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STABILITY OF GORENSTEIN FLAT CATEGORIES
WITH RESPECT TO A SEMIDUALIZING MODULE

ZHENXING DI, ZHONGKUI LIU AND JIANLONG CHEN

ABSTRACT. We first introduce in the paper the WF -
Gorenstein modules to establish the following Foxby equiva-
lence:

G(F) ∩ AC

C⊗R− // G(WF )
HomR(C,−)

oo

where G(F), AC and G(WF ) denote the class of Gorenstein
flat modules, the Auslander class and the class of WF -
Gorenstein modules, respectively. Then, we investigate two-
degree WF -Gorenstein modules. An R-module M is said
to be two-degree WF -Gorenstein if there exists an exact
sequence G• = · · · → G1 → G0 → G0 → G1 → · · · in G(WF )
such that M ∼= im (G0 → G0) and G• is HomR(G(WF ),−)
and G(WF )+ ⊗R − exact. We show that two notions of the
two-degree WF -Gorenstein and the WF -Gorenstein modules
coincide when R is a commutative GF -closed ring.

1. Introduction. Throughout this article, R is a commutative ring
with identity and all modules are unitary. We denote by R-Mod the
category of R-modules. For an R-module M , the Pontryagin dual or
character module HomZ(M,Q/Z) is denoted by M+.

Recall from White [11] that an R-module C is said to be semid-
ualizing if C admits a degreewise finite projective resolution, the
natural homothety map R → HomR(C,C) is an isomorphism and

Ext>1
R (C,C) = 0. Examples include the rank one free modules and

a dualizing (canonical) module when one exists. With this notion, the
Auslander class and the Bass class with respect to a fixed semidualiz-
ing R-module C, denoted by AC and BC , respectively, can be defined

2010 AMS Mathematics subject classification. Primary 16E05, 16E10, 55U15.
Keywords and phrases. Semidualizing module, GC -flat module, WF -Gorenstein

module, Bass class, stability of category.
This work is supported by the National Natural Science Foundation of China

(Nos. 11261050 and 11371089), and the Specialized Research Fund for the Doctoral
Program of Higher Education (No. 20120092110020).

Received by the editors on September 19, 2012, and in revised form on Janu-
ary 16, 2014.
DOI:10.1216/RMJ-2015-45-6-1839 Copyright c⃝2015 Rocky Mountain Mathematics Consortium

1839



1840 ZHENXING DI, ZHONGKUI LIU AND JIANLONG CHEN

and studied naturally. It is well known that there exists the following
equivalence of categories:

AC

C⊗R− // BC .
HomR(C,−)

oo

Recently, as a generalization of the classes of Gorenstein projective
and Gorenstein injective modules, denoted by G(P) and G(I), respec-
tively, Geng and Ding [4] introduced the notions of the WP -Gorenstein
and the WI -Gorenstein modules. In particular, they obtained the fol-
lowing interesting equivalences of categories:

G(P) ∩ AC

C⊗R− // G(WP )
HomR(C,−)
oo

and

G(WI)
C⊗R− // G(I) ∩ BC ,

HomR(C,−)
oo

where G(WP ) and G(WI) denote the classes of WP -Gorenstein and WI -
Gorenstein modules, respectively. So it is natural to ask if there exist
some other classes satisfying the following diagram:

G(F) ∩ AC

C⊗R− // ?
HomR(C,−)

oo

The motivation of the present article is the “?.”

We shall introduce in Section 3 the notion of the WF -Gorenstein
module, which plays the role of “?.” Combined with WP -Gorenstein
and WI -Gorenstein modules, they can be treated from a similar aspect
as the relationship among projective, injective and flat modules in
classical homological algebra theory. An R-module M is said to be
WF -Gorenstein if there exists an exact sequence

W• = · · · −→ W1 −→ W0 −→ W 0 −→ W 1 −→ · · ·

in FC such that M ∼= im(W0 → W 0) and W• is HomR(PC ,−) and
IC ⊗R − exact, where FC , PC and IC denote the classes of C-flat,
C-projective and C-injective modules, respectively. In particular, we
get the following theorem demonstrating the relationship between the
classes G(WF ) and GFC (see Theorem 3.4):
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Theorem I. Let C be a semidualizing R-module. Then G(WF ) =
GFC ∩ BC .

Also, the G(WF )-projective dimension for any R-module will be
discussed in this section.

In Section 4, we first introduce the modules that arise from an
iteration of the above construction. To wit, let G2(WF ) denote the
class of R-module M for which there exists an exact sequence

G• = · · · −→ G1 −→ G0 −→ G0 −→ G1 −→ · · ·

in G(WF ) such that M ∼= im(G0 → G0) and G• is HomR(G(WF ),−)
and G(WF )

+⊗R-exact. Similarly, one can also define R-modules which
belong to G2(GFC ∩ BC) or G2(F), although the definition above
differs from that in [9], there is still a good correspondence. We
then apply techniques obtained in the former section to get our results
concerning stability properties of Gorenstein categories (see Theorem
4.5, Corollary 4.6 and Corollary 4.7).

Theorem II. Let R be a GF -closed ring and C a semidualizing
R-module. Then the following hold :

(i) G2(WF ) = G(WF ).
(ii) G2(GFC ∩ BC) = GFC ∩ BC .
(iii) G2(F) = G(F).

In the remainder of the paper, let C be a fixed semidualizing R-
module. We mainly recall some necessary notions and definitions in
the next section.

2. Preliminaries. Let X and Y be two classes of R-modules. We
begin with the following definition.

Definition 2.1. We write X⊥Y (respectively, X⊤Y) in case Ext>1
R (X,Y ) =

0 (respectively, TorR>1(X,Y ) = 0) for each object X ∈ X and object
Y ∈ Y. For an R-module M , when X = {M}, we use the notation
M⊥Y instead of {M}⊥Y. There are some analogues such as M⊤Y,
X⊥M and X⊤M . Following [10], we say that X is a generator for Y if
X ⊆ Y and for each object Y ∈ Y, there exists a short exact sequence

0 −→ Y ′ −→ X −→ Y −→ 0
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in Y such that X ∈ X . The class X is a projective generator for Y if
X is a generator for Y and X⊥Y.

Definition 2.2. For any R-module M , we recall three types of resolu-
tions.

(i) [5, 1.5]. A left X -resolution of M is an exact sequence X = · · · →
X1 → X0 → M → 0 with Xn ