∫ x

0
g(t) dt. A lengthy, but straightforward,

calculation gives

(5.7) φ1 =
1

4
G, φ2 =

1

32
G2 − 1

8
g,

and thus,

ην(x, µ)=

(
1+

1

4
i−ν+1G(x)µ−1+(−1)ν−1

(
1

32
G(x)2− 1

8
g(x)

)
µ−2

)
ei

ν−1µx

(5.8)

+ {o(µ−2)}∞ei
ν−1µx for ν = 1, 2, 3, 4.

The characteristic function of (1.2a), (2.2)–(2.8) is

D(µ) = det(γjk exp(εjk))
4
j,k=1,

where

ε1k = ε2k = 0, ε3k = ε4k = ik−1µa,

γ1k = δk,p1(0, µ), γ2k = δk,p2(0, µ) if p2 ≤ 2,

γ2k = δk,3(0, µ)− g(0)δk,1(0, µ) if p2 = 3,

γ3k = δk,0(a, µ) if p3 = 0,

γ3k = δk,3(a, µ)− g(a)δk,1(a, µ) if p3 = 3,
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γ4k = δk,2(a, µ) + iαµ2δk,1(a, µ).

Note that

(5.9) D(µ) =
5∑

m=1

ψm(µ)eωmµa,

where ω1 = 1 + i, ω2 = −1 + i, ω3 = −1 − i, ω4 = 1 − i, ω5 = 0, and
each of the functions ψ1, . . . , ψ5 has asymptotic representations of the
form ckµ

k + ck−1µ
k−1 + · · ·+ ck0µ

k0 + o(µk0).

It follows from (5.9) that

D1(µ) := D(µ)e−ω1µa = ψ1(µ) +

5∑
m=2

ψm(µ)e(ωm−ω1)µa,(5.10)

where ω2 − ω1 = −2, ω3 − ω1 = −2 − 2i, ω4 − ω1 = −2i, ω5 − ω1 =
−1 − i. If arg µ ∈ −3π/8, π/8, we have |e(ωm−ω1)µa| ≤ e− sin(π/8)|µ|a

for m = 2, 3, 5, and the terms ψm(µ)e(ωm−ω1)µa for m = 2, 3, 5 can be
absorbed by ψ1(µ) since they are of the form o(µ−s) for any integer s.
Hence, for arg µ ∈ −3π/8, π/8,

(5.11) D1(µ) = ψ1(µ) + ψ4(µ)e
(ω4−ω3)µa = ψ1(µ) + ψ4(µ)e

−2iµa,

where

ψ1(µ) = [γ13γ24 − γ14γ23][γ31γ42 − γ32γ41],(5.12)

ψ4(µ) = [γ12γ23 − γ13γ22][γ31γ44 − γ34γ41].(5.13)

A straightforward calculation gives for p3 = 0 that

γ31γ42 − γ32γ41 = −(1 + i)αµ3 − 2(αφ1(a) + 1)µ2

(5.14)

− (1− i)(αφ2
1(a)− 1

4αg(a) + 2φ1(a))µ+ o(µ),

γ31γ44 − γ34γ41 = (1− i)αµ3 + 2(αφ1(a)− 1)µ2

(5.15)

+ (1 + i)(αφ2(a)− 1
4αg(a)− 2φ1(a))µ+ o(µ),

while, for p3 = 3, we have

γ31γ42 − γ32γ41 = −2αµ6 − (1− i)(2αφ1(a) + 1)µ5(5.16)

+ 2i(αφ2
1(a) + φ1(a))µ

4 + o(µ4),
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γ31γ44 − γ34γ41 = 2αµ6 + (1 + i)(2αφ1(a)− 1)µ5(5.17)

+ 2i(αφ2
1(a)− φ1(a))µ

4 + o(µ4).

For the other two factors in (5.12) and (5.13) we must consider four
different cases.

