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ON THE DIVISIBILITY GRAPH FOR
FINITE SETS OF POSITIVE INTEGERS

ADELEH ABDOLGHAFOURIAN AND MOHAMMAD A. IRANMANESH

ABSTRACT. Let X be a finite set of positive integers.
The divisibility graph D (X) is a directed graph with vertex
set X\{1} and an arc from a to b whenever a divides b.
Since the divisibility graph and its underlying graph have
the same number of connected components, we consider the
underlying graph of D (X), and we denote it by D(X). In
this paper, we will find some graph theoretical parameters
of D(X), some relations between the structure of D(X), and
the structure of known graphs Γ(X), ∆(X) and B(X) will
be considered. In addition, we investigate some properties of
D(XY ) for the product of two non-empty subsets X and Y
of positive integers.

1. Introduction.

1.1. Background and motivation. There are several graphs asso-
ciated to a set of positive integers. Some of these graphs, such as the
prime vertex graph and the common divisor graph, were introduced
by Lewis [6]. Inspired by the connection between these two graphs,
Praeger and the second author defined the bipartite divisor graph.
In [2], the divisibility graph D (X) for a non-empty subsetX of positive
integers was introduced. In [2, Question 7], the authors asked for the
number of connected components of D (G) where D (G) = D (cs (G))
and cs (G) is the set of conjugacy class sizes of a finite group G. As
a partial answer to that question the authors [1] calculated the num-
ber of connected components of D (G), where G is a symmetric or an
alternating permutation group.

Let X be a non-empty set of integers, and let X∗ = X \ {1}. Since
the number of connected components of D (X) and its underlying graph
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is the same, we prefer to investigate the combinatorial properties of the
underlying graph.

Our aim in this paper is to investigate some combinatorial properties
of D(X) (in particular, the number of connected components) and find
the relation between this graph and three important graphs, namely,
Γ(X), ∆(X) and B(X). For more information about Γ(X), ∆(X) and
B(X), we refer the reader to [5, 6]. In addition, a survey on results
for B(X) and B(G) can be found in [4].

In the following, we recall some important graphs associated with
an arbitrary non-empty subset X of positive integers (see [2, 5, 6]).

(1) The common divisor graph Γ(X) is a simple graph with vertex set
X∗. Two elements of X∗ are adjacent whenever their greatest common
divisor is greater than 1.

(2) The prime vertex graph ∆(X) is a simple graph with vertex set
ρ (X). Two primes p and q are adjacent if there exist x ∈ X such that
p q divides x.

(3) The bipartite divisor graph B(X) is a bipartite graph with a
vertex set which is a disjoint union of two sets X∗ and ρ (X). The
prime p is adjacent to x if and only if p divides x.

(4) The divisibility graph D (X) is a directed graph with vertex set
X∗. For two elements a, b ∈ X∗, there is a directed edge from a to b if
a divides b.

It can easily be seen that, if there exists a simple directed path
between two distinct elements a, b of X∗ in D (X), then a divides b.
This implies that there is no directed path from b to a. Hence, to
study the parameters of D (X), we consider its underlying graph which
is denoted by D(X). Note that D(X) is a simple graph with vertex set
X∗ and E(D(X)) = {{a, b}; a divides b or b divides a}.

1.2. Notation and statement of results. Throughout this paper,
we consider simple graphs, where by a simple graph we mean a graph
with no multiple edges or loops. LetX be a finite set of positive integers
and X∗ = X \ {1}. For an arbitrary set x ∈ X,

ρ (x) = {p; p is prime and p divides x}
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and
ρ (X) =

∪
x∈X

ρ (x).

Let G = (V (G), E(G)) and H = (V (H), E(H)) be two simple graphs.
We say G is isomorphic to H, and we write G ∼= H if and only if there
is a bijection f : V (G) → V (H) such that {a, b} ∈ E(G) whenever
{f(a), f(b)} ∈ E(H). For a vertex v ∈ G, the set of its neighbors is
denoted by N(v). Moreover, if S ⊆ V (G), the neighborhood of S is
defined by

N(S) =
∪
v∈S

N(v).

