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RUAN COHOMOLOGIES OF THE
COMPACTIFICATIONS OF RESOLVED ORBIFOLD

CONIFOLDS

SONG DU, BOHUI CHEN, CHENG-YONG DU AND XIAOBIN LI

ABSTRACT. In this paper, we study the Ruan cohomolo-
gies of Xs and Xsf , the natural compactifications of V s and
V sf , where V s and V sf are the two small resolutions of

V = {(x, y, z, w) | xy − zw = 0}/µr(1,−1, 0, 0), r > 1,

the finite group quotient of the singular conifold. There is
an additive isomorphism between the Chen-Ruan cohomolo-
gies ϕ : H∗

CR(Xs) → H∗
CR(Xsf ). We study the three-point

orbifold Gromov-Witten invariants of the exceptional curves
Γs on Xs and Γsf on Xsf and show that the corresponding
Ruan cohomology ring structures on the Chen-Ruan coho-
mologies of Xs and Xsf , defined by these three-point func-
tions, are isomorphic to each other under the map ϕ and the
identification [Γs] ↔ −[Γsf ].

1. Introduction. In [18], Li and Ruan proposed symplectic bi-
rational geometry as a generalized algebraic birational geometry. It
is suggested that the symplectic birational structure of a symplectic
manifold is detected by genus zero Gromov-Witten invariants. In the
symplectic category, many obvious properties of algebraic birational
geometry are no longer obvious. Notably, the birational invariance of
uniruledness in [10] is such an example, where the authors have drawn
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on new and powerful technology from Gromov-Witten theory. Other
progress has also been made in [11, 18].

Roughly speaking, symplectic birational geometry mainly concerns
the change of Gromov-Witten theory under symplectic surgery. In [16],
Li and Ruan interpreted flops and extremal transition by symplectic
surgery and showed an elegant result that any two smooth minimal
models in dimension three have the same quantum cohomology. As
mentioned in [18], the more appropriate category for symplectic bi-
rational geometry is the category of orbifolds. And we should carry
symplectic birational geometry to orbifolds.

In [3, 4], the authors initiated a program for studying quantum
cohomology under birational transformation of orbifolds. In their
papers, they considered the singularity

Wr = {(x, y, z, t) | xy − z2r + t2}/µr(a,−a, 1, 0)

with r being a prime number. For this singularity, they defined the
orbi-conifold transition and orbi-flop. Their main result was that, for
a pair of orbifolds (X,Y ) with Y being obtained from X by a sequence
of orbi-flops, the quantum cohomologies of X and Y are isomorphic
to each other. In [3], they first considered a quantum modification of
Chen-Ruan cohomology, Ruan cohomology, which is in a sense between
Chen-Ruan cohomology and quantum cohomology. They showed that
Ruan cohomology is invariant under orbi-flops. Then, by using relative
orbifold Gromov-Witten invariants and degeneration formulas, they
proved that quantum cohomology is invariant under orbi-flops in [4].

In this paper, we study another singularity

V = {(x, y, z, w) | xy − zw = 0}/µr(1,−1, 0, 0),

which is a natural replacement for the well-known smooth conifold.
There are two small resolutions V s and V sf of V , which are both
orbifolds and orbifold vector bundles over the P1-orbifolds Γs and
Γsf , respectively. There are many symplectic forms on V s and V sf

constructed from the smooth case (see Remark 2.1). We can perform
the well-known symplectic cutting (cf., [8, 15]) to get two compact
orbifolds, Xs and Xsf , which are just P(V s ⊕ O) and P(V sf ⊕ O),
hence, orbifold fiber bundles over Γs and Γsf respectively. In addition,
Xs is obtained from Xsf by an orbi-flop transition.
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There is an obvious additive isomorphism between Chen-Ruan co-
homologies

ϕ : H∗
CR(X

s) −→ H∗
CR(X

sf ),

which preserves the orbifold Poincaré pairing. The exceptional divisor
of Xs (respectively, Xsf ) is Γs (respectively, Γsf ). By using only the
moduli spaces of J-holomorphic curves representing multiples of Γs’s
we can define a three-point function on H∗

CR(X
s):

F s(α1, α2, α3) = ⟨α1, α2, α3⟩X
s

CR +
∑
d≥1

qd⟨α1, α2, α3⟩X
s

0,3,d[Γs].

Such a function and the orbifold Poincaré pairing define the ring struc-
ture of Ruan cohomology RH∗

CR(X
s) over the Chen-Ruan cohomology

group. Similarly, one can define F sf (β1, β2, β3) on H
∗
CR(X

sf ) and the
Ruan cohomology RH∗

CR(X
sf ). Our main theorem is

Theorem 1.1. Suppose αi ∈ H∗
CR(X

s) and βi = ϕ(αi), 1 ≤ i ≤ 3.
Then:

F s(α1, α2, α3) = F sf (β1, β2, β3),

under the identification [Γs] ↔ −[Γsf ], i.e., q ↔ q−1. Hence, we get
the isomorphism of rings:

RH∗
CR(X

s) ∼= RH∗
CR(X

sf ).

2. Compactifications of the resolved orbifold conifolds and
their Chen-Ruan cohomologies.

2.1. Resolved orbifold conifolds and their compactifications.
The well-known (smooth) conifold singularity is the complex hyper-
plane given by

Ṽ = {(x, y, z, w) | xy − zw = 0} ⊂ C4.

It has an isolated singular point at the origin. Given a prime number
r, let µr = ⟨ξ⟩, the cyclic group of rth roots of 1 with ξ = exp(2πi/r),
act on C4:

ξ · (x, y, z, w) = (ξx, ξ−1y, z, w).
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It is clear that this action preserves Ṽ . Set

V =
Ṽ

µr
.

We call V the orbifold conifold.

By blow-ups, we have two small resolutions of Ṽ . They are

Ṽ s =

{
((x, y, z, w), [p, q]) ∈ C4 × P1 | xy − zw = 0,

p

q
=
x

z
=
w

y

}
Ṽ sf =

{
((x, y, z, w), [p, q]) ∈ C4 × P1 | xy − zw = 0,

p

q
=
x

w
=
z

y

}
.

Let
π̃s : Ṽ s −→ Ṽ , π̃sf : Ṽ sf −→ Ṽ

be the projections. Denote the extremal rays (π̃s)−1(0) and (π̃sf )−1(0)

by Γ̃s and Γ̃sf , respectively. Both of them are P1. It is well known that

Ṽ s and Ṽ sf are both the resolved conifolds, O(−1) ⊕ O(−1) → P1.
The action of µr extends naturally to both resolutions by setting

ξ · [p, q] = [ξp, q],

for the first model and

ξ · [p, q] = [ξp, q],

for the second model.

Set

V s =
Ṽ s

µr
, V sf =

Ṽ sf

µr
, Γs =

Γ̃s

µr
, Γsf =

Γ̃sf

µr
.

We call V s and V sf small resolutions of V . We say that V sf is the
flop of V s and vice versa. They are both orbifolds.

Remark 2.1. There is a family of symplectic structures on O(−1) ⊕
O(−1) (cf., [16]). Choose a Hermitian metric on the vector bundle
O(−1) ⊕ O(−1). Then ||z||2 for z ∈ O(−1) ⊕ O(−1) is a smooth
function. And i∂∂||z||2 is a 2-form and nondegenerate on the fiber.
Suppose that ω0 is a symplectic form on P1. Then,

ω = π∗ω0 + ϵi∂∂||z||2
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is a symplectic form on the total space in a neighborhood of the zero
section, where π : O(−1) ⊕ O(−1) → P1 is the projection and ϵ is a
small constant. The Hamiltonian function is

H(x, z1, z2) = |z1|2 + |z2|2 − ϵ.