Cases 1 and 2. p1 = 0, p2 = 1. Here, we have

γ13γ24 − γ14γ23 = (1− i)µ+ 1
4 (1 + i)µ−1g(0) + o(µ−1),(5.18)

γ12γ23 − γ13γ22 = −(1 + i)µ− 1
4 (1− i)µ−1g(0) + o(µ−1).(5.19)

Cases 3 and 4. p1 = 0, p2 = 2. Here, we have

γ13γ24 − γ14γ23 = −2µ2 + o(1),(5.20)

γ12γ23 − γ13γ22 = 2µ2 + o(1).(5.21)

Cases 5 and 6. p1 = 1, p2 = 3. Here, we have

γ13γ24 − γ14γ23 = −2iµ4 + o(µ2),(5.22)

γ12γ23 − γ13γ22 = −2iµ4 + o(µ2).(5.23)

Cases 7 and 8. p1 = 2, p2 = 3. Here, we have

γ13γ24 − γ14γ23 = −(1− i)µ5 + 3
4 (1 + i)µ3g(0) + o(µ3),(5.24)

γ12γ23 − γ13γ22 = (1 + i)µ5 − 3
4 (1− i)µ3g(0) + o(µ3).(5.25)

Case 1. We obtain from (5.14), (5.15), (5.18) and (5.19)

ψ1(µ) = −2αµ4 − 1
2 (1− i)(4 + αG(a))µ3(5.26)

+ i[ 18αG
2(a) +G(a)− 1

2αg(0)−
1
2αg(a)]µ

2 + o(µ2),

ψ4(µ) = −2αµ4 + 1
2 (1 + i)(4− αG(a))µ3(5.27)

− i[ 18αG
2(a)−G(a)− 1

2αg(0)−
1
2αg(a)]µ

2 + o(µ2).

Case 2. We have from (5.16), (5.17), (5.18) and (5.19)

ψ1(µ) = −2(1− i)αµ7 + i(2 + αG(a))µ6(5.28)

+ (1 + i)[18αG
2(a) + 1

2G(a)−
1
2αg(0)]µ

5 + o(µ5),

ψ4(µ) = −2(1 + i)αµ7 + i(2− αG(a))µ6(5.29)

+ (1− i)[18αG
2(a)− 1

2G(a)−
1
2αg(0)]µ

5 + o(µ5).
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Case 3. We have from (5.14), (5.15), (5.20) and (5.21)

ψ1(µ) = 2(1 + i)αµ5 + (4 + αG(a))µ4(5.30)

+ (1− i)[18αG
2(a) +G(a)− 1

2αg(a)]µ
3 + o(µ3),

ψ4(µ) = 2(1− i)αµ5 − (4− αG(a))µ4(5.31)

+ (1 + i)[18αG
2(a)−G(a)− 1

2αg(a)]µ
3 + o(µ3).

Case 4. We have from (5.16), (5.17), (5.20) and (5.21)

ψ1(µ) = 4αµ8 + (1− i)(2 + αG(a))µ7(5.32)

− i[ 14αG
2(a) +G(a)]µ6 + o(µ6),

ψ4(µ) = 4αµ8 − (1 + i)(2− αG(a))µ7(5.33)

+ i[ 14αG
2(a)−G(a)]µ6 + o(µ6).

Case 5. We have from (5.14), (5.15), (5.22) and (5.23)

ψ1(µ) = −2(1− i)αµ7 + i(4 + αG(a))µ6(5.34)

+ (1 + i)[18αG
2(a) +G(a)− 1

2αg(a)]µ
5 + o(µ5),

ψ4(µ) = −2(1 + i)αµ7 + i(4− αG(a))µ6(5.35)

+ (1− i)[18αG
2(a)−G(a)− 1

2αg(a)]µ
5 + o(µ5).

Case 6. We have from (5.16), (5.17), (5.22) and (5.23)

ψ1(µ) = 4iαµ10 + (1 + i)(2 + αG(a))µ9(5.36)

+ [ 14αG
2(a) +G(a)]µ8 + o(µ8),

ψ4(µ) = −4iαµ10 − (1− i)(2− αG(a))µ9(5.37)

+ [ 14αG
2(a)−G(a)]µ8 + o(µ8).