A path and a cycle with n vertices are denoted by Pn and Cn,
respectively. Let G be a graph. The distance between two vertices
a and b in G is denoted by dG (a, b), and, if the graph is clear from
the context, we suppress G in our notation and write d (a, b). For a
graph G, the diameter, number of connected components, connected
components containing x and the girth are denoted by diam(G), n(G),
[x]G and g(G), respectively. For the definition of these parameters we
refer the reader to [7]. Remember that, for an acyclic graph G, the
girth is 0. For a disconnected graph G we let diam(G) = ∞.

In a simple directed graph G we denote the number of directed edges
from v to another vertex of V (G ) by d+(v). Also, d−(v) is the number
of edges directed from another vertex to v. If there is a vertex v such
that d−(v) = 0, (d+(v) = 0), we say that v is a source (sink). In
addition,

N+(v) = {w ∈ V (G ); (v, w) ∈ E(G )}

and

N−(v) = {w ∈ V (G ); (w, v) ∈ E(G )}.

Other notation is common and may be found in [7].

In Section 2, we prove that a graph G is isomorphic to D(X) if
and only if G is a comparability graph. In Section 3, we investigate the
relations among ∆(X), Γ(X), B(X) and D(X). In particular, we prove
that, if any vertices of B(X) have degree < 3, then D(X) is acyclic.
Finally, in Section 4, we find some conditions of two non-empty subsets
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X and Y so that D(XY ) is isomorphic to the strong product of D(X)
and D(Y ).

2. Representing graphs as D(X). In this section, we find some
conditions for a simple graph to be the underlying graph of a divisibility
graph.

A transitive orientation of a graph G is an orientation D such that,
whenever (x, y) and (y, z) are edges in D, there is also an edge (x, z) in
G that is oriented from x to z in D. A simple graph G is a comparability
graph if it has a transitive orientation (see [7, Definition 5.3.23]).

If G is a comparability graph, then we use
−→
G to denote a directed

graph obtained by its transitive orientation from G. Note that a finite
comparability graph may have more than one transitive orientation.

We claim that every finite comparability graph has at least one

source. Conversely, suppose that d−(v) > 0 for every v ∈ V (
−→
G ). Let v1

be an arbitrary vertex and (v2, v1) ∈ E(
−→
G ). Since d−(v) > 0 for every

vertex, we choose a directed walkW with end vertex v1. Now the finite-
ness of G yields that W contains a directed cycle vi1vi2vi3 · · · vik−1

vi1 .

Since the orientation on
−→
G is transitive, it is possible to remove some

vertices from this path and find that {vi1vik} ∈ E(G). Since {vikvi1}
is an edge, this implies that G is not a simple graph, which is a contra-
diction.

In the following theorem, we show that any finite comparability
graph is isomorphic to a divisibility graph D(X) for some finite set X.

Theorem 2.1. There exists a finite set X ⊆ N such that G ∼= D(X) if
and only if the graph G is a comparability graph.

Proof. First, suppose that G is a comparability graph. Suppose that

s = max{d−(v); v ∈ V (
−→G )}.

Let
Ni = {v ∈ V (

−→
G ); d−(v) = i},

where 0 ≤ i ≤ s. In particular, N0 is the set of sources.
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Suppose that v ∈ Ni and w ∈ Nj where i ≤ j. If (w, v) ∈ E(
−→
G ),

then transitivity of the orientation yields that (x, v) ∈ E(
−→
G ) for

every x ∈ N−(w). This means that d−(v) ≥ d−(w) + 1, which is a
contradiction with i ≤ j. Therefore,

N−(Ni) ⊆
i−1∪
r=1

Nr,

for every 1 ≤ i ≤ s. In particular, each Ni is an independent set of G
for every 0 ≤ i ≤ s.

