
ROCKY MOUNTAIN
JOURNAL OF MATHEMATICS
Volume 47, Number 2, 2017

MULTIPLE SOLUTIONS FOR KIRCHHOFF-TYPE
PROBLEMS WITH CRITICAL GROWTH IN RN

SIHUA LIANG AND JIHUI ZHANG

ABSTRACT. In this paper, we study the existence of
infinitely many solutions for a class of Kirchhoff-type prob-
lems with critical growth in RN . By using a change of vari-
ables, the quasilinear equations are reduced to a semilinear
one, whose associated functionals are well defined in the
usual Sobolev space and satisfy the geometric conditions of
the mountain pass theorem for suitable positive parameters
α, β. The proofs are based on variational methods and the
concentration-compactness principle.

1. Introduction. In this paper, we consider a class of Kirchhoff-
type problems involving critical growth of the form

(1.1) −La,b
p u− a[∆p(u

2)]u = αk(x)|u|q−2u+ βu2(p∗)−2u,

where

La,b
p u :=

(
a+ b

∫
RN

1

p
|∇u|pdx

)
div(|∇u|p−2∇u), N ≥ 3,

2 < q < 2p∗ =
2Np

N − p
, k(x) ∈ Lr(RN ),

with r = 2(p∗)/(2(p∗)− q), α, β real parameters. We believe that 2(p∗)
is the critical growth for problem (1.1), since when p = 2, the critical
exponent is 2(2∗), see [34, 35, 36].
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The acclaimed paper by Brezis and Nirenberg [4] generated great
interest on problems involving critical exponents; we refer the reader
to [3, 5, 7, 17, 18, 20, 23, 28, 46] and the references therein for the
study of problems with a critical exponent.

On one hand, Kirchhoff-type problems are often referred to as
being nonlocal because of the presence of the integral over the entire
domain Ω. It is analogous to the stationary case of equations that arise
in the study of string or membrane vibrations, namely,

(1.2) utt −
(
a+ b

∫
Ω

|∇u|2dx
)
∆u = f(x, u),

where Ω is a bounded domain in RN , u denotes the displacement,
f(x, u) is the external force and b is the initial tension while a is related
to the intrinsic properties of the string (such as Young’s modulus).
Equations of this type were first proposed by Kirchhoff in 1883 to
describe the transversal oscillations of a stretched string, specifically
taking into account the subsequent change in string length caused by
oscillations. The solvability of Kirchhoff-type equation (1.2) has been
well studied in general dimensions and domains by various authors,
see, for example, [15, 16, 24, 26, 29, 39, 47, 51] and the references
therein.

Nonlocal effect also finds its applications in biological systems. A
parabolic version of equation (1.3) can, in theory, be used to describe
the growth and movement of a particular species. The movement,
modeled by the integral term, is assumed dependent on the “energy” of
the entire system with u being its population density. Alternatively, the
movement of a particular species may be subject to the total population
density within the domain (for instance, the spread of bacteria) which
gives rise to equations of the type ut − a(

∫
Ω
u dx)∆u = f . Chipot and

Lovat [8] and Corrêa, et al. [11], for example, studied the existence
of solutions and their uniqueness for such nonlocal problems as well as
their corresponding elliptic problems.

It is well known that the stationary problem of equation (1.2) has
the form

(1.3)

−
(
a+ b

∫
Ω

|∇u|2dx
)
∆u = f(x, u) x ∈ Ω,

u|∂Ω = 0,
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where Ω ⊂ RN . Problem (1.3) gained interest only after Lions [31]
proposed an abstract framework for the problem. Some important and
interesting results can be found, see for example, [1, 2, 12, 13, 21, 30,
37, 41, 43, 44]. We note that the results dealing with problem (1.3)
with critical nonlinearity are relatively scarce.

In [16], by means of a direct variational method, the authors proved
the existence and multiplicity of solutions to a class of p-Kirchhoff-type
problems with Dirichlet boundary data. The existence of infinite solu-
tions to the p-Kirchhoff-type quasilinear elliptic equation was shown in
[33]. In [9], the authors studied higher order p(x)-Kirchhoff-type prob-
lems via variational methods, even in the degenerate case. However,
they did not give any further information on the sequence of solutions.
Recently, Kajikiya [25] established a critical point theorem related to
the symmetric mountain pass lemma and applied it to a sublinear el-
liptic equation. However, there are no such results on Kirchhoff-type
problems (1.1).

On the other hand, there are many papers concerned with the
quasilinear elliptic equation

(1.4) −∆u+ V (x)u− [∆(u2)]u = h(x, u), x ∈ RN .

Such equations arise in various branches of mathematical physics, and
they have been the subject of extensive study in recent years. In [34],
by a change of variables, the quasilinear problem was transformed to a
semilinear one, and an Orlicz space framework was used as the working
space. They proved the existence of positive solutions of equation (1.4)
by the mountain pass theorem. The same method of change of variables
was used in [10], but the usual Sobolev space H1(RN ) framework
was used as the working space, and they studied a different class of
nonlinearity. In [35], the existence of both one sign and nodal ground
state-type solutions were established by the Nehari method.

Motivated by the reasons above, the aim of this paper is to show
the existence of infinitely many solutions of problem (1.1) and that
there exists a sequence of infinitely many arbitrarily small solutions
converging to 0 by using a new version of the symmetric mountain pass
lemma due to Kajikiya [25].