Case 7. We have from (5.14), (5.15), (5.24) and (5.25)

ψ1(µ) = 2αµ8 + 1
2 (1− i)(4 + αG(a))µ7(5.38)

− i[ 18αG
2(a) +G(a) + 3

2αg(0)−
1
2αg(a)]µ

6 + o(µ6),

ψ4(µ) = 2αµ8 − 1
2 (1 + i)(4− αG(a))µ7(5.39)

+ i[ 18αG
2(a)−G(a) + 3

2αg(0)−
1
2αg(a)]µ

6 + o(µ6).
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Case 8. It follows from (5.16), (5.17), (5.24) and (5.25)

ψ1(µ) = 2(1− i)αµ11 − i(2 + αG(a))µ10(5.40)

− (1 + i)[18αG
2(a) + 1

2G(a) +
3
2αg(0)]µ

9 + o(µ9),

ψ4(µ) = 2(1 + i)αµ11 − i(2− αG(a))µ10(5.41)

− (1− i)[18αG
2(a)− 1

2G(a) +
3
2αg(0)]µ

9 + o(µ9).

We already know by Proposition 5.1 that the zeros µk of D satisfy
the asymptotic representations µk = kπ/a + τ0 + o(1) as k → ∞. In
order to improve on these asymptotic representations, write

(5.42)

µk = k
π

a
+ τ(k),

τ(k) =
n∑

m=0

τmk
−m + o(k−n),

k = 1, 2, . . . . Due to the symmetry of the eigenvalues, we only need
to find the asymptotic expansions as k → ∞. We know τ0 from
Proposition 5.1, and it is our aim to find τ1 and τ2. To this end,
we substitute (5.42) into D1(µk) = 0 and then compare the coefficients
of k0, k−1 and k−2.

Observe that

e−2iµka = e−2iτ(k)a

= e−2iτ0a exp

(
− 2ia

(
τ1
k

+
τ2
k2

+ o(k−2)

))
(5.43)

= e−2iτ0a

(
1− 2iaτ1

1

k
− (2a2τ21 + 2iaτ2)

1

k2
+ o(k−2)

)
,

while

(5.44)
1

µk
=

a

πk

(
1 +

aτ(k)

kπ

)−1

=
a

kπ
− a2τ0
k2π2

+ o(k−2).

Using (5.11), D1(µk) = 0 can be written as

(5.45) µ−γ
k ψ1(µk) + µ−γ

k ψ4(µk)e
−2iτka = 0,

where γ is the highest µ-power in ψ1(µ) and ψ4(µ). Substituting (5.28),
(5.29), (5.43) and (5.44) into (5.45) and comparing the coefficients of
k0, k−1 and k−2, we obtain the next theorem.
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Theorem 5.2. For g ∈ C1[0, a] and h ∈ C[a, b], there exists a
positive integer k0 such that the eigenvalues λk, k ∈ Z, counted with
multiplicity, of problem (1.2a), (2.2)–(2.8), can be enumerated in such
a way that the eigenvalues λk are pure imaginary for |k| < k0, and
λ−k = −λk for k ≥ k0, where λk = µ2

k and µk have the asymptotic
representations

µk = k
π

a
+ τ0 +

τ1
k

+
τ2
k2

+ o(k−2),

and the numbers τ0, τ1, τ2 are as follows:

Case 1.

τ0 = − π

2a
, τ1 =

i

πα
+

1

4

G(a)

π
,

τ2 =
i

2πα
− a

π2α2
+

1

8

G(a)

π
− 1

4

a

π2
(g(0) + g(a)).

Case 2.

τ0 = − π

4a
, τ1 =

i

2πα
+

1

4

G(a)

π
,

τ2 =
i

8πα
− a

4π2α2
+

1

16

G(a)

π
− 1

4

a

π2
g(0).

Case 3.

τ0 =
π

4a
, τ1 =

i

πα
+

1

4

G(a)

π
,

τ2 = −1

4

i

πα
− a

π2α2
− 1

16

G(a)

π
− 1

4

a

π2
g(a).