For every 0 ≤ i ≤ s, suppose that

|Ni| = ki and Ni = {vi1, . . . , viki}.

Suppose that
Pi = {pi1, . . . , piki} ⊆ N

is a set of pairwise distinct primes such that Pi ∩ Pj = ∅ where i ̸= j.
Let N ′

0 = P0, and define f0 : N0 → N ′
0 by

f0(v0i) = p0i, 1 ≤ i ≤ k0.

For 1 ≤ l ≤ k, let

N ′
l =

{
xli; xli = pli

l∏
j=1

fl−1(v(l−1)j), 1 ≤ i ≤ kl, v(l−1)j ∈ N−(vli)
}
,

and let fl : Nl → N ′
l be given by fl(vlt) = xlt, where 1 ≤ t ≤ kl. Set

X =

k∪
l=0

N ′
l ,

and define f : V (
−→
G ) → X by f |Nl

= fl. Then, f is a bijection from

V (
−→
G ) to V (D (X)) = X, which preserves the adjacency. This implies

that
−→
G ∼= D (X). Hence, G ∼= D(X). A simple example is shown in

Figure 1.

Conversely, suppose that G ∼= D(X) for a finite set of positive
integers X. It is obvious that G is a comparability graph. �

If G is a Y, Z-bigraph, then directing every edge from Y to Z yields
a transitive orientation. Hence, we have the following corollary.
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Figure 1. Example of comparable G for Theorem 2.1.

Corollary 2.2. For a connected Y, Z-bigraph B, there exists a finite
set of positive integers X such that B ∼= D(X).

Corollary 2.3. There exists X ⊆ N such that D(X) ∼= Cn if and only
if n is even or n = 3.

Proof. First, suppose that Cn
∼= D(X) for X ⊆ N. Then, by

Theorem 2.1, there is a transitive orientation on Cn. Let v0 ∈ V (
−→
Cn)

be a source. Then, d−(w) ≥ 1 for every w ∈ N(v0). Consider the
following cases.

Case (i). There is a w ∈ N(v0) such that d+(w) > 0. In this

case, there is a vertex w′ ∈ V (
−→
Cn) such that (w,w′) ∈ E(

−→
Cn) where

w ∈ N(v0). Since Cn is a comparability graph, then (v, w′) ∈ E(
−→
Cn).

So
−→
Cn contains the triangle v0 w w′. Therefore, in this case, n = 3.

Case (ii). d+(w) = 0 for all w ∈ N(v0). Suppose that N(v0) =
{v11, v12}. So v11 and v12 are sinks. For i ≥ 1, let N(vik) = {v(i−1)k,
v(i+1)k} where v01 = v02 = v0. Since Cn is a comparability graph, vi1
and vi2 are sinks if i is odd; otherwise, each is a source. Hence, vi1 and

vi2 are not adjacent. Now, finiteness of
−→
Cn yields that there is an i0

such that vi01 = vi02, and therefore, |V (
−→
Cn)| is even.
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Conversely, suppose that n is even. Since Cn is a bigraph, by
Corollary 2.2, Cn is a comparability graph, and by Theorem 2.1, there
is an X ⊆ N such that Cn

∼= D(X). For n = 3, let X = {a, ab, abc} for
arbitrary a, b, c ∈ N∗. It is easy to see that D(X) ∼= C3. �

If D(X) contains a cycle of odd length, say n, by the same argument
as in the proof of Corollary 2.3, it is found that D(X) contains a
triangle. So, we have the following corollary.

Corollary 2.4. The graph D(X) is bipartite if and only if it does not
contain a triangle.

3. Relating the graphs of ∆(X), Γ(X), B(X) and D(X). In
this section, we study certain parameters of a divisibility graph in
comparison to the three graphs Γ(X), ∆(X) and B(X). We also find
a relation between the structure of D(X) and the other graphs.