Note that 2(2∗) behaves like a critical exponent for the above
equations, see [34]. For the subcritical case, the existence of solutions
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for problem (1.4) was studied in [10, 34, 35, 36], and it was left
open for the critical exponent case, see [34]. To the best of our
knowledge, the existence of nontrivial radial solutions for equation (1.4)
with h(u) = µu2(2∗)−1 was first studied by Moameni [38], using the
same Orlicz space as in [34]. The existence of multiple solutions for
problems (1.1) with a = 1 and b = 0 using minimax methods and the
Krasnoselski genus theory was shown in [48]. For other interesting
results, see [22, 42].

To the best of our knowledge, existence and multiplicity of solutions
to problem (1.1) have yet to be studied using variational methods. In
this paper, we show that problem (1.1) can be viewed as an elliptic
equation coupled with a non-local term. The competing effect of the
non-local term with critical nonlinearity and the lack of compactness of
the embedding of H1(RN ) into the space Lp(RN ) prevents us from us-
ing the variational methods in a standard way. Some new estimates for
such a Kirchhoff equation involving Palais-Smale sequences, which are
key points for applying this type of theory, need to be re-established.
Primarily, we follow the ideas presented in [19, 25]. Although this
theory has been used for other problems, the adaptation of the proce-
dure to our problem is not at all trivial. The appearance of a non-local
term prompts consideration of our problem for suitable spaces; thus,
we need more delicate estimates.

The main result of this paper is as follows.

Theorem 1.1. Suppose that Ω := {x ∈ RN : k(x) > 0} is an open
subset of RN and 0 < |Ω| < +∞, 2 < p < 2q. Then,

(i) for any β > 0, there exists α0 > 0 such that, if 0 < α < α0, then
equation (1.1) has a sequence of solutions {un} with J(un) ≤ 0,
J(un) → 0 and {un} converges to 0 as n → +∞;

(ii) for any α > 0, there exists β0 > 0 such that, if 0 < β < β0, then
equation (1.1) has a sequence of solutions {un} with J(un) ≤ 0,
J(un) → 0 and {un} converges to 0 as n → +∞.

Notation 1.2. In this paper, we use the notation:

• D1,p(RN ) : {u ∈ Lp∗
(RN ) : ∇u ∈ Lp(RN )} endowed with the
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norm

∥u∥ =

(∫
RN

|∇u|p
)1/p

.

• For 1 ≤ r < ∞, Lr(RN ) denotes the usual Lebesgue space with
norm

∥u∥r =

(∫
RN

|u|r
)1/r

.

• c, c1 and c2 denote positive (possibly different) constants.

2. Preliminaries. The energy functional corresponding to prob-
lem (1.1) is defined as:

I(u) :=
a

p

∫
RN

|∇u|pdx+
b

2

(∫
RN

1

p
|∇u|pdx

)p

+
a

p

∫
RN

2p−1|u|p|∇u|pdx

− α

q

∫
RN

k(x)|u|qdx− β

2(p∗)

∫
RN

|u|2(p
∗)dx

=
a

p

∫
RN

(1 + 2p−1|u|p)|∇u|pdx+
b

2

(∫
RN

1

p
|∇u|pdx

)2

− α

q

∫
RN

k(x)|u|qdx− β

2(p∗)

∫
RN

|u|2(p
∗)dx.

Note that, in general, the functional I is not well defined in general
in D1,p(RN ), for instance. To overcome this difficulty, we employ
an argument developed by Colin and Jeanjean [10]. We change the
variables v = f−1(u), where f is defined by

f ′(t) =
1

(1 + 2p−1|f(t)|p)1/p
,

f(0) = 0 on [0,+∞)

and by

f(t) = −f(−t) on (−∞, 0].

The next result is due to Colin and Jeanjean [10].
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Lemma 2.1. The following properties are satisfied by f :

(f0) f is uniquely defined C∞ and invertible;

(f1) |f ′(t)| ≤ 1 for t ∈ R;

(f2) |f(t)| ≤ |t| for t ∈ R;

(f3) f(t)/t → 1 as t → ∞;

(f4) |f(t)| ≤ 21/(2p)|t|1/2 for t ∈ R;

(f5) (1/2)f(t) ≤ tf ′(t) ≤ f(t) for all t ≥ 0;

(f6) f(t)/
√
t → 21/4 as t → ∞;

(f7) there exists a positive constant C such that

|f(t)| ≥

{
C|t| |t| ≤ 1,

C|t|1/2 |t| ≥ 1.

Thus, after a change of variables, we may write I(u) as

J(v) :=
a

p

∫
RN

|∇v|pdx+
b

2

(∫
RN

1

p
|f ′(v)|p|∇v|pdx

)2

(2.1)

− α

q

∫
RN

k(x)|f(v)|qdx− β

2(p∗)

∫
RN

|f(v)|2(p
∗)dx.

Then, J(v) is well defined on D1,p(RN ). Standard arguments [45, 49]
show that J(v) belongs to C1(D1,p(RN ),R).

As in [10], we note that, if v is a nontrivial critical point of J , then v
is a nontrivial solution to the problem:

− a∆v − b

∫
RN

|f ′(v)|p|∇v|pdx(2.2)

· (|f ′(v)|p−2f ′(v)f ′′(v)|∇v|2 + |f ′(v)|p|∇v|p−2∇v∆v) = g(x, v),

where

g(x, s) = f ′(s)(αk(x)|f(s)|q−2f(s) + β|f(s)|2(p
∗)−2f(s)).
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Therefore, let u = f(v), and, since

(f−1)′(t) = [f ′(f−1(t))]−1 = (1 + 2p−1|t|p)1/p,

we conclude that u is a nontrivial solution to the problem

−
(
a+ b

∫
RN

1

p
|∇u|pdx

)
div(|∇u|p−2∇u)− a[∆p(u

2)]u

= αk(x)|u|q−2u+ βu2(p∗)−2u.