The induced S1-action is given by

eit · (x, z1, z2) = (x, eitz1, e
itz2).

Then, we can perform the well-known symplectic cutting (cf., [8, 15,
16]) along the hypersurface H−1(0). Therefore, the resulting space

M
+
is just P(O(−1)⊕O(−1)⊕O), the projectivization of the bundle.

We can perform this construction on both Ṽ s and Ṽ sf and get two

symplectic manifolds X̃s and X̃sf , the projectivization of Ṽ s and Ṽ sf ,
respectively. It is obvious that we can deform the symplectic structures
such that they are µr-invariant. Then we get two symplectic orbifolds

Xs = X̃s/µr and Xsf = X̃sf/µr, the projectivization of V s and V sf .
In this paper, we are going to study the Ruan cohomologies of these
two symplectic orbifolds.

2.2. Chen-Ruan cohomologies of Xs and Xsf . Let us take Xs.

The manifold X̃s is the projectivization of the bundle Ẽs = L̃s
1 ⊕ L̃s

2 ⊕
L = O(−1)⊕O(−1)⊕O over Γ̃s = P1. Hence, Xs = P(Ls

1⊕Ls
2⊕L) is an

orbifold fiber bundle over Γs with fiber P2/µr. In terms of coordinates

((x, y, z, w, t), [p, q]), we get a local trivialization of the bundle Ẽs with
coordinates (u, x, w, t) and (v, z, y, t), where u = q/p and v = p/q. The

local coordinates of X̃s are (u, [x,w, t]) and (v, [z, y, t]). The transition
map is given by 

v = u−1,

z = ux,

y = uw,

t = t.

In terms of these local coordinates, the µr-action is given by

ξ · (u, [x,w, t]) = (ξ−1u, [ξx, w, t]),

ξ · (v, [z, y, t]) = (ξv, [z, ξ−1y, t]).
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Hence, the set of singular points in Xs is contained in the two fibers of
Xs → Γs over 0s = [1, 0] and ∞s = [0, 1]. They are

{(0, [1, 0, 0])} ∪ {(0, [0, w, t])} over 0s,

and

{(0, [0, 1, 0]) ∪ {(0, [z, 0, t])} over ∞s.

We denote (0, [1, 0, 0]) by ps and (0, [0, 1, 0]) by qs. We denote
{(0, [0, w, t])}, the fiber of P(Ls

2 ⊕ L) over 0s, and {(0, [z, 0, t])}, the
fiber of P(Ls

1 ⊕ L) over ∞s, by Ls
0 and Ls

∞, respectively. We can also
write the coordinates of 0s and ∞s as

0s = ([1, 0], [0, 0, 1]) and ∞s = ([0, 1], [0, 0, 1]).

Then the exceptional curve connecting 0s and∞s is Γs = ([p, q], [0, 0, 1]).

At Ls
0 (respectively, Ls

∞, ps and qs), for each ξk ∈ µr, 1 ≤ k ≤
r − 1, there is a corresponding twisted sector (cf., [5]), as a set which
is {(p, ξk)|p ∈ Ls

0} (respectively, {(p, ξk)|p ∈ Ls
∞}, {(ps, ξk)} and

{(qs, ξk)}). We denote this twisted sector by [Ls
0]k (respectively, [Ls

∞]k,
[ps]k and [qs]k). For each twisted sector, a degree shifting number is
assigned. Using the description of the µr-action in local coordinates
given above, we conclude

Lemma 2.2. For ξk ∈ µr, 1 ≤ k < r, the degree shifting numbers are{
ι([Ls

0]k) = ι([Ls
∞]k) = 1,

ι([ps]k) = 3− 3k/r, ι([qs]k) = 3k/r.

Topologically, the twisted sectors [Ls
0]k and [Ls

∞]k are both P1, and
[ps]k and [qs]k are both {pt}. The Chen-Ruan cohomology of Xs is:

H∗
CR(X

s) = H∗(Xs)⊕
r−1⊕
k=1

(H∗−2([Ls
0]k)⊕H∗−2([Ls

∞]k))

⊕
r−1⊕
k=1

(H∗−6+6k/r([ps]k)⊕H∗−6k/r([qs]k)).
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A similar structure applies to Xsf . The local trivialization of

Ẽsf = L̃sf
1 ⊕ L̃sf ⊕L = O(−1)⊕O(−1)⊕O has coordinates (u, x, z, t)

and (v, w, y, t). The induced local trivialization of X̃sf has coordinates
(u, [x, z, t]) and (v, [w, y, t]). The transition map is

v = u−1,

w = ux,

y = uz,

t = t.

In terms of these local coordinates, the µr-action is given by

ξ · (u, [x, z, t]) = (ξ−1u, [ξx, z, t]),

ξ · (v, [w, y, t]) = (ξv, [w, ξ−1y, t]).

Hence, the set of singular points in Xsf = P(Lsf
1 ⊕L

sf
2 ⊕L) consists of

{(0, [1, 0, 0])} ∪ {(0, [0, z, t])} over 0sf = [1, 0]

and

{(0, [0, 1, 0])} ∪ {(0, [w, 0, t])} over ∞sf = [0, 1].

We denote (0, [1, 0, 0]) by psf and (0, [0, 1, 0]) by qsf . We denote

{(0, [0, z, t])}, the fiber of P(Lsf
2 ⊕ L) over 0sf , and {(0, [w, 0, t])}, the

fiber of P(Lsf
1 ⊕ L) over ∞sf , by Lsf

0 and Lsf
∞ , respectively. We can

also write the coordinates of 0sf and ∞sf as

0sf = ([1, 0], [0, 0, 1]) and ∞sf = ([0, 1], [0, 0, 1]).

Then the exceptional curve connecting 0sf and ∞sf is

Γsf = ([p, q], [0, 0, 1]),

and the degree shifting numbers of the corresponding twisted sectors
are: {

ι([Lsf
0 ]k) = ι([Lsf

∞ ]k) = 1,

ι([psf ]k) = 3− 3k/r, ι([qsf ]k) = 3k/r.



870 S. DU, B. CHEN, C.-Y. DU AND X. LI

The Chen-Ruan cohomology of Xsf is

H∗
CR(X

sf ) = H∗(Xsf )⊕
r−1⊕
k=1

(
H∗−2([Lsf

0 ]k)⊕H∗−2([Lsf
∞ ]k)

)
⊕

r−1⊕
k=1

(
H∗−6+6k/r([psf ]k)⊕H∗−6k/r([qsf ]k)

)
.

3. Orbifold Gromov-Witten theory and Ruan Cohomology
rings of Xs and Xsf . In this section, we consider orbifold Gromov-
Witten invariants ofXs and Xsf and ring structures on the Chen-Ruan
cohomology groups of Xs and Xsf .

The exceptional curve Γs (respectively, Γsf ) generates a subgroup of
the degree 2 homology group of Xs (respectively, Xsf ). Here, we focus
on the orbifold Gromov-Witten invariants with degree 2 classes in this
subgroup.

3.1. Orbifold Gromov-Witten theory. For a compact symplectic
orbifold X with compatible almost complex structure J , letMg,n(X , d)
denote the moduli space of n-pointed genus g orbifold stable maps
to X of degree d. That is this space parameterizes the families of
representable J-holomorphic morphisms f : C → X , from an orbicurve
C to X . Here the condition of representability means the induced
homomorphism on isotropy groups at every point is injective.