3.1. Distance, diameter, girth and the number of components.
Throughout this subsection, X is a finite subset of N and X ̸= {1}.
Since V (D(X)) = V (Γ(X)) and {a, b} ∈ E(D(X)) yield {a, b} ∈
E(Γ(X)), we obtain that D(X) is a subgraph of Γ(X). This is a key
component for studying the parameters of D(X).

Note that this relation does not imply that all parameters of these
graphs are the same. To show this, for every n ∈ N∗, suppose that
p1, . . . , pn are distinct primes. Let

X =
{
pi

n∏
j=1

pj , 1 ≤ i ≤ n
}
.

It is easy to see that Γ(X) = ∆(X) = Kn, B(X) = Kn,n, and D(X)
consists of n isolated vertices.

In the following example, we show that it is possible to find sets X
and Y such that D(X) ∼= D(Y ), while Γ(X) � Γ(Y ). We also find X
and Y such that D(X) � D(Y ), while Γ(X) ∼= Γ(Y ).

Example 3.1. If X = {24, 36} and Y = {2, 3}, then D(X) ∼= D(Y ) ∼=
2K1. However, Γ(X) ∼= K2 and Γ(Y ) ∼= 2K1. If X = {24, 36}
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and Y = {2, 12}, then D(X) ∼= 2K1 and D(Y ) ∼= K2. However,
Γ(Y ) ∼= Γ(Y ) ∼= K2.

Lemma 3.2. Some relations among D(X), Γ(X) and ∆(X) are as
follows:

(i) n(D(X)) ≥ n(Γ(X)) = n(∆(X)) = n(B(X)).
(ii) If [x]D(X) = [y]D(X), then dD(X)(x, y) ≥ dΓ(X)(x, y).
(iii) diam(D(X)) ≥ diam(Γ(X)).
(iv) If g(D(X)) ̸= 0, then g(D(X)) ≥ g(Γ(X)).
(v) If g(D(X)) ̸= 3, then g(D(X)) is even.
(vi) For every n ∈ N, there is a set X such that D(X) ∼= Pn.

Proof. Part (i) is an immediate consequence of [5, Lemma 1 (c)]
and the fact that E(D(X)) ⊆ E(Γ(X)). The proofs of (ii)–(iv) are
straightforward. Parts (v) and (vi) are obtained by Corollaries 2.3 and
2.2, respectively. �

In Table 1, we show that all possibilities given by Lemma 3.2 (i)–(iv)
can arise.

Table 1. Examples of all possibilities for Lemma 3.2.

X Γ(X) (left), D(X) (right) Parameters

{2, 6, 12, 14, 15}
2

6 12
14

15

2

6 12
14

15

n(D(X)) > n(Γ(X))
g(D(X)) = g(Γ(X))

dD(X)(6, 14) > dΓ(X)(6, 14)
dD(X)(6, 2) = dΓ(X)(6, 2)

{2, 3, 12, 18}

2

18 12

2

12

3

18

3

n(D(X)) = n(Γ(X))
g(D(X)) > g(Γ(X))

diam(D(X)) = diam(Γ(X))

{2, 6, 8}
2

6

2

6 88

diam(D(X)) > diam(Γ(X))
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3.2. Subgraphs of D(X) and B(X). Corollary 2.2 asserts that, if Y
is a finite set of positive integers, then there exists a finite set of positive
integers X, such that B(Y ) ∼= D(X). So, the structures of B(X) and
D(X) may be comparable.

Lemma 3.3.

(i) Suppose that Y ̸= {1} is a non-empty subset of N. If B(Y ) ∼=
D(X) for some nonempty subset X ̸= {1} of N, then there exist two
subsets X1 and X2 such that D(Xi) is a null graph for i = 1, 2; |X1| =
|Y |, |X2| = |ρ (Y )| and X = X1 ∪X2.