The main result of this paper is as follows.

Theorem 2.2. Suppose that Ω := {x ∈ RN : k(x) > 0} is an open
subset of RN and 0 < |Ω| < +∞, 2 < q < 2p. Then,

(i) for any β > 0, there exists an α0 > 0 such that, if 0 < α < α0,
then equation (2.2) has a sequence of solutions {vn} with J(vn) ≤
0, J(vn) → 0 and {vn} converges to 0 as n → +∞;

(ii) for any α > 0, there exists a β0 > 0 such that, if 0 < β < β0, then
equation (2.2) has a sequence of solutions {vn} with J(vn) ≤ 0,
J(vn) → 0 and {vn} converges to 0 as n → +∞.

We recall the second concentration-compactness principle of Li-
ons [32].

Lemma 2.3 ([32]). Let {un} be a weakly convergent sequence to u
in D1,p(RN ) such that |un|p

∗
⇀ ν and |∇un| ⇀ µ in the sense of

measures. Then, for some at most countable index set I,

(i) ν = |u|p∗
+

∑
j∈I

δxjνj, νj > 0;

(ii) µ ≥ |∇u|p +
∑
j∈I

δxjµj, µj > 0;

(iii) µj ≥ Sν
p/p∗

j ,

where S is the best Sobolev constant, i.e.,

S = inf

{∫
RN

|∇u|pdx :

∫
RN

|u|p
∗
dx = 1

}
,

xj ∈ RN , δxj are Dirac measures at xj, and µj, νj are constants.
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Lemma 2.4 ([6, 38]). Let {un} be a weakly convergent sequence to u
in D1,p(RN ), and define

(i) ν∞ = lim
R→∞

lim sup
n→∞

∫
|x|>R

|un|p
∗
dx;

(ii) µ∞ = lim
R→∞

lim sup
n→∞

∫
|x|>R

|∇un|pdx.

The quantities ν∞ and µ∞ exist and satisfy

(iii) lim supn→∞

∫
RN

|un|p
∗
dx =

∫
RN

dν + ν∞;

(iv) lim supn→∞

∫
RN

|∇un|pdx =

∫
RN

dµ+ µ∞;

(v) µ∞ ≥ Sν
p/p∗

∞ .

Lemma 2.5.

(i) The functional

F(v) :=

∫
RN

k(x)|f(v)|qdx

is well defined and weakly continuous on D1,p(RN ). Moreover, F(v) is
continuously differentiable; its derivative

F ′ : D1,p(RN ) −→ (D1,p(RN ))∗

is given by

⟨F ′(v), h⟩ = p

∫
RN

k(x)|f(v)|p−2f(v)f ′(v)h dx.

(ii) The functional

G(v) :=
∫
RN

|f(v)|2(p
∗)dx

is well defined. Moreover, G(v) is continuously differentiable; its deriv-
ative

G′ : D1,p(RN ) −→ (D1,p(RN ))∗

is given by

⟨G′(v), h⟩ = 2(p∗)

∫
RN

f(v)2(p
∗)−1f ′(v)h dx.
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Proof. First, by Lemma 2.1 (f3) and (f6), it is clear that F(v) and
G(v) are well defined on D1,p(RN ). Next, we prove that F(v),G(v) ∈
C1(RN ). It suffices to show that both F(v) and G(v) have continuous
Gâteaux derivatives on D1,p(RN ), see [49]. We consider only F(v)
since the proof for G(v) is simpler. Our proof is similar to [49,
Lemma 3.10]. Let v, g ∈ D1,p(RN ). Given 0 < |t| < 1, by the mean
value theorem, there exists a λ ∈ (0, 1) such that

||f(v + tg)|q − |f(v)|q|
|t|

= q|f(v + tλg)|q−1|f ′(v + tλg)||g|

≤ c|v + tλg|(q−2)/2|g| ≤ c(|v|(q−2)/2|g|+ |g|q/2).

By the Hölder inequality, we have∫
RN

k(x)(|v|(q−2)/2|g|+ |g|q/2) dx

≤ ∥k(x)∥r∥g∥p∗(∥v∥(q−2)/2 + ∥g∥(q−2)/2).

It follows from the Lebesgue dominated convergence theorem that F(v)
is Gâteaux differentiable and

⟨F ′(v), g⟩ = p

∫
RN

k(x)|f(v)|q−2f(v)f ′(v)g dx.

Now, we prove continuity of the Gâteaux derivative. Assume that
vn → v in D1,p(RN ); then f2(vn) → f2(v) in D1,p(RN ). By the
continuity of the embedding D1,p(RN ) ↩→ Lp∗

(RN ), f2(vn) → f2(v)
in Lp∗

(RN ). Let us define K(v) := pk(x)|f(v)|q−2f(v)f ′(v). Then
K ∈ (Lp∗

(RN ), C(Lp∗
(RN ))′). The proof is analogous to [27] and [49,

Theorem A.4]. It follows that K(vn) → K(v) in (Lp∗
(RN ))′. Using the

Hőlder and Sobolev inequalities, we have

⟨F ′(vn)−F ′(v), g⟩ ≤ ∥K(vn)−K(v)∥(p∗)′∥g∥p∗

≤ c∥K(vn)−K(v)∥(p∗)′∥g∥.

Hence, ∥F ′(vn)−F ′(v)∥ → 0 and F ∈ C1. �

Recall that a C1 functional J on Banach space X is said to satisfy
the Palais-Smale condition at level c, denoted (PS)c, if every sequence
{un} ⊂ X satisfying lim

n→∞
J(un) = c and lim

n→∞
∥J(un)∥X∗ = 0 has a

convergent subsequence.
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Lemma 2.6. Assume that 2 < q < 2p. Then, any (PS)c sequence {vn}
is bounded in D1,p(RN ).

Proof. Let {vn} be a (PS)c sequence, that is,

(2.3)

c+ o(1) = J(vn)

=
a

p

∫
RN

|∇vn|pdx

+
b

2

(∫
RN

1

p
|f ′(vn)|p|∇vn|pdx

)2

− α

q

∫
RN

k(x)|f(vn)|qdx− β

2(p∗)

∫
RN

|f(vn)|2(p
∗)dx,

and, for any w ∈ D1,p(RN ),

(2.4)

o(1)∥vn∥ = ⟨J ′(vn), w⟩

= a

∫
RN

|∇vn|p−2∇vn∇w dx

− α

∫
RN

k(x)|f(vn)|q−2f(vn)f
′(vn)w dx

− β

∫
RN

f2(p∗)−1(vn)f
′(vn)w dx

+ b

(∫
RN

1

p

|∇vn|p

1 + 2p−1|f(vn)|p
dx

)
Υ,

where

Υ =

(∫
RN

|∇vn|p−2∇vn∇w(1 + 2p−1|f(vn)|p)
[1 + 2p−1|f(vn)|p]2

− 2p−1|∇vn|p|f(vn)|p−2f(vn)f
′(vn)w

[1 + 2p−1|f(vn)|p]2
dx

)
.

Choose
w = wn = p

√
1 + 2p−1|f(vn)|pf(vn).

We have wn ∈ D1,p(RN ). From (f4), and, since

|∇wn| =
(
1 +

2p−1|f(vn)|p

1 + 2p−1|f(vn)|p

)
|∇vn|,
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we deduce that ∥wn∥ ≤ c∥vn∥. In particular, noting that {vn} is a
(PS)c consequence,

(2.5)

o(1)∥vn∥ = ⟨J ′(vn), wn⟩

= a

∫
RN

(
1 +

2p−1|f(vn)|p

1 + 2p−1|f(vn)|p

)
|∇vn|pdx

+
b

p

(∫
RN

|∇vn|p

1 + 2p−1|f(vn)|p
dx

)2

− α

∫
RN

k(x)|f(vn)|qdx− β

∫
RN

f2(p∗)(vn) dx.

By equations (2.3) and (2.5), we have

c+ o(1)∥vn∥ = J(vn)−
1

2(p∗)
⟨J ′(vn), wn⟩

= a

∫
RN

[
1

p
− 1

2(p∗)

(
1 +

2p−1|f(vn)|p

1 + 2p−1|f(vn)|p

)]
|∇vn|pdx

+

(
1

p
− 1

p∗

)
b

2p

(∫
RN

|f ′(vn)|p|∇vn|pdx
)2

+

(
1

2(p∗)
− 1

q

)
α

∫
RN

k(x)|f(vn)|pdx

≥ a

N

∫
RN

|∇vn|pdx+
b

2Np

(∫
RN

|f ′(vn)|p|∇vn|pdx
)2

− α

r

∫
RN

k(x)|f(vn)|qdx ≥ a

N

∫
RN

|∇vn|pdx(2.6)

− α

r

∫
RN

k(x)|f(vn)|pdx ≥ a

N

∫
RN

|∇vn|pdx

− α

r

(∫
RN

|k(x)|rdx
)1/r(∫

RN

|f(vn)|2(p
∗)dx

)q/2(p∗)

≥ a

N

∫
RN

|∇vn|pdx− α

pr

(∫
RN

|k(x)|rdx
)1/r

·
(∫

RN

|∇f2(vn)|pdx
)q/2p

≥ a

N
∥vn∥p − c∥vn∥q/2,

which implies that {vn} is bounded since q < 2p. �
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The next result from [40] will be useful in the sequel.

Lemma 2.7 ([50]). Let Ω ⊆ RN be an open subset, {un} ⊆ W 1,p
0 (Ω)

a sequence such that un ⇀ u in W 1,p
0 (Ω) and p ≥ 2. Then,

lim
n→∞

∫
Ω

|∇un|pdx ≥ lim
n→∞

∫
Ω

|∇un −∇u|pdx+ lim
n→∞

∫
Ω

|∇u|pdx.

Lemma 2.8. Let c < 0 and 2 < q < 2p.

(i) For any β > 0, there exists an α0 > 0 such that, if 0 < α < α0,
then J satisfies (PS)c.

(ii) For any α > 0, there exists a β0 > 0 such that, if 0 < β < β0,
then J satisfies (PS)c.

Proof. Let {vn} be a (PS)c sequence. By Lemma 2.6, {vn} is
bounded in D1,p(RN ). It is easy to check that {f(vn)} is also bounded
in D1,p(RN ). Therefore, we can assume that vn ⇀ v in D1,p(RN ),
vn → v almost everywhere in RN , since if f ∈ C∞, then |f(vn)|2 →
|f(v)|2 almost everywhere in RN and then |f(vn)|2 ⇀ |f(v)|2 in
D1,p(RN ). Thus, there exist measures µ and ν such that |∇f2(vn)|p ⇀
µ, f2(p∗)(vn) ⇀ ν. Let xj be a singular point of the measures µ and ν.
We define a function ϕ(x) ∈ C∞

0 (RN ) such that ϕ(x) = 1 in B(xj , ϵ),
ϕ(x) = 0 in RN \B(xj , 2ϵ) and |∇ϕ| ≤ 2/ϵ in RN . Let

w̃n = p
√

1 + 2p−1|f(vn)|pf(vn)ϕ.