Orbicurve are allowed isotropy only at marked and nodal points,
and the orbifold structure near nodal points is required to be balanced,
which means locally near a nodal point, C has the form

{xy = 0}/Zℓ

with Zℓ = ⟨ζ⟩ acting by ζ ·(x, y) = (ζx, ζ−1y). For the precise definition
of orbicurve one can see, for example, [6].

There is an evaluation map for every marked point, xi:

evi :Mg,n(X , d) −→ ΛX ,
[C, f, x1, · · · , xn] 7−→ (yi, (gi)Gyi

)

where f(xi) = yi and gi = λf (σ) with σ the generator of the isotropy
group of xi and λf the induced homomorphism. By using the decom-
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position of the inertia orbifold ΛX =
⨿

(g)∈TX
X(g), where TX is the

set of equivalence classes of conjugacy classes in local groups, we can
decomposeMg,n(X , d) into components

Mg,n(X , d) =
⨿

(g)∈T n
X

Mg,(g)(X , d),

where (g) = ((g1), . . . , (gn)).

Chen and Ruan [6] observed that each componentMg,(g)(X , d) has
a virtual fundamental cycle [Mg,(g)(X , d)]vir of dimension

v dimC[Mg,(g)(X , d)]vir = c1(d) + (dimCX − 3)(1− g) + n− ι(g),

where ι(g) =
∑

i ι(gi) and ι(gi) is the degree shifting number of X(gi).

Now we can define the orbifold Gromov-Witten invariant for αi ∈
H∗(X(gi)) as

⟨α1, . . . , αn⟩Xg,(g),d ,
∫
[Mg,(g)(X ,d)]vir

n∏
i=1

ev∗i (αi).

When
∑

i degαi ̸= 2v dimC[Mg,(g)(X , d)]vir, the invariant is defined to

be zero. We also denote the invariant by ⟨α1, . . . , αn⟩Xg,n,d, since (g) is
determined by αi.

3.2. Ruan cohomology rings of Xs and Xsf . Now, for the case
X = Xs, the decomposition of moduli spaceM0,n(X

s, d) is

M0,n(X
s, d) =

⨿
(g)∈T n

Xs

M0,(g)(X
s, d),

where d means d[Γs] with d ∈ Z. If (g) = (Xs, . . . , Xs, T1, . . . , Tk) with
x = (T1, . . . , Tk) consisting of k twisted sectors in Xs, then we denote
M0,(g)(X

s, d) byM0,l,k(X
s, d, x).

Now we can define the three-point function on the Chen-Ruan
cohomology group of Xs. For α1, α2, α3 ∈ H∗

CR(X
s), the three-point

function is
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F s(α1, α2, α3) , ⟨α1, α2, α3⟩X
s

CR +
∑
d≥1

qd⟨α1, α2, α3⟩X
s

0,(g),d

= ⟨α1, α2, α3⟩X
s

CR +
∑
d≥1

qd⟨α1, α2, α3⟩X
s

0,3,d,

where q is a formal variable and (g) is determined by α1, α2, α3. Here,
the first term

⟨α1, α2, α3⟩X
s

CR = ⟨α1, α2, α3⟩X
s

0,3,0

is the three-point function defining the Chen-Ruan product ⋆CR. By
introducing twisting factors (cf., [1]), one can turn a twisted form α,
i.e., a form on a twisted sector, into a formal form α̃ on the global
orbifold. Then, we have

⟨α1, α2, α3⟩X
s

CR =

∫ orb

Xs

α̃1 ∧ α̃2 ∧ α̃3.

The three-point function F s and the orbifold Poincaré pairing ⟨·, ·⟩Xs

CR

on H∗
CR(X

s) induce a ring structure on H∗
CR(X

s).

Definition 3.1. Define the product on H∗
CR(X

s) by

⟨α1 ⋆R α2, α3⟩X
s

CR = F s(α1, α2, α3).

Then ⋆R is an associative product on H∗
CR(X

s). We call it the Ruan
product on Xs. This cohomology ring is denoted by RH∗

CR(X
s).

Similarly, for Xsf , we can define the three-point function F sf (β1, β2,
β3) for β1, β2, β3 ∈ H∗

CR(X
sf ) and the corresponding Ruan product as

above. We denote the resulting ring by RH∗
CR(X

sf ).

4. Computing three-point functions.

4.1. Three-point function on Xs. The Chen-Ruan cohomology of
Xs has a basis

• 1s,Hs, xs,Hsxs, (xs)2, (xs)3 = 2Hs(xs)2 of H∗(Xs), and
• 1s

0,k, x
s
0,k of H∗([Ls

0]k), 1 ≤ k ≤ r − 1, and

• 1s
∞,k, x

s
∞,k of H∗([Ls

∞]k), 1 ≤ k ≤ r − 1, and
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• 1s
ps,k of H∗([ps]k), 1 ≤ k ≤ r − 1, and

• 1s
qs,k of H∗([qs]k), 1 ≤ k ≤ r − 1.

Here xs is the first Chern class of the hyperplane bundle over Xs,
and Hs is a generator of H2(Γs). In the following, we will call those
classes in H∗

CR(X
s)\H∗(Xs) twisted classes and the others non-twisted

classes. We normalize Hs by letting∫ orb

Γs

Hs = 1.

Note that we have ∫ orb

Γs

xs = 0.

Since the three-point function is linear, we always take αi as one of the
basis elements. By comparing the virtual dimension and the sum of
the degrees of the insertions and the divisor axiom we have:

Proposition 4.1. The three-point function F s(α1, α2, α3) is deter-
mined by ⟨α1, α2, α3⟩X

s

CR and the n-point degree d ≥ 1 orbifold Gromov-
Witten invariants with the following insertions:

(4.1)

(O/ )

(Hsxs)

(1s,1s, (xs)3)

(α1) α1 = 1
s
0,k or 1

s
∞,k,

(α1,1
s, Hsxs) α1 = 1

s
0,k or 1∞,k,

(α1,1
s, (xs)2) α1 = 1

s
0,k or 1

s
∞,k,

(α1,1
s) α1 = xs0,k or xs∞,k,

(α1, α2) α1, α2 ∈ {1s
0,k,1

s
∞,k}

r−1
k=1,

(α1, α2,1
s) α1, α2 ∈ {1s

0,k,1
s
∞,k, x

s
0,k, x

s
∞,k}

r−1
k=1, degα1 < degα2,

(α1, α2, α3) αi ∈ {1s
0,k,1

s
∞,k}

r−1
k=1, i = 1, 2, 3,

(α1, α2, α3) at least one of αi belongs to ∈ {1s
ps,k,1

s
ps,k}

r−1
k=1.

4.1.1. Chen-Ruan three-point functions. By using the de Rham
model [1, 12], we get:
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Proposition 4.2. For Xs, the nontrivial Chen-Ruan products of the
twisted classes are given by

1
s
0,i ⋆CR 1

s
0,j = δi+j,rΘr,w,

1
s
0,i ⋆CR x

s
0,j = xsδi+j,rΘr,w,

1
s
∞,i ⋆CR 1

s
∞,j = δi+j,rΘr,z,

1
s
∞,i ⋆CR x

s
∞,j = xsδi+j,rΘr,z,

1
s
ps,i ⋆CR 1

s
ps,j = δi+j,rΘps ,

1
s
qs,i ⋆CR 1

s
qs,j = δi+j,rΘqs .