(ii) If X = X1∪X2 such that X1∩X2 = ∅ and D(Xi) is a null graph
for i = 1, 2, then there is a Y with D(X) ∼= B(Y ).

Proof.

(i) Since B(Y ) ∼= D(X), there is a bijection θ : V (B(Y )) →
V (D(X)). Now, since B(Y ) is a Y , ρ (Y )-bigraph, D(X) is also a
θ(Y ), θ(ρ (Y ))-bigraph. Let X1 = θ(Y ) and X2 = θ(ρ (Y )). Then,
since D(X) is bipartite, no two elements of X1 and X2 divide each
other.

(ii) By hypothesis, it is easy to see that D(X) is a bigraph. So, from
[5, Theorem 1], the proof is complete. �

Suppose X is a fixed finite subset of positive integers. The following
theorem describes a relation between the subgraph structures of D(X)
and B(X).

Theorem 3.4. If deg(v) ≤ 2 for every vertex v of B(X), then D(X)
is acyclic.

Proof. If deg(v) ≤ 2 for every vertex v of B(X), then every con-
nected component of B(X) is a path or a cycle of length n where n
is even. Let B1 be a connected component of B(X). If B1 is C4 or a
path, then by [5, Theorem 3], the corresponding connected component
of Γ(X) is acyclic, and hence, the corresponding connected component
of D(X) is acyclic. Suppose that

B1 = (p1, x1, p2, x2, . . . , pk, xk, p1)
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is a cycle of length 2k where k ≥ 3, and D1 is the connected component
of D(X) corresponding to B1. Obviously, V (D1) = {x1, x2, . . . , xk}.
Since, for each 1 ≤ i ≤ k, there is an element in ρ (xi) \ ρ (xj) where
j ̸= i, the set {x1, x2, . . . , xk} is an independent set in D(X). �

Now, suppose D(X) contains an induced subgraph D′ which is
isomorphic to the complete graph Kn, n ≥ 3. Comparability asserts
that this subgraph contains a source. If we omit this source from the
vertex set of D′, we obtain another induced subgraph isomorphic to
Kn−1, which has a source as well. By repetition of this method, we
conclude that the vertex set of D(X) is the set {v1, . . . , vn}, where vi
divides vj for every 1 ≤ i ≤ j ≤ n. If p is a prime divisor of v1,
then p divides each vi, 2 ≤ i ≤ n. Thus, the set {p, v1, v2, . . . , vn}
induces a subgraph K1,n in B(X). Specifically, every triangle in D(X)
creates an induced subgraph K1,3 in B(X). Since D(X) ⊆ Γ(X), by [5,
Theorem 2], we conclude that B(X) contains C6 or K1,3 as an induced
subgraph. In fact, if B(X) contains C6 as an induced subgraph, then
the corresponding subgraph of D(X) is acyclic. We will prove this fact
in Theorem 3.4. We obtain the following corollary.

Corollary 3.5. If D(X) contains a triangle, then B(X) contains K1,3

as an induced subgraph.

It is easy to see that, forX = {2, 6, 10}, the converses of Theorem 3.4
and Corollary 3.5 are valid.

4. Divisibility graph for the product of two sets. In this
section, we study the divisibility graph for the product of two non-
empty subsets of positive integers. Throughout this section, X and Y
are two non-empty subsets of positive integers.

The set {xy; x ∈ X, y ∈ Y } is denoted by XY . The Cartesian
product of X is Y , X × Y = {(x, y); x ∈ X, y ∈ Y }.

The strong product G1 �G2 of two graphs G1 and G2 is a graph with
vertex set {(x, y); x ∈ V (G1), y ∈ V (G2)}, and the two vertices (x1, y1)
and (x2, y2) are adjacent if one of the following conditions occurs [3,
Chapter 5].

(1) x1x2 ∈ E(G1) and y1y2 ∈ E(G2);
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(2) x1 = x2, y1y2 ∈ E(G2);
(3) x1x2 ∈ E(G1), y1 = y2.

