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LINEAR SYSTEMS ON EDGE-WEIGHTED GRAPHS

RODNEY JAMES AND RICK MIRANDA

ABSTRACT. Let R be any subring of the reals. We
present a generalization of linear systems on graphs where
divisors are R-valued functions on the set of vertices and
graph edges are permitted to have nonnegative weights in R.
Using this generalization, we provide an independent proof of
a Riemann-Roch formula, which implies the Riemann-Roch
formula of Baker and Norine.

1. Introduction. Let R be any subring of the reals, and let G be a
finite connected edge-weighted graph with vertex set V = {v0, . . . , vn}
and nonnegative weight set W = {wij | i, j = 0, . . . , n}, where each
wij ∈ R. Multiple edges and loops are not allowed, and we set wij = 0
if vi and vj are not connected; otherwise, wij > 0. Note that wii = 0
and wij = wji. We will define the degree of a vertex vj to be

deg(vj) =
n∑

i=0

wij ,

and the parameter g (the genus of the graph) to be

g = 1 +
∑
i<j

wij − |V | =
∑
i<j

wij − n.

Note that, if R = Z, these definitions coincide with the usual definitions
for the vertex degree and genus of a multigraph where wij is the number
of edges connecting vertices vi and vj .

A divisor on G is a function D : V → R. The degree of a divisor D
is defined as

deg(D) =
∑
v∈V

D(v).
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For any x ∈ R, we say that D > x if D(v) > x for each v ∈ V , and
D > D′ if D(v) > D′(v) for each v ∈ V .

The space of divisors on G, written Div(G), is an R-module, and
the subset of divisors on G with degree 0 is denoted by Div0(G).

The canonical divisor K is defined by K(v) = deg(v) − 2 for any
v ∈ V . Note that deg(K) = 2g − 2.

For any j ∈ {0, . . . , n}, consider the divisor Hj , defined by

Hj(vi) =

{
deg(vj) if vi = vj ,

−wij otherwise.

Note that these Hj ’s are the columns of the edge-weighted Laplacian
matrix of the graph. The principal divisors PDiv(G) are the Z-
linear combinations of the Hj divisors. Two divisors D,D′ ∈ Div(G)
are linearly equivalent, written D ∼ D′ if and only if there is an
H ∈ PDiv(G) such that D −D′ = H.

For each divisor D ∈ Div(G), we associate a complete linear sys-
tem |D|, which is defined as

|D| = {D′ ∈ Div(G) | D′ ∼ D,D′ > −1},

where the condition that D′ > −1 means that, at every vertex v,
D′(v) > −1. The reader may wonder why the condition of being
strictly greater than −1 is the correct notion here, rather than the
more attractive choice of being non-negative, which would be more
akin to the notion of “effective” divisors. First, we note that there is no
difference over the integers, which is the more commonly encountered
area of application. More substantively, we prove that the Riemann-
Roch statement is simply false for the alternative definition. We present
an example below. The dimension of |D| is defined as:

ℓ(D) = min
E

{deg(E) | E ∈ Div(G), E ≥ 0, |D − E| = ∅}.

Now, we show the following Riemann-Roch formula holds on G.

Theorem 1.1. For any divisor D ∈ Div(G),

ℓ(D)− ℓ(K −D) = deg(D) + 1− g.
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This theorem generalizes a similar statement for integral divisors
on multigraphs proved by Baker and Norine [1]. In [5], we showed
that Theorem 1.1 follows from the result in [1]. Here, the proof of
Theorem 1.1 is independent from that of [5], and, although there are
parallels with the Baker-Norine approach, we rely on the monotonici-
ty of the Laplacian, which we believe provides an alternative route
to the proof. Theorem 1.1 also resonates with the Riemann-Roch
statements for tropical curves [4]; however, we do not see that either
case implies the other. In tropical geometry, divisors are allowed
to be associated with interior points of edges, and that is not our
combinatorial construct.

Consider the two-vertex graph with edge weight of 3/2; this graph
has genus g = 1/2. Using obvious ordered pair notation for divisors,
we see that K = (−1/2,−1/2). The group of principal divisors is
generated by (3/2,−3/2). Consider the divisor D = (1/2,−1/2); then
K − D = (−1, 0). If we insist on using the notion of a linear system
based on nonnegative divisors (instead of the > −1 condition), then
it is easy to see that both |D| and |K − D| are empty, and have
ℓ(D) = ℓ(K −D) = 0. Hence, Riemann-Roch would fail to be true:

0− 0 ̸= 0 + 1− g.