Here Θr,w and Θr,z are the Thom forms of the normal bundles of Ls
0

and Ls
∞ in Xs, and Θps and Θqs are the Thom forms of the normal

bundles of ps and qs in Xs, respectively. Moreover,

β ⋆CR α = 0,

if β is a twisted class, α ∈ H∗(Xs) and α ̸= 1
s.

The Chen-Ruan product on H∗(Xs) is just the original cup product.

This proposition implies that:

Proposition 4.3. Suppose at least one of the αi is a twisted class in the
three-point function ⟨α1, α2, α3⟩X

s

CR. Then only the following functions
are nontrivial :

⟨1s
0,i,1

s
0,j , x

s⟩X
s

CR = ⟨1s
0,i, x

s
0,j ,1

s⟩X
s

CR = δi+j,r
1

r
;

⟨1s
∞,i,1

s
∞,j , x

s⟩X
s

CR = ⟨1s
∞,i, x

s
∞,j ,1

s⟩X
s

CR = δi+j,r
1

r
;

⟨1s
ps,i,1

s
ps,j ,1

s⟩X
s

CR = ⟨1s
qs,i,1

s
qs,j ,1

s⟩X
s

CR = δi+j,r
1

r
.

4.1.2. Invariants without insertions. Now we consider the orbifold
Gromov-Witten invariants with no insertions.

The top stratumM0,0,0(X
s, d[Γs]) of the moduli spaceM0,0,0(X

s,
d[Γs]), consists of only “smooth” maps (maps from P1 to Xs). As well,

M0,0,0(X
s, d[Γs]) has a subspaceM smooth

0,0,0 (Xs, d[Γs]), consisting of all
smooth holomorphic curves (whose domains contain no orbifold singu-
larities). This space gives us a compactification of M0,0,0(X

s, d[Γs]),
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and its complement in M0,0,0(X
s, d[Γs]) consists of all other lower

strata which have codimension at least 2.

Recall that Xs = X̃s/µr and Γs = Γ̃s/µr. We now compare the

moduli spaceM smooth

0,0,0 (Xs, d[Γs]) withM0,0(X̃
s, d[Γ̃s]). Note that µr

acts naturally on the latter space by acting on the image of the stable
map. Following the argument in [3, subsection 6.3], we have

Lemma 4.4. For d ≥ 1,

M smooth

0,0,0 (Xs, d[Γs]) =

{
O/ if r - d,
M0,0(X̃

s,m[Γ̃s])/µr if d = mr.

From Lemma 4.4, we get:

Proposition 4.5. For d ≥ 1, if r - d, ⟨ ⟩Xs

0,0,d[Γs] vanishes. Otherwise,

if d = mr,

⟨ ⟩X
s

0,0,d[Γs] =
1

m3
.

Proof. We have

⟨ ⟩X
s

0,0,d[Γs] =

∫
[M0,0,0(Xs,d[Γs])]vir

1 =

∫
[M smooth

0,0,0 (Xs,d[Γs])]vir
1.

From Lemma 4.4, we know

M smooth

0,0,0 (Xs, d[Γs]) =M0,0(X̃
s, d[Γ̃s])/µr.

Then, following the computation in [3, subsection 6.4], we get the
results. �

Now suppose αi ∈ H2(Xs), i = 1, 2, 3. Then, by the divisor axiom
and Proposition 4.5, we have∑
m>1

qmr[Γs]⟨α1, α2, α3⟩X
s

0,0,mr[Γs] = α1(r[Γ
s])α2(r[Γ

s])α3(r[Γ
s])

qr[Γ
s]

1− qr[Γs]
.

4.2. 3-point function on Xsf . The Chen-Ruan cohomology of Xsf

has a basis
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• 1sf ,Hsf , xsf ,Hsfxsf , (xsf )2, (xsf )3 = 2Hsf (xsf )2 ofH∗(Xsf ),
and
• 1sf

0,k, x
sf
0,k of H∗([Lsf

0 ]k), 1 ≤ k ≤ r − 1, and

• 1sf
∞,k, x

sf
∞,k of H∗([Lsf

∞ ]k), 1 ≤ k ≤ r − 1, and

• 1sf
psf ,k

of H∗([psf ]k), 1 ≤ k ≤ r − 1 and

• 1sf
qsf ,k

of H∗([qsf ]k), 1 ≤ k ≤ r − 1.

Here xsf is the first Chern class of the hyperplane bundle over Xsf

and Hsf is a generator of H2(Γsf ). We will also call those classes in
H∗

CR(X
sf )\H∗(Xsf ) twisted classes and the others non-twisted classes.

We normalize Hsf such that∫ orb

Γsf

Hsf = 1.

We also have
∫ orb

Γsf x
sf = 0.

Following the argument for Xs we have:

Proposition 4.6. The three-point function F sf (β1, β2, β3) is deter-

mined by ⟨β1, β2, β3⟩X
sf

CR and n-point degree d ≥ 1 orbifold Gromov-
Witten invariants with the following insertions:
(4.2)

(O/ )

(1sf ,Hsfxsf )

(1sf ,1sf , (xsf )3)

(β1) β1 = 1
sf
0,k or 1

sf
∞,k,

(β1,1
sf ,Hsfxsf ) β1 = 1

sf
0,k or 1

sf
∞,k,

(β1,1
sf , (xsf )2) β1 = 1

sf
0,k or 1

sf
∞,k,

(β1,1
sf ) β1 = xsf0,k or xsf∞,k,

(β1, β2) β1, β2 ∈ {1sf
0,k,1

sf
∞,k}

r−1
k=1,

(β1, β2,1
sf ) β1, β2∈{1sf

0,k,1
sf
∞,k, x

sf
0,k, x

sf
∞,k}

r−1
k=1, deg β1<deg β2,

(β1, β2, β3) βi ∈ {1sf
0,k,1

sf
∞,k}

r−1
k=1, i = 1, 2, 3,

(β1, β2, β3) at least one of βi belongs to {1sf
psf ,k

,1sf
qsf ,k
}r−1
k=1.

And, for ⟨β1, β2, β3⟩X
sf

CR , when at least one of βi is twisted, only the
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following functions are nontrivial :

⟨1sf
0,i,1

sf
0,j , x

sf ⟩X
sf

CR = ⟨1sf
0,i, x

sf
0,j ,1

sf ⟩X
sf

CR = δi+j,r
1

r
,

⟨1sf
∞,i,1

sf
∞,j , x

sf ⟩X
sf

CR = ⟨1sf
∞,i, x

sf
∞,j ,1

sf ⟩X
sf

CR = δi+j,r
1

r
,

⟨1sf
psf ,i

,1sf
psf ,j

,1sf ⟩X
sf

CR = ⟨1sf
qsf ,i

,1sf
qsf ,j

,1sf ⟩X
sf

CR = δi+j,r
1

r
.

We also have

⟨ ⟩X
sf

0,0,d[Γsf ] =

{
0 if r - d,
1/m3 if d = mr.

We will compute the remaining invariants with insertions in equa-
tions (4.1) and (4.2) in the next section by using the virtual localization
technique.

5. Localization and orbifold Gromov-Witten invariants with
insertions from (4.1) and (4.2).

5.1. Torus action. We introduce a T 2-action on Ṽ :

(t1, t2) · (x, y, z, w) = (t1t2x, t
−1
1 t2y, t2z, t2w), (t1, t2) ∈ T 2.

This T 2-action extends naturally to the two small resolutions Ṽ s and

Ṽ sf of Ṽ , and hence to X̃s = P(Ṽ s ⊕O) and X̃sf = P(Ṽ sf ⊕O) with
trivial action on the trivial bundle. The resulting T 2-action commutes

with the µr-action on X̃s and X̃sf . Hence, we get a T 2-action on Xs

and Xsf , respectively.

The fixed points of the T 2-action on Xs are the three special points
in F s

0 , the fiber of Xs = P(V s ⊕ O) over 0s, and the three special
points in F s

∞, the fiber of Xs = P(V s ⊕ O) over ∞s. In addition,
the fixed lines connecting these fixed points are projective lines in F s

0

and F s
∞, and Γs. The fixed points of the T 2-action on Xsf are the

three special points in F sf
0 , the fiber of Xsf = P(V sf ⊕ O) over 0sf ,

and the three special points in F sf
∞ , the fiber of Xsf = P(V sf ⊕ O)

over ∞sf . In addition, the fixed lines connecting these fixed points are

the projection lines in F sf
0 and F sf

∞ , and Γsf . Note that the degree 2
homology classes represented by those projective lines do not lie in the
subgroup generated by [Γs] (respectively, [Γsf ]).
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We denote by [0s]k ⊂ [Ls
0]k the twisted sector corresponding to

0s ⊂ Ls
0. The same notation applies to [∞s]k, [0

sf ]k and [∞sf ]k.

In the following, we focus on Xs. All computations on Xsf are
parallel.

5.2. Fixed loci components and their virtual normal bundles.
For a map f from an irreducible genus 0 (orbi-)curve C to Xs, we have:

Lemma 5.1. Suppose that d ≥ 1, and f : C → Xs is a degree d[Γs] J-
holomorphic map with two marked points which is invariant with respect
to the T 2-action, then either :

(i) C = P1, and the degree satisfies d ≡ 0 (mod r), or
(ii) C ∼= Γs. The two marked points are just the two orbifold points of
C and mapped to [0s]k, [∞s]r−k, respectively. The degree satisfies
d ≡ −k (mod r). This map is realized by

P1 d //

/µr

��

Γ̃s

/µr

��
C d // Γs.

The corresponding group homomorphism µr → µr is given by :
ξ 7→ ξ−k.

For every connected component of the fixed loci inM0,l,k(X
s, d, x),

we can assign a labeled graph T to it. From Lemma 5.1, a vertex
v ∈ VT corresponds to a connected component Cv of f−1{0s,∞s}.
Note that each Cv can be either a point of C or a non-empty union
of irreducible components of C. An edge e ∈ ET corresponds to a
irreducible component Ce of genus 0 mapped to Γs. We endow T with
additional specifications: the vertex v will be labeled by pv = 0s or
∞s; the set Sv ⊂ {x1, . . . , xl, y1, . . . , yk} of marked points lying on Cv;
and the nodes Nv on Cv which connect Cv and Ce for edges incident to
v. The edges will be labeled by the degrees de ∈ N. The valency of v
is defined as val (v) = #Nv, and we denote #Sv by h(v).

Then the connected components ofM0,l,k(X
s, d, x)T

2

are naturally
labeled by equivalence classes of labeled connected graphs T with
specifications obeying the following conditions:
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• if e ∈ ET connects vertices v, u ∈ VT then pv ̸= pu;
•
∑

e∈ET
de = d;

• {x1, · · · , xl, y1, . . . , yk} =
⨿

v∈VT
Sv.

Each component MT is isomorphic to the quotient space of the
product of moduli spaces of stable curves over the set of vertices of T
with orbifold structure recorded by Sv, Nv and the balance condition,
modulo the action of the natural automorphism group specified by

1 −→
∏
ET

Ze −→ AT −→ Aut(T ) −→ 1,

where Aut (T ) is the automorphic group of T (as a labeled graph), and
Ze = Zde .

A flag F = (v, e) consists of a vertex v and an edge e with v being
a vertex of e.

Let G be the collection of graphs.

From [9], we get an exact sequence:

0 −→ H0(C, TC) −→ H0(C, f∗TXs) −→ T 0

−→ H1(C, TC) −→ H1(C, f∗TXs) −→ T 1 −→ 0,

where T 0 − T 1 is the virtual tangent bundle ofM0,l,k(X
s, d[Γs], x) in

K-theory and is T 2-equivariant.

Write E = f∗TXs. In terms of cohomological data, the equivariant
Euler class of the virtual normal bundle Nvir

MT
is given by

1

eT 2(Nvir
MT

)
=
eT 2(H0(C, TC)m) · eT 2(H1(C, E)m)

eT 2(H1(C, TC)m) · eT 2(H0(C, E)m)
.

Here, the superscript m denotes the moving part. The explicit form
is (cf., [9])
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1

eT 2(Nvir
MT

)
=

∏
val(v)=1
h(v)=0

ωF ·
∏

F=(v,e)
val(v)+h(v)>3

1

ωF − ψF
(5.1)

·
∏

val(v)=2
h(v)=0

1

ωFv,1 + ωFv,2

·
∏
VT

eT 2(E)val(v)

·
∏

VT
eT 2(H1(Cv, E)m) ·

∏
ET

eT 2(H1(Ce, E)m)∏
VT
eT 2(H0(Cv, E)m) ·

∏
ET

eT 2(H0(Ce, E)m)
.

Since there may be an orbifold structure on the domain curve C, in the
formula above, we should take the invariant subspace of some certain
finite group.

5.3. Vanishing results. Denote by λ, u the equivariant factors cor-
responding to the two factors in T 2, respectively. Now for classes
αj ∈ H∗

CR(X
s), 1 ≤ j ≤ n = l + k, let

Ω =
∏
j

ev∗j (αj,T 2),

where αj,T 2 is the equivariant lifting of αj . By virtual localization, we

can write ⟨α1, . . . , αn⟩X
s

0,n,d as

I(Ω) = IΩ(λ, u) , ⟨α1, . . . , αn⟩X
s

0,n,d

=
∑
T∈G

1

|AT |

∫
[MT ]vir

i∗T (Ω)

eT 2(Nvir
MT

)

=
∑
T∈G

IT (λ, u),

where iT : MT → M0,0,k(X
s, d, x) is the natural inclusion of the

fixed loci component. Since the left hand side of the above equality
is independent of u, we have

I(Ω) = lim
u→0

IΩ(λ, u) =
∑
T∈G

lim
u→0

IT (λ, u).

Lemma 5.2. Suppose n ≥ 1 and d ≥ 1. If T contains more than one
edge,

lim
u→0

IT (λ, u) = 0.
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Proof. Note that t2, the second factor of T 2, acts on Γs trivially.
Hence, the induced t2-action on the domain curve C is trivial. Hence,
the factor

eT 2(H0(C, TC)m)

eT 2(H1(C, TC)m)
,

of 1/eT 2(Nvir
MT

) contains no factor u. Now we look at the factor

eT 2(H1(C, E)m)/eT 2(H0(C, E)m), where E = f∗TXs. On C, we have
(cf., [9])

0 −→ OC −→
⊕
v∈VT

OCv ⊕
⊕
e∈ET

OCe −→
⊕

F∈FT

OCF
−→ 0.

Then we have

0 −→ H0(C, E) −→
⊕
v∈VT

H0(Cv, E)

⊕
⊕
e∈ET

H0(Ce, E)

−→
⊕

F∈FT

Ep(F ) −→ H1(C, E)

−→
⊕
v∈VT

H1(Cv, E)⊕
⊕
e∈ET

H1(Ce, E) −→ 0.