Where u and v are vertices of a graph, we denote {u, v} ((u, v)),
for uv, where the graph is not directed (is directed).

Now, let ∼ be the equivalence relation on X × Y such that:

(x, y) ∼ (x′, y′) ⇐⇒ xy = x′y′.

Definition 4.1. For two non-empty sets X and Y , a graph with
vertex set {[(x, y)]; (x, y) ∈ X × Y } is denoted by D((X × Y )/ ∼),
where [(x, y)] is the equivalence class with respect to relation ∼,
containing (x, y). Two equivalence classes [(x, y)] and [(x′, y′)] are
adjacent in D((X × Y )/∼) if and only if there are (x1, y1) ∈ [(x, y)]
and (x2, y2) ∈ [(x′, y′)] such that they are adjacent in the underlying
graph of D (X)� D (Y ).

For simplicity, whenever the setsX and Y are clear from the context,
we denote the graphs D((X × Y )/∼), D(XY ) and the underlying graph
of D (X)� D (Y ) by D∼, D and D�, respectively.

By the definitions of these graphs, it is obvious that

|V (D�)| ≥ |V (D∼)| = |V (D)|.

Also, D∼
∼= D� if and only if every equivalence class of ∼ contains only

one element.

We are interested in finding the relations among these three graphs.

Theorem 4.2. For two arbitrary sets X, Y ⊆ N:

(i) If D ∼= D�, then all three graphs are isomorphic.
(ii) D∼ is isomorphic to a subgraph of D. Also, if ρ (X) ∩ ρ (Y ) = ∅,

then D∼
∼= D ∼= D�.

(iii) For each K ⊆ {D∼,D�,D}, where |K| ≠ 1 and K ̸= {D�,D},
there exist X and Y such that the elements of K are isomorphic
and the others are not.
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Proof.

(i) Note that D ∼= D� yields:

|V (D�)| = |V (D∼)| = |V (D)|.

This means that every equivalence class of ∼ contains only one element.
So, we have

{[(x, y)], [(x′, y′)]} ∈ E(D∼)

if and only if {(x, y), (x′, y′)} ∈ E(D�). Without loss of generality,
assume there is a directed edge from (x, y) to (x′, y′) in D (X)�D (Y ).
By the definition of the strong product of two graphs, one may easily
obtain that xy divides x′y′. So, {xy, x′y′} ∈ E(D).

Therefore, the maps

f1 : V (D�) −→ V (D∼) and f2 : V (D∼) −→ V (D)

with the properties f1((x, y)) = [(x, y)] and f2((x, y)) = xy, respec-
tively, are bijections which preserve the adjacency. Hence, D∼

∼= D ∼=
D�.

(ii) We show that, for arbitrary sets X and Y , D∼ is isomorphic
to a subgraph of D. We define the map f : V (D∼) → V (D) by
f([(x, y)]) = xy. From the definition of ∼, it is clear that f is well
defined.

Let [(x, y)] and [(x′, y′)] be two adjacent vertices of D∼. Then, by
Definition 4.1, there are vertices,

(x1, y1) ∈ [(x, y)] and (x2, y2) ∈ [(x′, y′)],

which are adjacent in D (X) � D (Y ). From the definition of ∼, one
may easily obtain that x1y1 divides x2y2, or x2y2 divides x1y1. So, we
have:

{[(x, y)], [(x′, y′)]} ∈ E(D∼) =⇒ {(x1, y1), (x2, y2)}∈E(D (X)�D (Y ))

=⇒ x1y1 | x2y2 or x2y2 | x1y1

=⇒ {x1y1, x2y2} ∈ E(D)

=⇒ {f([(x1, y1)]), f([(x2, y2)])} ∈ E(D)

=⇒ {f([(x, y)]), f([(x′, y′)]) ∈ E(D)}.

Thus, f imbeds D∼ to D.
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Figure 2. Illustration of proof of Theorem 4.2 (iii).