Define the set of all divisors of degree g−1 with empty linear systems
by:

N (G) = {D ∈ Div(G) | deg(D) = g − 1 and |D| = ∅}.

Theorem 1.2.

(i) The set N (G) is symmetric with respect to K; that is, N ∈ N (G)
if and only if K −N ∈ N (G).

(ii) For any D ∈ Div(G), |D| = ∅ if and only if there is an N ∈ N (G)
such that D ≤ N .

The proof of Theorem 1.2, which relies on a normal form for divisors,
up to linear equivalence, follows in the subsequent sections.

2. Proof of Riemann-Roch. For any D ∈ Div(G), define

D+(v) = max(D(v), 0), D−(v) = min(D(v), 0).
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It follows directly from these definitions that, for any D ∈ Div(G),

D = D+ +D− and deg(D+) = − deg((−D)−).

Lemma 2.1. If Theorem 1.2 (ii) is true, then, for any D ∈ Div(G),

ℓ(D) = min
N∈N (G)

deg((D −N)+).

Proof. The definition of ℓ(D) is:

ℓ(D) = min
E

{deg(E) | E ≥ 0, |D − E| = ∅.

Theorem 1.2 (ii) implies that

ℓ(D) = min
E,N

{deg(E) | E ≥ 0, N ∈ N (G), D − E ≤ N}

= min
E,N

{deg(E) | E ≥ 0, N ∈ N (G), E ≥ D −N},

or equivalently,

ℓ(D) = min
N∈N (G)

deg((D −N)+). �

Lemma 2.2. If Theorem 1.2 holds, then, for any D ∈ Div(G),

ℓ(K −D) = g − 1− deg(D) + min
M∈N (G)

deg((D −M)+).

Proof. From Theorem 1.2 (ii),

ℓ(K −D) = min
E

{deg(E) | E ≥ 0, |K −D − E| = ∅}

= min
E,M

{deg(E) | E ≥ 0,M ∈ N (G),K −D − E ≤ M}.

If K −D − E ≤ M for M ∈ N (G), then D + E ≥ K −M . Theorem
1.2 (i) implies that K −M ∈ N (G) if and only if M ∈ N (G); thus, we
have:

ℓ(K −D) = min
E,M

{deg(E) | E ≥ 0,M ∈ N (G), D + E ≥ M}

= min
E,M

{deg(E) | E ≥ 0,M ∈ N (G), E ≥ M −D}

= min
M∈N (G)

deg((M −D)+).
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Since
deg((M −D)+) = deg(M −D)− deg((M −D)−),

we have:

ℓ(K −D) = min
M∈N (G)

deg((M −D)+)

= min
M∈N (G)

(deg(M −D)− deg((M −D)−))

= deg(M)− deg(D) + min
M∈N (G)

(− deg((M −D)−))

= g − 1− deg(D) + min
M∈N (G)

deg((D −M)+). �

We now have the ingredients to prove Theorem 1.1.

Proof of Theorem 1.1. Using Lemmas 2.1 and 2.2, we have

ℓ(D)− ℓ(K −D) =
(

min
N∈N (G)

deg
(
(D −N)+

))
−
(
g − 1− deg(D) + min

M∈N (G)
deg

(
(D −M)+

))
= deg(D)− g + 1 + min

N∈N (G)
deg

(
(D −N)+

)
− min

M∈N (G)
deg

(
(D −M)+

)
= deg(D)− g + 1. �

3. Reduced divisors. Let V0 = V − {v0}. We say that a divisor
D ∈ Div(G) is reduced if and only if:

(i) D(v) > −1 for each v ∈ V0, and,
(ii) for every I ⊂ {1, . . . , n}, there is a v ∈ V0 such that(

D −
∑
j∈I

Hj

)
(v) ≤ −1.