Then {w̃n} is bounded in D1,p(RN ). Obviously, ⟨J ′(vn), w̃nϕ⟩ → 0,
i.e.,

− lim
n→∞

[
a

∫
RN

p
√
1 + 2p−1|f(vn)|pf(vn)|∇vn|p−2∇vn∇ϕdx

+
b

p

(∫
RN

|∇vn|p

1+2p−1|f(vn)|p
dx

)(∫
RN

f(vn)|∇vn|p−2∇vn∇ϕ

(1+2p−1|f(vn)|p)(p−1)/p
dx

)]

= lim
n→∞

{
a

∫
RN

(
1 +

2p−1|f(vn)|p

1 + 2p−1|f(vn)|p

)
|∇vn|pϕdx

(2.7)



KIRCHHOFF-TYPE PROBLEMS 539

+
b

p

(∫
RN

|∇vn|p

1 + 2p−1|f(vn)|p
dx

)(∫
RN

|∇vn|pϕ
1 + 2p−1|f(vn)|p

dx

)
− α

∫
RN

k(x)|f(vn)|qϕdx− β

∫
RN

f2(p∗)(vn)ϕdx

}
.

On the other hand, by the Hölder inequality and (f4), we have that

0 ≤ lim
ϵ→0

lim
n→∞

∣∣∣∣a∫
RN

p
√

1 + 2p−1|f(vn)|pf(vn)|∇vn|p−2∇vn∇ϕdx

∣∣∣∣
≤ C lim

ϵ→0
lim

n→∞

∫
RN

|vn||∇vn|p−1|∇ϕ| dx(2.8)

≤ C lim
ϵ→0

lim
n→∞

[(∫
RN

|∇vn|pdx
)(p−1)/p(∫

RN

|vn∇ϕ|pdx
)1/p]

≤ C lim
ϵ→0

(∫
B(xj ,2ϵ)

|v|p
∗
dx

)1/p∗

= 0.

Similarly, we have

(2.9)

lim
ϵ→0

lim
n→∞

[
b

p

(∫
RN

|∇vn|p

1 + 2p−1|f(vn)|p
dx

)
·
(∫

RN

f(vn)|∇vn|p−2∇vn∇ϕ

(1 + 2p−1|f(vn)|p)(p−1)/p
dx

)]
= 0.

From equations (2.7)–(2.9), by the weak continuity of F(v), we obtain

0 = lim
n→∞

{
a

∫
RN

(
1 +

2p−1|f(vn)|p

1 + 2p−1|f(vn)|p

)
|∇vn|pϕdx

+
b

p

(∫
RN

|∇vn|p

1 + 2p−1|f(vn)|p
dx

)(∫
RN

|∇vn|pϕ
1 + 2p−1|f(vn)|p

dx

)

− α

∫
RN

k(x)|f(vn)|qϕdx− β

∫
RN

f2(p∗)(vn)ϕdx

}(2.10)

≥ lim
ε→0

[
a

2

∫
RN

ϕ|∇f2(vn)|pdx− α

∫
RN

k(x)|f(vn)|qϕdx

− β

∫
RN

f2(p∗)(vn)ϕdx

]
=

a

2
µj − βνj .
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Hence, 2βνj ≥ aµj . Combining this with Lemma 2.3, we obtain

νj ≥ 2−1β−1aSν
p/p∗

j . This result implies that

(I) νj = 0, or

(II) νj ≥ (2−1β−1aS)N/p.

In order to obtain the possible concentration of mass at infinity, we
similarly define a cut-off function ϕR ∈ C∞

0 (RN ) such that ϕR(x) = 0
on |x| < R and ϕR(x) = 1 on |x| > R + 1. Since {ϕRwn} is bounded
in D1,p(RN ), we have
(2.11)

− lim
n→∞

[
a

∫
RN

p
√
1 + 2p−1|f(vn)|pf(vn)|∇vn|p−2∇vn∇ϕR dx

+
b

p

(∫
RN

|∇vn|p

1+2p−1|f(vn)|p
dx

)(∫
RN

f(vn)|∇vn|p−2∇vn∇ϕR

(1+2p−1|f(vn)|p)(p−1)/p
dx

)]
= lim

n→∞

{
a

∫
RN

(
1 +

2p−1|f(vn)|p

1 + 2p−1|f(vn)|p

)
|∇vn|pϕR dx

+
b

p

(∫
RN

|∇vn|p

1 + 2p−1|f(vn)|p
dx

)(∫
RN

|∇vn|pϕR

1 + 2p−1|f(vn)|p
dx

)
− α

∫
RN

k(x)|f(vn)|qϕR dx− β

∫
RN

f2(p∗)(vn)ϕR dx

}
.

It is easy to prove that

lim
R→∞

lim
n→∞

a

∫
RN

p
√
1 + 2p−1|f(vn)|pf(vn)|∇vn|p−2∇vn∇ϕR dx = 0

and

lim
R→∞

lim
n→∞

[
b

p

(∫
RN

|∇vn|p

1 + 2p−1|f(vn)|p
dx

)
·
(∫

RN

f(vn)|∇vn|p−2∇vn∇ϕR

(1 + 2p−1|f(vn)|p)(p−1)/p
dx

)]
= 0.