Note that, when C has an orbifold structure, these spaces are the
invariant subspaces of a certain finite group. From this exact sequence,
we get

eT 2(H1(C, E)m)

eT 2(H0(C, E)m)

=
eT 2(

⊕
F∈FT

Ep(F ))· eT 2(
⊕

v∈VT
H1(Cv, E)m)· eT 2(

⊕
e∈ET

H1(Ce, E)m)

eT 2(
⊕

v∈VT
H0(Cv, E)m) · eT 2(

⊕
e∈ET

H0(Ce, E)m)
.

Observe that, for every edge e, H0(Ce, E)m = H0(Ce, f∗TΓs)m. Hence,
the term eT 2(

⊕
e∈ET

H0(Ce, E)m) contains no power of u as a factor.

By the assumption, T contains at least 2 edges, VT must contains
a vertex v such that val (v) ≥ 2. For this Cv, if pv = 0s, then since
the µr-action on Cw is trivial, the t2-action on Cw gives us a factor
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uval(v)−1 coming from

eT 2(
⊕

F=(v,e)Ep(F ))

eT 2(H0(Cv, E)m)
.

If pv =∞s, then the µr-action on Epv = Cz is trivial, and the t2-action

on Epv = Cz gives us a factor uval(v)−1.

Hence, eT 2(H0(C, E)m)/eT 2(H1(C, E)m) contains a positive power
of u as a factor. Therefore,

lim
u→0

IT (λ, u) = 0.

This completes the proof. �

5.4. Orbifold Gromov-Witten invariants of Xs with degree
d ≥ 1. In this section, we compute orbifold Gromov-Witten invariants
with insertion in equation (4.1). First note that the T 2-equivariant
Chen-Ruan cohomology of Xs is defined as the T 2-equivariant coho-
mology of the inertia orbifold ΛXs. We observe that:

Lemma 5.3. Suppose that xsT 2 , xs0,k,T 2 , xs∞,k,T 2 , 1s
ps,k,T 2 and 1s

qs,k,T 2

are the equivariant lifting of xs, xs0,k, x
s
∞,k, 1

s
ps,k and 1

s
qs,k, respec-

tively. Then we have
i∗[0s]j ,T 2(xsT 2) = i∗[∞s]j ,T 2(xsT 2) = 0

i∗[0s]j ,T 2(xs0,k,T 2) = i∗[∞s]j ,T 2(xs∞,k,T 2) = 0 1 ≤ k ≤ r − 1,

i∗[0s]j ,T 2(1s
ps,k,T 2) = i∗[∞s]j ,T 2(1s

qs,k,T 2) = 0 1 ≤ k ≤ r − 1,

for any 0 ≤ j ≤ r − 1, where [0s]0 = 0s and [∞s]0 =∞s.

For a fixed componentMT ofM0,l,k(X
s, d, x), we have a commuta-

tive diagram

M0,l,k(X
s, d, x)

evj // ΛXs

MT

iT

OO

evj // pj ,

i

OO
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where pj is the image of the jth marked point, hence a fixed point
in ΛXs with respect to the T 2-action. So, by Lemma 5.1, we have
pj = [0s]k or [∞s]k, 0 ≤ k ≤ r − 1.

Now, for the invariant ⟨α1, . . . , αn⟩X
s

0,n,d with at least one of αj being
one of

{xs} ∪ {xs0,k, xs∞,k,1
s
ps,k,1

s
qs,k | 1 ≤ k ≤ r − 1},

by Lemma 5.3, we have

i∗T (Ω) = i∗T

(∏
j

ev∗jαj,T 2

)
=

∏
j

ev∗j (i
∗
pj
αj,T 2) = 0.

This implies that

⟨α1, . . . , αn⟩X
s

0,n,d =
∑
T∈G

IT (λ, u) = 0,

if at least one of αj belongs to

{xs} ∪ {xs0,k, xs∞,k,1
s
ps,k,1

s
qs,k | 1 ≤ k ≤ r − 1}.

Therefore, to compute invariants with insertions in (4.1), we only
have to deal with the following insertions:

(α1) α1 = 1
s
0,k or 1s

∞,k,

(α1, α2) α1, α2 ∈ {1s
0,k,1

s
∞,k | 1 ≤ k ≤ r − 1},

(α1, α2, α3) αi ∈ {1s
0,k,1

s
∞,k | 1 ≤ k ≤ r − 1}, i = 1, 2, 3.

Lemmas 5.1 and 5.2 imply that we only have to consider one-edge
graphs, and the corresponding stable map on Ce is a degree d ≥ 1
covering of Γs. So the domain curve must have at least two orbifold
points, hence at least two marked points. Therefore,

⟨α1⟩X
s

0,1,d = 0,

for twisted class α1 ∈ H∗
CR(X

s) and d ≥ 1.

We next consider 2-point and 3-point Gromov-Witten invariants on
twisted classes.

5.4.1. ⟨α1, α2⟩X
s

0,2,d with α1, α2 ∈ {1s
0,k,1

s
∞,k | 1 ≤ k ≤ r − 1} and

d ≥ 1. For this case, by Lemmas 5.1 and 5.2, to get nonzero invariants,
we only have to consider the following two cases:
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• α1 = 1
s
0,i, α2 = 1

s
∞,r−i, with d ≡ −i (mod r), or

• α1 = 1
s
∞,i, α2 = 1

s
0,r−i, with d ≡ i (mod r).

Since Gromov-Witten invariants are antisymmetric on insertions and
degαj = 0, we have

⟨1s
0,i,1

s
∞,r−i⟩X

s

0,2,d = ⟨1s
∞,r−i,1

s
0,i⟩X

s

0,2,d.

Therefore, we only have to compute the first case.

For the first case, the moduli space M0,0,2(X
s, d, x) contains one

component of the fixed locus, which is indexed by the one-edge graph
T = (VT , ET ) with VT = {v1, v2}, E = {e}. In addition, the domain
curve C is just Γs with two marked points being the two orbifold points
p(v1) = 0s and p(v2) = ∞s. We also have de = d. The stable map
f : C → Γs is realized by:

P1

/µr

��

f̃ // Γ̃s

/µr

��
C

f // Γs

The corresponding homomorphism µr → µr is ξ 7→ ξ−i. From
equation (5.1), we know that the T 2-equivariant Euler class of the
virtual normal bundle of this fixed component is

1

eT 2(Nvir
MT

)
=
eT 2(H1(C, f∗TXs)m)

eT 2(H0(C, f∗TXs)m)
.

Note that

Hi(C, f∗TXs) =
(
Hi(P1, f̃∗TX̃s)

)µr

for i = 0, 1, and f̃ is a degree d covering. The normal bundle of Γs in
Xs is Ls

1 ⊕ Ls
2 = V s → Γs. Hence,

H0(C, f∗TXs) = H0(C, f∗TΓs),

and

H1(C, f∗TXs) = H1(C, f∗Ls
1 ⊕ f∗Ls

2).
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Suppose d = ar + r − i, a ≥ 0. Then we have

1

eT 2(Nvir
MT

)
=
eT 2(H1(C, f∗Ls

1 ⊕ f∗Ls
2)

m)

eT 2(H0(C, f∗TΓs)m)

=

∏a
s=1((sr/d)λ+ u) ·

∏a
s=1((−sr/d)λ+ u)

[(−1)a(a!)2r2aλ2a]/d2a
.

Remark 5.4. Note that

H1(C, f∗Ls
1 ⊕ f∗Ls

2) = H1(P1, f̃∗(O(−1)⊕O(−1)))µr ,

and

f̃∗(O(−1)⊕O(−1)) = O(−d)⊕O(−d)

over P1. To compute H1(P1, f̃∗(O(−1) ⊕ O(−1))), we use the Serre
duality :

H1(P1,O(−d)⊕O(−d)) ∼= H0(P1,O(d− 1)⊕O(d− 1))∨,

where ∨ stands for dual. Then we take the µr-invariant subspace with
respect to the induced µr-action to get H1(C, f∗Ls

1 ⊕ f∗Ls
2).