Now, suppose ρ (X) ∩ ρ (Y ) = ∅. Suppose (x1, y1) ∼ (x2, y2) where
x1, x2 ∈ X and y1, y2 ∈ Y . Since ρ (X)∩ ρ (Y ) = ∅, we obtain x1 = x2

and y1 = y2. This means that every equivalence class is of order 1 and
D∼

∼= D�. Also, ρ (X) ∩ ρ (Y ) = ∅ includes the following:

{xy, x′y′} ∈ E(D) ⇐⇒ xy | x′y′ or x′y′ | xy
⇐⇒ x | x′, y | y′ or x′ | x, y′ | y
⇐⇒ {(x, y), (x′, y′)} ∈ E(D�).

Therefore, the proof of (ii) is complete.
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(iii) For a given K ⊆ {D∼,D�,D}, we will find proper subsets X
and Y of positive integers such that the elements of K are isomorphic,
but the other elements of {D∼,D�,D} are not isomorphic to elements
of K.

Suppose {p1, p2, p3} is a set of distinct primes,

X = {p21, p1p2, p32}

and

Y = {p2, p1p2, p21, p31, p21p2}.

In this case, D� is not connected. But, D and D∼ are connected
graphs with 11 vertices. So, they are not isomorphic to D�. Also,
|E(D)| = |E(D∼)| + 2. Hence, these two graphs are not isomorphic.
The graphs D∼, D� and D are shown in Figure 2.

Table 2. Examples of Theorem 4.2 (iii).

X Y D∼ D� D

{p3, p1p3} {p3, p2p3}

[(p3, p3)] [(p3, p2p3)]

[(p1p3, p3)][(p1p3, p2p3)]

(p3, p3) (p3, p2p3)

(p1p3, p3)(p1p3, p2p3)

p23 p2p
2
3

p1p
2
3 p1p2p

2
3

{p1, p1p2} {p2, p22}

[(p1, p2)] [(p1, p
3
2)]

[(p1p2, p
3
2)]

(p1, p2) (p1, p
2
2)

(p1p2, p2)(p1p2, p
3
2)

p1p2 p1p
2
2

p1p
3
2

{p1p2, p21} {p1p2, p32}

[(p1p2, p1p2)][(p
2
1, p1p2)]

[(p21, p
3
2)][(p1p2, p

3
2)]

(p1p2, p1p2)(p21, p1p2)

(p21, p
3
2)(p1p2, p

3
2)

p21p
2
2 p31p2

p21p
3
2p1p

4
2
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For the other cases of K, we refer the reader to Table 2. In the first,
second and third rows of Table 2, K is equal to {D∼, D�,D}, {D∼,D}
and {D∼, D�}, respectively. �

In the following lemma, we find the structure of D(X) and D(Y )
when D(XY ) is a complete graph.

Lemma 4.3. Suppose X and Y are two non-empty sets. If D(XY ) is
complete, then both D(X) and D(Y ) are complete.

Proof. Let x, x′ ∈ X and y ∈ Y be three arbitrary elements. We
have xy and x′y ∈ XY . Since D(XY ) is complete, then either xy
divides x′y or x′y divides xy. Hence, either x divides x′ or x′ divides x.
This means that D(X) is complete. The same argument shows that
D(Y ) is complete. �

Lemma 4.4. Suppose D(XY ) is complete and ρ (X)∩ρ (Y ) = ∅. Then,
|X| = 1 or |Y | = 1.

Proof. Since ρ (X) ∩ ρ (Y ) = ∅, by Theorem 4.2, D� ∼= D. So D�
is complete. Conversely, suppose there are x1, x2 ∈ X and y1, y2 ∈ Y
such that x1 < x2 and y1 < y2. Since D� is complete,

{(x1, y2), (x2, y1)} ∈ E(D�).

By Definition 4.1, this is a contradiction. �
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