Using the weak continuity of F , we have

lim
R→∞

lim
n→∞

∫
|x|>R

k(x)|f(vn)|qϕR dx = 0.

Therefore, by
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0 = lim
n→∞

{
a

∫
RN

(
1 +

2p−1|f(vn)|p

1 + 2p−1|f(vn)|p

)
|∇vn|pϕR dx

+
b

p

(∫
RN

|∇vn|p

1 + 2p−1|f(vn)|p
dx

)
(∫

RN

|∇vn|pϕR

1 + 2p−1|f(vn)|p
dx− β

∫
RN

f2(p∗)(vn)ϕR dx

)}
.

By Lemma 2.3, we have that either

(III) ν∞ = 0, or
(IV) ν∞ ≥ (2−1β−1aS)N/p.

Next, we claim that (II) and (IV) cannot occur if α, β are properly
chosen. In fact, from the weak lower semicontinuity of the norm and
the weak continuity of F , we have

0 > c = lim
n→+∞

(
J(vn)−

1

2(p∗)

⟨
J ′(vn),

p
√
1 + 2p−1|f(vn)|pf(vn)

⟩)
= lim

n→+∞

{
a

∫
RN

[
1

p
− 1

2(p∗)

(
1 +

2p−1|f(vn)|p

1 + 2p−1|f(vn)|p

)]
|∇vn|pdx

+

(
1

p
− 1

p∗

)
b

2p

(∫
RN

|f ′(vn)|p|∇vn|pdx
)2

+

(
1

2(p∗)
− 1

q

)
α

∫
RN

k(x)|f(vn)|pdx
}

≥ lim
n→+∞

{
a

N

∫
RN

|∇vn|pdx− α

qr

∫
RN

k(x)|f(vn)|qdx
}

≥ a

N

∫
RN

|∇v|pdx− α

qr

(∫
RN

|k(x)|rdx
)
1/r

(∫
RN

|f(v)|2(p
∗)dx

)
q/2(p∗)

≥ a

2N

∫
RN

|∇f2(v)|pdx− α

pr
∥k(x)∥r∥f2(v)∥q/2p∗

≥ aS

2N
∥f2(v)∥pp∗ − α

qr
∥k(x)∥r∥f2(v)∥q/2p∗ .

This inequality implies that

∥f2(vn)∥p∗ ≤ cα2/(2p−q).
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Therefore,

0 > c = lim
n→+∞

(
J(vn)−

1

2(p∗)

⟨
J ′(vn),

p
√
1 + 2p−1|f(vn)|pf(vn)

⟩)(2.12)

= lim
n→+∞

{
a

∫
RN

[
1

p
− 1

2(p∗)

(
1 +

2p−1|f(vn)|p

1 + 2p−1|f(vn)|p

)]
|∇vn|pdx

+

(
1

p
− 1

p∗

)
b

2p

(∫
RN

|f ′(vn)|p|∇vn|pdx
)2

+

(
1

2(p∗)
− 1

q

)
α

∫
RN

k(x)|f(vn)|pdx
}

≥ lim
n→+∞

{
a

N

∫
RN

|∇vn|pdx− α

qr

∫
RN

k(x)|f(vn)|qdx
}

≥ lim
R→+∞

lim
n→+∞

{
a

N

∫
RN

|∇vn|pϕR dx− α

qr
∥k(x)∥r∥f2(v)∥q/2p∗

}
≥ a

2N
µ∞ − cαq/(2p−q)

≥ a

2N
(2β)(p−N)/pSN/p − cαq/(2p−q).

However, if α > 0 is given, we can choose β0 small enough such that, for
every 0 < β < β0, the last term on the right-hand side of equation (2.12)
is greater than zero, which is a contradiction. Similarly, if β > 0 is
given, we can take α0 small enough such that, for every 0 < α < α0,
the last term on the right-hand side of equation (2.12) is greater than
zero. Similarly, we are able to prove that (II) cannot occur for each j.
Hence, ∫

RN

f2(p∗)(vn) dx −→
∫
RN

f2(p∗)(v) dx as n → +∞

and∫
RN

k(x)(|f(vn)|q−|f(v)|q) dx≤∥k(x)∥r∥|f(vn)|q−|f(v)|q∥2(p∗)/q−→ 0

as n → +∞. Thus, from the weak lower semicontinuity of the norm
and f ∈ C∞, we have
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o(1)∥vn∥ = ⟨J ′(vn), wn⟩

= a

∫
RN

(
1 +

2p−1|f(vn)|p

1 + 2p−1|f(vn)|p

)
|∇vn|pdx

+
b

p

(∫
RN

|∇vn|p

1 + 2p−1|f(vn)|p
dx

)2

− α

∫
RN

k(x)|f(vn)|qdx− β

∫
RN

f2(p∗)(vn) dx

= a∥vn∥p + a

∫
RN

2p−1|f(vn)|p

1 + 2p−1|f(vn)|p
|∇vn|pdx

+
b

p

(∫
RN

|∇vn|p

1 + 2p−1|f(vn)|p
dx

)2

− α

∫
RN

k(x)|f(vn)|qdx− β

∫
RN

f2(p∗)(vn) dx

≥ a∥vn − v∥p + a∥v∥p + a

∫
RN

2p−1|f(v)|p

1 + 2p−1|f(v)|p
|∇v|pdx

+
b

p

(∫
RN

|∇v|p

1 + 2p−1|f(v)|p
dx

)2

− α

∫
RN

k(x)|f(v)|pdx

− β

∫
RN

f2(p∗)(v) dx

= a∥vn − v∥p + o(1)∥v∥,

since J ′(v) = 0. Thus, we have proved that {vn} strongly converges to
v in D1,p(RN ). �

3. Proof of Theorem 1.1. In this section, we prove the existence
of infinitely many solutions of equation (1.1) which tend to 0. Let X
be a Banach space, and denote

Σ := {A ⊂ X \ {0} :

A is closed in Xand symmetric with respect to the orgin}.