Case 4.

τ0 = − π

2a
, τ1 =

i

2πα
+

1

4

G(a)

π
,

τ2 =
i

4πα
− a

4π2α2
+

1

8

G(a)

π
.

Case 5.

τ0 = − π

4a
, τ1 =

i

πα
+

1

4

G(a)

π
,

τ2 =
i

4πα
− a

π2α2
+

1

16

G(a)

π
− 1

4

a

π2
g(a).
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Case 6.

τ0 = −π
a
, τ1 =

i

2πα
+

1

4

G(a)

π
,

τ2 =
i

2πα
− 1

4

a

π2α2
+

1

4

G(a)

π
.

Case 7.

τ0 = − π

2a
, τ1 =

i

πα
+

1

4

G(a)

π
,

τ2 =
i

2πα
− a

π2α2
+

1

8

G(a)

π
+

1

4

a

π2
(3g(0)− g(a)).

Case 8.

τ0 = −5π

4a
, τ1 =

i

2πα
+

1

4

G(a)

π
,

τ2 =
5i

8πα
− 1

4

a

π2α2
+

5

16

G(a)

π
+

3

4

a

π2
g(0).

In particular, the number of pure imaginary eigenvalues is odd.

Remark 5.3. We have seen that the function h in differential equa-
tion (1.2a) does not influence the first four terms of the asymptotic
expansion of the eigenvalues. Hence, we can easily compare our results
with those in [3, 5, 6, 7], where the differential equation is (1.2a) with
h = 0. In [5], we considered the case of two λ-dependent boundary
conditions at one endpoint, whereas in [6, 7], we investigated the cases
of three and four λ-dependent boundary conditions, respectively.

The proof of the asymptotic expansions follows the same pattern.
Firstly, the leading term ϕ0 of the characteristic determinant of the
boundary value problem is found, and its zeros give the leading terms.
Secondly, Rouché’s theorem guarantees that an asymptotic expansion
exists, which has the leading terms found in the first step. And, thirdly,
an asymptotic expansion of the fundamental system is used successively
to find the higher order terms in the asymptotic expansions. This last
step is, in principle, rather straightforward by solving linear and first
order differential equations, see (5.4)–(5.6), (5.43), (5.45). Although
this can be computed to arbitrary order, we have restricted our cal-
culations to the first four terms since higher terms become more and
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more lengthy. We have used the computer algebra program Sage to
double check some of these calculations.

The functions ϕ0 in Cases 1, 3, and 7 did not appear in [5, 6, 7].
Case 3 in this paper was investigated in [3], where, however, only the
first three terms of the asymptotics of the eigenvalues were provided.

Remark 5.4. Comparing the asymptotic expansions in [5]–[7] with
those in this paper, we see that the leading term in all expansions is
kπa−1. Hence, the length a of the interval [0, a] can be recovered from
the leading term of the asymptotic expansion of the eigenvalues. We
recall that the eigenvalues λk are indexed in such a way that λ−k = λk
for all eigenvalues which are not pure imaginary. Therefore, the index
set is Z or Z \ {0}, depending upon whether the number of pure
imaginary eigenvalues is odd or even. Although it appears that there
is some pattern regarding the parity of pure imaginary eigenvalues, it
is not that straightforward; in the case of two λ-dependent boundary
conditions, the number of pure imaginary eigenvalues can be even or
odd. If we know the parity of the pure imaginary eigenvalues, we can
obtain some additional information regarding the boundary conditions
of the underlying spectral problem. The values of τ0, τ1 and τ2 give
a finer classification of the boundary conditions. However, we will not
present the details here. Those are left to another publication, once
we have completed the spectral asymptotics for additional classes of
boundary conditions. Of course, the more detailed the asymptotic
expansion, the better the chance that the boundary conditions can
be uniquely recovered from the terms in the expansion. This is a major
reason why we have considered the first four terms of the expansions.
Further terms in the expansion will be longer and will become difficult
or impossible to evaluate with computer algebra.
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