For Ω = ev∗1(1
s
0,i,T 2) ∧ ev∗2(1s

∞,r−i,T 2), we have

i∗T (ΩT 2) = 1.

Note that |AT | = d. Summarizing, we get

⟨1s
0,i,1

s
∞,r−i⟩X

s

0,2,d = lim
u→0

1

d
·
∏a

s=1((sr/d)λ+ u) ·
∏a

s=1((−sr)/dλ+ u)

[(−1)a(a!)2r2aλ2a]/d2a

=
1

d
·
∏a

s=1(sr/d)λ ·
∏a

s=1(−sr)/dλ
[(−1)a(a!)2r2aλ2a]/d2a

=
1

d
.

5.4.2. ⟨α1, α2, α3⟩X
s

0,3,d with α1, α2, α3 ∈ {1s
0,k,1

s
∞,k | 1 ≤ k ≤ r − 1}

and d ≥ 1. By Lemmas 5.1 and 5.2, we only have to consider the
following two cases:

(1) α1 = 1
s
0,i, α2 = 1

s
0,j , α3 = 1

s
∞,k, d ≡ k (mod r), and

(2) α1 = 1
s
0,i, α2 = 1

s
∞,j , α3 = 1

s
∞,k, d ≡ r − i (mod r).

with i+ j + k = r or 2r.
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Case (1). For this case, there is only one fixed component indexed
by a one-edge graph T with

VT = {v1, v2} and ET = {e}.

The domain curve is C = Cv1 ∪ Ce. The first two marked points sit on
Cv1 . We have

|AT | = d with d = ar + k.

Denote by F = (v1, e) the flag with vertex v1. Then, from (5.1) and
the analysis in subsection 5.4.1 we have

1

eT 2(Nvir
MT

)
=

1

ωF

· eT
2(H1(Cv1 , f∗(Ls

1 ⊕ Ls
2 ⊕ TΓs))m) · eT 2(H1(Ce, f∗(Ls

1 ⊕ Ls
2))

m)

eT 2(H0(Ce, f∗TΓs)m)
.

For H1(Cv1 , f∗(Ls
1 ⊕ Ls

2 ⊕ TΓs)), we have (cf., [1, subsection 3.4])

H1(Cv1 , f
∗(Ls

1 ⊕ Ls
2 ⊕ TΓs)) =

{
T0sΓ

s i+ j + k = r,

Ls
1|0s i+ j + k = 2r.

For this case, we also have i∗T (ΩT 2) = 1. Hence,

⟨1s
0,i,1

s
0,j ,1

s
∞,k⟩X

s

0,3,d

= lim
u→0

1

d
· i∗T (ΩT 2)

eT 2(Nvir
MT

)

= lim
u→0

1

d
· eT

2(H1(Cv1 , f∗(Ls
1 ⊕ Ls

2 ⊕ T0sΓs)))

ωF

· eT
2(H1(Ce, f∗(Ls

1 ⊕ Ls
2))

m)

eT 2(H0(Ce, f∗TΓs)m)

=

limu→0
1
d ·

eT2 (T0sΓ
s)·eT2 (H

1(Ce,f
∗(Ls

1⊕Ls
2)))

ωF ·eT2 (H0(Ce,f∗TΓs)m) i+ j + k = r,

limu→0
1
d ·

eT2 (L
s
1|0s )·eT2 (H

1(Ce,f
∗(Ls

1⊕Ls
2)))

ωF ·eT2 (H0(Ce,f∗TΓs)m) i+ j + k = 2r.

=

{
limu→0

1
d ·

−λ·
∏a

s=1(
sr
d λ+u)·

∏a
s=1((−sr/d)λ+u)

(−λ/d)·[(−1)a(a!)2r2aλ2a]/d2a i+ j + k = r,

limu→0
1
d ·

(λ+u)·
∏a

s=1((sr/d)λ+u)·
∏a

s=1((−sr/d)λ+u)

(−λ/d)·[(−1)a(a!)2r2aλ2a]/d2a i+ j + k = 2r.

=

{
1 i+ j + k = r,

−1 i+ j + k = 2r.
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Case (2). Similar to Case (1), we have

⟨1s
0,i,1

s
∞,j ,1

s
∞,k⟩X

s

0,3,d =

{
−1 i+ j + k = r,

1 i+ j + k = 2r.

5.5. Orbifold Gromov-Witten invariants of Xsf with degree
d ≥ 1. We can also apply the virtual localization technique to compute

⟨β1, . . . , βn⟩X
sf

0,n,d, with (β1, . . . , βn) being one of equation (4.2) and
d ≥ 1. We have

⟨β1, . . . , βn⟩X
sf

0,n,d

=



1/d n = 2, and β1 = 1
sf
0,i, β2 = 1

sf
∞,r−i,

1/d n = 2, and β1 = 1
sf
∞,i, β2 = 1

sf
0,r−i,

1 n = 3, and β1 = 1
sf
0,i, β2 = 1

sf
0,j , β3 = 1

sf
∞,r−i−j ,

−1 n = 3, and β1 = 1
sf
0,i, β2 = 1

sf
0,j , β3 = 1

sf
∞,2r−i−j ,

−1 n = 3, and β1 = 1
sf
0,i, β2 = 1

sf
∞,j , β3 = 1

sf
∞,r−i−j ,

1 n = 3, and β1 = 1
sf
0,i, β2 = 1

sf
∞,j , β3 = 1

sf
∞,2r−i−j ,

0 otherwise,

for d ≥ 1.

6. Isomorphism between Ruan cohomology rings of Xs

and Xsf . In this section, we give an additive homomorphism ϕ :
H∗

CR(X
s) → H∗

CR(X
sf ) between the Chen-Ruan cohomology groups,

which preserves the orbifold Poincare pairing. Then we show that,
under the identification

[Γs]←→ −[Γsf ],

i.e.,
q ←→ q−1,

we can identify the three-point functions F s and F sf .

6.1. Isomorphism between Chen-Ruan cohomology groups of
Xs and Xsf . In this section we define an additive homomorphism
between the Chen-Ruan cohomology of Xs and the Chen-Ruan coho-
mology of Xsf .
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We define a map:

ϕ : H∗
CR(V

s
r ) −→ H∗

CR(V
sf
r ).

On the twisted classes, we define

ϕ(1s
0,k) = 1

sf
0,r−k, ϕ(1s

∞,k) = 1
sf
∞,r−k,

ϕ(xs0,k) = xsf0,r−k, ϕ(xs∞,k) = xsf∞,r−k,

and
ϕ(1s

ps,k) = 1
sf
psf ,r−k

, ϕ(1s
qs,k) = 1

sf
qsf ,r−k

.

On H∗(Xs), for degree 0 and 6 forms, ϕ is defined in an obvious way.
For α ∈ H2(Xs), ϕ(α) is defined to be the unique extension of

α|Xs−Γs = α|Xsf−Γsf

over Xsf . For β ∈ H4(Xs), define ϕ(β) ∈ H4(Xsf ) to be the extension
as above such that ∫ orb

Xs

α ∧ β =

∫ orb

Xsf

ϕ(α) ∧ ϕ(β),

for any α ∈ H2(Xs).