For A ∈ Σ, we define genus γ(A) as

γ(A) := inf{m ∈ N : there exists φ ∈ C(A,Rm\{0},−φ(x) = φ(−x))}.
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If there is no mapping φ as above for any m ∈ N , then γ(A) = +∞.
Let Σk denote the family of closed, symmetric subsets A of X such
that 0 ̸∈ A and γ(A) ≥ k. We list some properties of the genus, see
[25, 45].

Proposition 3.1. Let A and B be closed, symmetric subsets of X
which do not contain the origin. Then, the following conditions hold.

(i) If there exists an odd continuous mapping from A to B, then
γ(A) ≤ γ(B);

(ii) if there is an odd homeomorphism from A to B, then γ(A) =
γ(B);

(iii) if γ(B) < ∞, then γ(A \B) ≥ γ(A)− γ(B);
(iv) then, n-dimensional sphere Sn has a genus of n+1 by the Borsuk-

Ulam theorem;
(v) if A is compact, then γ(A) < +∞, and there exists a δ > 0 such

that Uδ(A) ∈ Σ and γ(Uδ(A)) = γ(A), where Uδ(A) = {x ∈ X :
∥x−A∥ ≤ δ}.

The next version of the symmetric mountain pass lemma is due to
Kajikiya [25].

Lemma 3.2. Let E be an infinite-dimensional space and J ∈ C1(E,R),
and suppose that the following conditions hold.

(C1) J(u) is even, bounded from below, J(0) = 0 and J(u) satisfies
the local Palais-Smale condition, i.e., for some c > 0, in the
case when every sequence {uk} in E satisfying limk→∞ J(uk) =
c < c and limk→∞ ∥J ′(uk)∥E∗ = 0 has a convergent subse-
quence;

(C2) for each k ∈ N , there exists an Ak ∈ Σk such that supu∈Ak
J(u)

< 0.

Then, either (R1) or (R2) holds.

(R1) There exists a sequence {uk} such that J ′(uk) = 0, J ′(uk) < 0
and {uk} converges to 0;

(R2) there exist two sequences {uk} and {vk} such that J ′(uk) = 0,
J(uk) < 0, uk ̸= 0, limk→∞ uk = 0, J ′(vk) = 0, J(vk) < 0,
limk→∞ J(vk) = 0 and {vk} converges to a non-zero limit.
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Remark 3.3. Lemma 3.2 provides a sequence {uk} of critical points
such that J(uk) ≤ 0, uk ̸= 0 and limk→∞ uk = 0.

In order to obtain infinitely many solutions we need some lemmas.
Let J(v) be the previously defined functional. Then

J(v) :=
a

p

∫
RN

|∇v|pdx+
b

2

(∫
RN

1

p
|f ′(v)|p|∇v|pdx

)2

− α

q

∫
RN

k(x)|f(v)|qdx− β

2(p∗)

∫
RN

|f(v)|2(p
∗)dx

≥ a

p

∫
RN

|∇v|pdx

− α

p

(∫
RN

|k(x)|rdx
)1/r(∫

RN

f2(p∗)(v) dx

)q/(2(p∗))

− β

2(p∗)

∫
RN

|f(v)|2(p
∗)dx

≥ a

p

∫
RN

|∇v|pdx− αc1∥f(v)∥q/2 − βc2∥f(v)∥2(p
∗)

≥ a

p

∫
RN

|∇v|pdx− αc1∥v∥q/2 − βc2∥v∥p
∗
.

Let
Q(t) :=

a

p
tp − αc1t

q/2 − βc2t
p∗
.

Then, it is easy to see that, given β > 0, there exists an α1 > 0 small
enough such that, for every 0 < α < α1, there exist t0 and t1 such that
0 < t0 < t1, Q(t) > 0 for t0 < t < t1, Q(t) < 0 for t > t1 and 0 < t < t0.
Similarly, given α > 0, we can choose β1 > 0 with the property that
t0, t1 as above exist for each 0 < β < β1. Clearly, Q(t0) = 0 = Q(t1).
Following the same idea as in [19], we consider the truncated functional

(3.1)

J̃(v) =
a

p

∫
RN

|∇v|pdx+
b

2

(∫
RN

1

p
|f ′(v)|p|∇v|pdx

)2

− α

q

∫
RN

k(x)|f(v)|qdx− β

2(p∗)
φ(v)

∫
RN

|f(v)|2(p
∗)dx,

where φ(v) = χ(∥v∥) and χ : R+ → [0, 1] is a non-increasing C∞
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function such that χ(t) = 1 if t ≤ t0 and χ(t) = 0 if t ≥ t1. Thus,

J̃(v) ≥ Q(∥v∥),

where
Q(t) =

a

p
tp − αc1t

q/2 − βc2t
p∗
φ(t).

It is clear that J̃(v) ∈ C1 and is bounded from below.

Using the above arguments, we obtain the following.

Lemma 3.4. Let J̃(v) be as defined in equation (3.1). Then,

(i) if J̃(v) < 0, then ∥v∥ ≤ T0 and J̃(v) = J(v);
(ii) for any β > 0, there exists an α∗ such that, if 0 < α < α∗ and

c < 0, then J̃(v) satisfies (PS)c;
(iii) for any α > 0, there exists a β∗ such that, if 0 < β < β∗ and

c < 0, then J̃(v) satisfies (PS)c.