Define P(G) ⊂ PDiv(G) to be the set of non negative, non-zero Z-
linear combinations of the Hj divisors for j > 0; that is, if H ∈ P(G),
then there is a set of nonnegative integers {c1, . . . , cn} with at least one
cj > 0 such that

H =
n∑

j=1

cjHj .
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Lemma 3.1. Suppose a divisor D(v) > −1 for all v ∈ V0; then D is
reduced if and only if, for every H ∈ P(G), there is a v ∈ V0 such that

(D −H)(v) ≤ −1.

Proof. Assume that D(v) > −1 for all v ∈ V0. If, for every
H ∈ P(G), there is a v ∈ V0 such that (D − H)(v) ≤ −1, then D
is clearly reduced; thus, we only need to show that the converse is true.

Suppose that there exists:

H =
n∑

i=1

ciHi ∈ P(G),

such that (D −H)(v) > −1 for all v ∈ V0. This means that, for each
j = 1, . . . , n,

D(vj) > cj deg(vj)−
n∑

i=1

ciwij − 1.

Let α = max{c1, . . . , cn} and, for each i = 1, . . . , n, set

bi =

{
1 if ci = α,

0 otherwise.

We claim that, for each j ∈ {1, . . . , n},

D(vj) > bj deg(vj)−
n∑

i=1

biwij − 1.

If bj = 0, we have:

bj deg(vj)−
n∑

i=1

biwij − 1 = −
n∑

i=1

biwij − 1 ≤ −1 < D(vj).

Define the index sets Aj and Bj as:

Aj = {i > 0 | wij > 0 and ci < α},
Bj = {i > 0 | wij > 0 and ci = α}.

Note that:
n∑

i=1

ciwij =
∑
i∈Aj

ciwij + α
∑
i∈Bj

wij .
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If bj = 1, then cj = α and

D(vj) > cj deg(vj)−
n∑

i=1

ciwij − 1

= α deg(vj)−
∑
i∈Aj

ciwij − α
∑
i∈Bj

wij − 1

= α

(
w0j+

∑
i∈Aj

wij+
∑
i∈Bj

wij

)
−

∑
i∈Aj

ciwij − α
∑
i∈Bj

wij− 1

= αw0j +
∑
i∈Aj

(α− ci)wij − 1 ≥ w0j +
∑
i∈Aj

wij − 1.

Also, we have:

bj deg(vj)−
n∑

i=1

biwij = deg(vj)−
∑
i∈Bj

wij = w0j +
∑
i∈Aj

wij

+
∑
i∈Bj

wij −
∑
i∈Bj

wij = w0j +
∑
i∈Aj

wij .

Thus,

D(vj) > bj deg(vj)−
n∑

i=1

biwij − 1,

for each j = 1, . . . , n; hence, D is not reduced. �

Let ∆0 be the edge-weighted reduced Laplacian of G, which can be
represented by the n× n matrix:

∆0 =


deg(v1) −w12 · · · −w1n

−w12 deg(v2) · · · −w2n

...
...

. . .
...

−w1n −w2n · · · deg(vn)

 .

For x = (x1, . . . , xn) and y = (y1, . . . , yn), we say that x > y if and
only if xi > yi for each i. For any scalar a ∈ R, x > a if and only if
xi > a for each i. We define:

max(x, y) = (max{x1, y1}, . . . ,max{xn, yn})
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and

min(x, y) = (min{x1, y1}, . . . ,min{xn, yn}).

In [5], we showed that ∆0 is monotone, that is, for any x ∈ Rn, if
∆0x ≥ 0, then x ≥ 0. Monotonicity implies that ∆−1

0 exists and is
nonnegative, and that if x, y ≥ 0 with y ≥ ∆0x, then ∆−1

0 y ≥ x
(see [2]).

Lemma 3.2. For any z ∈ Rn such that z ≥ 0, there is a c ∈ Zn such
that c ≥ 0 and ∆0c ≥ z.

Proof. Fix z ∈ Rn with z ≥ 0. Let

C0 = {x ∈ Rn | ∆0x ≥ 0}, Cz = {x ∈ Rn | ∆0x ≥ z}

and
K = {x ∈ Rn | x ≥ 0}.

Since ∆0 is monotone, Cz ̸= ∅ and Cz ⊂ C0 ⊂ K.