6.2. Isomorphism of Ruan cohomology rings. We first note that

Lemma 6.1. Suppose that αi ∈ H2(Xs) and βi = ϕ(αi), 1 ≤ i ≤ 3.
Then

⟨α1, α2, α3⟩X
s

CR − ⟨β1, β2, β3⟩X
sf

CR = r3α1([Γ
s])α2([Γ

s])α3([Γ
s])

= −r3β1([Γsf ])β2([Γ
sf ])β3([Γ

sf ]).

Proof. If one of αi, say α1, is nix
s, then the left hand side is zero,

and the right hand side is also zero since xs([Γs]) = 0. If αi = niH
s,

i = 1, 2, 3, then the proof is the same as the proof of Lemma 6.14 in
[3]. We omit it here. �

Now we state our main theorem.

Theorem 6.2. Let αi ∈ H∗
CR(X

s), 1 ≤ i ≤ 3 and βi = ϕ(αi). Then

F s(α1, α2, α3) = F sf (β1, β2, β3),
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under the identification [Γs
r] ↔ −[Γsf

r ], i.e., q ↔ q−1. Hence, we have
an isomorphism of Ruan cohomology

RH∗
CR(X

s) ∼= RH∗
CR(X

sf ).

Proof. We first assume that all αi ∈ H∗(Xs). If one of αi, say α1,
has degree ≥ 4, the quantum correction term in F s(α1, α2, α3) vanishes.
Therefore, we only need to verify

⟨ϕ(α1), ϕ(α2), ϕ(α3)⟩X
sf

CR = ⟨α1, α2, α3⟩X
s

CR.

We can choose α1 to be supported away from Γs. Then, we have

⟨ϕ(α1), ϕ(α2), ϕ(α3)⟩X
sf

CR =

∫
Xsf

ϕ(α1) ∧ ϕ(α2) ∧ ϕ(α3)

=

∫
Xs

α1 ∧ α2 ∧ α3

= ⟨α1, α2, α3⟩X
s

CR.

Now we assume that degαi = 2. For this case, the difference,

F s(α1, α2, α3)− F sf (β1, β2, β3),

consists of two parts.

(1) ⟨α1, α2, α3⟩X
s

CR − ⟨β1, β2, β3⟩X
sf

CR = r3α1([Γ
s])α2([Γ

s])α3([Γ
s]),

(2) α1(r[Γ
s])α2(r[Γ

s])α3(r[Γ
s])

qr[Γ
s]

1− qr[Γs]

− β1(r[Γsf ])β2(r[Γ
sf ])β3(r[Γ

sf ])
qr[Γ

sf ]

1− qr[Γsf ]

= r3α1([Γ
s])α2([Γ

s])α3([Γ
s])

qr[Γ
s]

1− qr[Γs]

+ r3α1([Γ
s])α2([Γ

s])α3([Γ
s])

q−r[Γs]

1− q−r[Γs]

= −r3α1([Γ
s])α2([Γ

s])α3([Γ
s]).

Here we use [Γs]↔ −[Γsf ]. Part (1) cancels part (2). Therefore,

F s(α1, α2, α3) = F sf (β1, β2, β3).



890 S. DU, B. CHEN, C.-Y. DU AND X. LI

We next assume that at least one of αi is twisted. Then, by Propo-
sition 4.1, Proposition 4.3 and Proposition 4.6, and the computation in
Section 5, we only have to consider the following cases.

Case (1). (α1, α2, α3) = (1s
0,i,1

s
0,r−i, x

s), (1s
∞,i, 1

s
∞,r−i, x

s),
(1s

0,i, x
s
0,r−i,1

s), (1s
∞,i, x

s
∞,r−i,1

s), (1s
ps,i,1

s
ps,r−i,1

s) or (1s
qs,i,1

s
qs,r−i,

1
s). For all these cases, the difference of three-point functions is

F s(α1, α2, α3)− F sf (β1, β2, β3)

= ⟨α1, α2, α3⟩X
s

CR − ⟨ϕ(α1), ϕ(α2), ϕ(α3)⟩X
sf

CR =
1

r
− 1

r
= 0.

Case (2). (α1, α2, α3) = (1s
0,i,1

s
∞,r−i,H

s). For this case, note that

Hs([Γs]) = 1, and by Lemma 6.1, we have ϕ(Hs)([Γsf ]) = −1. Hence,
the difference of three-point functions is

F s(α1, α2, α3)− F sf (β1, β2, β3) =
∑
d>0

⟨1s
0,i,1

s
∞,r−i,H

s⟩X
s

0,3,dq
d[Γs]

−
∑
d>0

⟨1sf
0,r−i,1

sf
∞,i, ϕ(H

s)⟩X
sf

0,3,dq
d[Γsf ]

=
∑

d≡r−i(mod r)

d

d
qd[Γ

s]

−
∑

d≡i(mod r)

−d
d
qd[Γ

sf ]

=
q(r−i)[Γs]

1− qr[Γs]
+

qi[Γ
sf ]

1− qr[Γsf ]

=
q(r−i)[Γs]

1− qr[Γs]
+

q−i[Γs]

1− q−r[Γs]
= 0.

Case (3). (α1, α2, α3) = (1s
∞,i,1

s
0,r−i,H

s). For this case, as in
Case (2), the difference is

F s(α1, α2, α3)− F sf (β1, β2, β3) =
∑

d≡i(mod r)

d

d
qd[Γ

s]

−
∑

d≡r−i(mod r)

−d
d
qd[Γ

sf ]



RUAN COHOMOLOGIES 891

=
qi[Γ

s]

1− qr[Γs]
+

qr−i[Γsf ]

1− qr[Γsf ]
=

qi[Γ
s]

1− qr[Γs]
+

qi−r[Γs]

1− q−r[Γs]
= 0.

Case (4). (α1, α2, α3) = (1s
0,i,1

s
0,j ,1

s
∞,k), i + j + k ≡ 0 (mod r).

For this case, the difference is

F s(α1, α2, α3)− F sf (β1, β2, β3)

=



∑
d≡k(mod r) q

d[Γs]

−
∑

d≡r−k(mod r)−qd[Γ
sf ] i+ j + k = r,∑

d≡k(mod r)−qd[Γ
s]

−
∑

d≡r−k(mod r) q
d[Γsf ] i+ j + k = 2r,

=


qk[Γs]

1−qr[Γs] +
qr−k[Γsf ]

1−qr[Γ
sf ]

i+ j + k = r,

− qk[Γs]

1−qr[Γs] − qr−k[Γsf ]

1−qr[Γ
sf ]

i+ j + k = 2r,

= 0.

Case (5). (α1, α2, α3) = (1s
0,i,1

s
∞,j ,1

s
∞,k), i + j + k ≡ 0 (mod r).

For this case, the difference is

F s(α1, α2, α3)− F sf (β1, β2, β3)

=



∑
d≡r−i(mod r)−qd[Γ

s]

−
∑

d≡i(mod r) q
d[Γsf ] i+ j + k = r,∑

d≡r−i(mod r) q
d[Γs]

−
∑

d≡i(mod r)−qd[Γ
sf ] i+ j + k = 2r,

=

−
q(r−i)[Γs]

1−qr[Γs] − qi[Γ
sf ]

1−qr[Γ
sf ]

i+ j + k = r,

q(r−i)[Γs]

1−qr[Γs] + qi[Γ
sf ]

1−qr[Γ
sf ]

i+ j + k = 2r,

= 0.

Summarizing all of these above cases, we get

F s(α1, α2, α3) = F sf (β1, β2, β3).

It is easy to see that ϕ preserves the Poincaré pairing on the Chen-Ruan
cohomology groups of Xs and Xsf . This completes the proof of the
theorem. �
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