Remark 3.5. Denote

Kc = {v ∈ D1,p(RN ) : J̃ ′(v) = 0, J̃(v) = c}.

If α, β are as in Lemma 3.4 (ii) or (iii), then it follows from (PS)c that
Kc (c < 0) is compact.

Lemma 3.6. Let

Kc = {v ∈ D1,p(RN ) : J̃ ′(v) = 0, J̃(v) = c}.

Then, for any m ∈ R, there is an εm < 0 such that γ(J̃εm) ≥ m.

Proof. Denote by D1,p
0 (Ω) the closure of C∞

0 (Ω) with respect to

the norm ∥u∥ = (
∫
Ω
|∇u|p)1/p. Extending functions in D1,p

0 (Ω) by 0

outside Ω, we may assume that D1,p
0 (Ω) ⊂ D1,p(RN ). Let Xm be an m-

dimensional subspace of D1,p
0 (Ω). For any v ∈ Xm, v ̸= 0, use v = rmw

with w ∈ Xm and ∥w∥ = 1. From the assumptions of k(x), it is easy
to see that, for every w ∈ Xm with ∥w∥ = 1, there exist dm > 0 such
that ∫

Ω

k(x)|w|q/2dx ≥ dm.
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Thus, 0 < rm < T0. Since all the norms are equivalent and 0 < |Ω| <
+∞, using (f1) and (f4), we obtain

J̃(v) = J(v)

=
a

p

∫
RN

|∇v|pdx+
b

2

(∫
RN

1

p
|f ′(v)|p|∇v|pdx

)2

− α

q

∫
RN

k(x)|f(v)|qdx− β

2(p∗)

∫
RN

|f(v)|2(p
∗)dx

≤ a

p

∫
Ω

|∇v|pdx+
b

2p2

(∫
Ω

|f ′(v)|p|∇v|pdx
)2

− α

q

∫
Ω

k(x)(c|v|q/2 + c) dx− β

2(p∗)

∫
Ω

(v2(p
∗) + c) dx

≤ a

p

∫
Ω

|∇v|pdx+
b

2p2

(∫
Ω

|∇v|pdx
)2

− cα

q

∫
Ω

k(x)|v|q/2dx− cβ

2(p∗)

∫
Ω

v2(p
∗)dx− c

≤ a

p
rpm +

b

2p2
r2pm − αdmrq/2m − βcrp

∗

m − c

:= εm.

Hence, we may choose rm ∈ (0, T0) small enough such that J̃(v) <
εm < 0. Let

Srm = {v ∈ D1,p(RN ); ∥v∥ = rm}.

Then, Srm∩Xm ⊂ J̃εm . Using Proposition 3.1 (ii), we obtain γ(J̃εm) ≥
γ(Srm∩Xm) ≥ m. Therefore, we can denote Γm = {A ∈ Σ; γ(A) ≥ m},
and let

(3.2) cm := inf
A∈Γm

sup
v∈A

J̃(v).

Then

(3.3) −∞ < cm ≤ εm < 0, m ∈ N,

because J̃εm ∈ Γm and J̃ is bounded from below. �

Lemma 3.7. Let α, β be as in Lemma 3.4 (ii) or (iii). Then, all cm
given by equation (3.2) are critical values of J̃ and cm → 0 as m → ∞.
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Proof. It is clear that cm ≤ cm+1. By equation (3.3), we have
cm < 0. Hence, cm → c ≤ 0. Moreover, as (PS)c is satisfied, it
follows from a standard argument [45] that all cm are critical values of

J̃ . We claim that c = 0. If c < 0, then, by Remark 3.5, Kc̄ is compact
and Kc̄ ∈ Σ. It follows that γ(Kc̄) = m0 < +∞, and there exists a
δ > 0 such that γ(Kc̄) = γ(Nδ(Kc̄)) = m0. By the deformation lemma,
there exist ϵ > 0 (c+ ϵ < 0) and an odd homeomorphism η such that

(3.4) η(J̃ c̄+εm \Nδ(Kc̄)) ⊂ J̃ c̄−ϵ.

Since cm is increasing and converges to c, there exists an m ∈ N such
that cm > c− ϵ and cm+m0 ≤ c. There exists an A ∈ Γm+m0 such that

supu∈A J̃(u) < c+ ϵ. By Proposition 3.1, we have
(3.5)

γ(A \Nδ(Kc̄)) ≥ γ(A)− γ(Nδ(Kc̄)), γ(η(A \Nδ(Kc̄))) ≥ m.

Therefore, we have
η(A \Nδ(Kc̄)) ∈ Γm.

Consequently,

(3.6) sup
u∈η(A\Nδ(Kc̄))

J̃(u) ≥ cm > c− ϵ.

On the other hand, by equations (3.4) and (3.5), we have

(3.7) η(A \Nδ(Kc̄)) ⊂ η(J̃ c̄+ϵ \Nδ(Kc̄)) ⊂ J̃ c̄,

which contradicts equation (3.6). Hence, cn → 0 as n → ∞. �

Now, we provide the proof of Theorem 2.2.

Proof of Theorem 2.2. By Lemma 3.4 (i), J̃(v) = J(v) if J̃ < 0.
This and Lemma 3.7 give the result. �

Proof of Theorem 1.1. The proof follows from Theorem 2.2, since
um = f(vm) ̸= un = f(vn) if vm ̸= vn and f ∈ C∞. �
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