Letting x, y ∈ C0 and α, β ∈ R with α, β ≥ 0, then

∆0(αx+ βy) = α∆0x+ β∆0y ≥ 0,

and αx+βy ∈ C0. Thus, C0 is a convex cone, and, since ∆0 is injective,
C0 has an interior. Let v = ∆−1

0 z. For any x ∈ Cz,

∆0(x− v) = ∆0x− z ≥ 0,

so x − v ∈ C0 and Cz − v is also a convex cone; thus, Cz is a convex
affine cone with an interior. Hence, Cz ∩ Zn ̸= ∅. �

Define the function ϕ : Div(G) → Rn as:

ϕ(D) = (D(v1), . . . , D(vn)).

We can represent any

H =
n∑

i=1

ciHi ∈ PDiv(G)

as:
ϕ(H) = ∆0c,
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where c = (c1, . . . , cn) ∈ Zn. H(v0) can be recovered by:

H(v0) =
n∑

i=1

ciHi(v0) = −
n∑

i=1

ciw0i.

For any d ∈ Rn, define A(d) ⊂ Zn as:

A(d) = {c ∈ Zn | c ≥ 0 and ∆0c < d}.

Note that, if d > 0, then A(d) ̸= ∅, since the zero vector (0, . . . , 0) ∈
A(d). Also, note that, for any c ∈ A(d) such that c ̸= 0, there is a
corresponding H ∈ P(G) such that ϕ(H) = ∆0c.

Using the above notation, we can restate Lemma 3.1 in terms of
n-tuples in Rn as follows. Suppose that D ∈ Div(G) with D(v) > −1
for all v ∈ V0. Set d = ϕ(D + 1); thus, d > 0 and, if D is reduced,
the condition (D −H)(v) ≤ −1 for some v ∈ V0 for each H ∈ P(G) is
equivalent to d ≯ ∆0c for all nonzero c ∈ A(d). Thus, A(d) = {0}, the
set containing only the zero vector in Zn.

Lemma 3.3. Let D ∈ Div(G), and set d = ϕ(D + 1). If d > 0, then
A(d) is bounded ; that is, there exists a b ∈ Rn such that b ≥ c for all
c ∈ A(d).

Proof. Suppose d > 0 and c ∈ A(d). Since d > ∆0c and ∆0 is
monotone, we have b = ∆−1

0 d ≥ c. �

Lemma 3.4. Let D ∈ Div(G), and set d = ϕ(D + 1). If d > 0 and c,
c′ ∈ A(d), then max(c, c′) ∈ A(d).

Proof. Suppose d > 0 and c, c′ ∈ A(d). Then we have both
d − ∆0c > 0 and d − ∆0c

′ > 0. We can write the jth component
of ∆0c as:

(∆0c)j = cj deg(vj)−
n∑

i=1

ciwij =

n∑
i=0

cjwij −
n∑

i=1

ciwij

= cjw0j +

n∑
i=1

(cj − ci)wij ,
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and similarly for ∆0c
′. For d = (d1, . . . , dn), we have:

dj > cjw0j +
n∑

i=1

(cj − ci)wij , dj > c′jw0j +
n∑

i=1

(c′j − c′i)wij ,

for each j. If max{cj , c′j} = cj , then

dj > cjw0j +
n∑

i=1

(cj −max{ci, c′i})wij ,

and, if max{cj , c′j} = c′j ,

dj > c′jw0j +

n∑
i=1

(c′j −max{ci, c′i})wij .

We can combine these two relations to obtain

dj > max{cj , c′j}w0j +
n∑

i=1

(max{cj , c′j} −max{ci, c′i})wij ,

for each j > 0. Thus,

d−∆0 max(c, c′) > 0,

and max(c, c′) ∈ A(d). �

Theorem 3.5. For any D ∈ Div(G), there is a unique D0 ∼ D such
that D0 is reduced.

Proof. Let D ∈ Div(G). By Lemma 3.2, choose c ∈ Zn so that
∆0c ≥ ϕ(−(D−)), noting that −(D−) ≥ 0. Set d = ϕ(D + 1) + ∆0c,
which guarantees that d > 0.

By Lemmas 3.3 and 3.4, ĉ = max{c′ | c′ ∈ A(d)} exists and is
unique. We claim that A(d − ∆0ĉ ) = {0}. Letting c′ ∈ A(d − ∆0ĉ ),
then

d−∆0ĉ−∆0c
′ = d−∆0(ĉ+ c′) > 0;

thus, ĉ + c′ ∈ A(d). Since ĉ is maximal in A(d) and ĉ, c′ ≥ 0, we
must have c′ = 0. From Lemma 3.1, it follows that there is a unique
reduced divisor D0 such that ϕ(D0) = d − ∆0ĉ, where D0 ∼ D since
the translations ∆0c and ∆0ĉ correspond to some H ∈ PDiv(G). �
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4. Empty linear systems. In this section, we will exploit prop-
erties of reduced divisors to determine the set of divisors which have
empty linear systems. We begin with the following property of reduced
divisors.

Lemma 4.1. If D ∈ Div(G) is reduced, then∑
v∈V0

D(v) ≤ g,

with equality if and only if there exists a permutation (j1, j2, . . . , jn) of
(1, 2, . . . , n) such that

D(vjk) =
k−1∑
i=0

wjijk − 1,

for each k = 1, . . . , n, where j0 = 0.

Proof. Suppose that D is reduced. Then, for every I ⊂ {1, . . . , n},
there is a j ∈ V0 such that

(4.1) D(vj) ≤ deg(vj)−
∑
i∈I

wij − 1 =
∑
i/∈I

wij − 1.

Suppose that I = I0 = {1, . . . , n}, and that equation (4.1) is satisfied
for j = j1 ∈ I0. Then,

D(vj1) ≤
∑
i/∈I0

wij1 − 1 = w0j1 − 1.

Now, letting I = I1 = I0 − {j1}, then equation (4.1) is satisfied for
j = j2 ∈ I1 so that

D(vj2) ≤
∑
i/∈I1

wij2 − 1 = w0j2 + wj1j2 − 1.

Similarly, for I = I2 = I1 − {j2}, equation (4.1) is satisfied for
j = j3 ∈ I2 and

D(vj3) ≤
∑
i/∈I2

wij3 − 1 = w0j3 + wj1j3 + wj2j3 − 1.
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Continuing this process, let Ik = Ik−1−{jk} for k = 1, . . . , n−1, where
j = jk ∈ Ik−1 satisfies equation (4.1) for Ik−1, and, in general, we have:

(4.2) D(vjk) ≤
k−1∑
i=0

wjijk − 1,

where j0 = 0. Note that the resulting n-tuple (j1, j2, . . . , jn) is a
permutation of (1, 2, . . . , n). If we rewrite equation (4.2) as

D(vjk)−
k−1∑
i=0

wjijk + 1 ≤ 0,

and sum over all k, we have

n∑
k=1

(
D(vjk)−

k−1∑
i=0

wjijk + 1

)
=

n∑
j=1

D(vj)−
∑
i<j

wij + n ≤ 0,

or equivalently, ∑
v∈V0

D(v) ≤
∑
i<j

wij − n = g.

For the equality condition, we assume again that the D is reduced
and note that, if

D(vjk) =
k−1∑
i=0

wjijk − 1

holds for some (j1, . . . , jn) for each k = 1, . . . , n, then∑
v∈V0

D(v) = g

follows directly since ∑
i<j

wij − n = g.

For the other direction, if ∑
v∈V0

D(v) = g,
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since D is reduced, equation (4.2) holds at each k for some permutation
(j1, . . . , jn); thus, the only way that we can have equality is

D(vjk) =
k−1∑
i=0

wjijk − 1,

for each k = 1, . . . , n. �

An immediate application of Theorem 3.5 and Lemma 4.1 provides
a sufficient condition for a divisor to have a nonempty linear system.

Lemma 4.2. Let D ∈ Div(G). If deg(D) > g − 1, then |D| ̸= ∅.

Proof. Let D be a divisor with deg(D) > g − 1, and let D0 be the
unique reduced divisor such that D0 ∼ D, from Theorem 3.5. By
Lemma 4.1, ∑

v∈V0

D0(v) ≤ g.

By assumption, we have:

deg(D) = deg(D0) = D0(v0) +
∑
v∈V0

D0(v) > g − 1,

or equivalently,

D0(v0) > −
∑
v∈V0

D0(v) + g − 1;

thus, D0(v0) > −1. Since D0(v) > −1 for each v ∈ V0, |D| ̸= ∅. �

Lemma 4.3. If D0 is a reduced divisor, then |D0| ̸= ∅ if and only if
D0(v0) > −1.

Proof. Let D0 ∈ Div(G) be reduced. If D0(v0) > −1, then D0(v) >
−1 for all v ∈ V and |D0| ̸= ∅.

Now, assume that |D0| ̸= ∅; thus, there is a P ∈ PDiv(G) such that
D0 + P > −1. Since D0 is reduced, the only P ∈ PDiv(G) which
would satisfy D0 + P > −1 must have P (v) ≥ 0 for all v ∈ V0. Since
deg(P ) = 0 and P (v0) ≤ 0, we must have D0 > −1 in order for |D0| to
be nonempty. �
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Lemma 4.4. If D0 is a reduced divisor with deg(D0) = g − 1 and
|D0| = ∅, then

D0(vjl) =


−1 l = 0,
l−1∑
i=0

wjijl − 1 l > 0,

where j0 = 0 and (j1, . . . , jn) is a permutation of (1, . . . , n).

Proof. By Lemma 4.3, D0(v0) ≤ −1; thus, by Lemma 4.1 we have:

n∑
i=1

D0(vi) = g,

D0(v0) = −1 and

D0(vjl) =
l−1∑
i=0

wjijl − 1,

for some permutation (j1, . . . , jn) of (1, . . . , n). �

We will denote the reduced divisors in Lemma 4.4 as:

N0(G)={D∈Div(G) | |D| = ∅, deg(D)=g − 1, D is reduced}⊂N (G),

noting that |N0(G)| ≤ n!

A direct consequence of Lemma 4.4 gives us the composition of
N (G), which is a lattice generated by N0(G).

Lemma 4.5. N (G) = {D ∈ Div(G) | D ∼ D0 where D0 ∈ N0(G)}.

Proof. If D ∈ N (G), then by Lemma 3.5 there is a D0 ∈ N0(G)
which is linearly equivalent to D. �

Now, we prove Theorem 1.2.

Proof of Theorem 1.2.

(i) Since any D ∈ N (G) can be written as D = N0 + P for some
P ∈ PDiv(G) and N0 ∈ N0(G), it is sufficient to assume D = N0.
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By Lemma 4.4,

N0(vj0) = −1 and N0(vjk) =
k−1∑
i=0

wjijk − 1,

for some permutation (j1, . . . , jn) of (1, . . . , n) with j0 = 0. Since

K(vi) =
n∑

j=0

wij − 2

for k > 0, we have

(K −D)(vjk) =
n∑

i=0

wjijk − 2−
k−1∑
i=0

wjijk + 1 =
n∑

i=k

wjijk − 1,

and, for k = 0,

(K −D)(vj0) =

n∑
i=0

wjij0 − 1 = deg(vj0)− 1.

If we subtract H0 ∈ PDiv(G) from K −D, we have

(K −D −H0)(vj0) = −1,

and, for k > 0,

(K −D −H0)(vjk) =

n∑
i=k

wjijk − 1 + wj0jk .

Let l0 = j0 = 0 and lk = jn−k+1 for k = 1, . . . , n; then, (l1, . . . , ln) is a
permutation of (1, . . . , n), and

(K −D −H0)(vlk) =
k−1∑
i=0

wlilk − 1.

Thus, K −D −H0 ∈ N0(G) and K −D ∈ N (G).

Now, assume that K −D ∈ N0(G). Let D′ = K −D, and from the
above, we have K −D′ = D ∈ N (G).

(ii) Let D ∈ Div(G) with |D| = ∅. By Lemma 3.5, there is a unique
reduced divisor D0 ∼ D. Since |D0| = ∅, Lemma 4.3 implies that
D0(v0) ≤ −1. By the proof of Lemma 4.1, we have that equation (4.2)
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holds for each D0(v) where v ∈ V0, so for some permutation (j1, . . . , jn)
of (1, . . . , n),

D0(vjk) ≤
k−1∑
i=0

wjijk − 1.

Thus, D0 ≤ N0 for one of the N0 ∈ N0(G). Let P ∈ PDiv(G) be such
that D = D0 + P , and let N = N0 + P . Then, we have D ≤ N where
N ∈ N (G). �
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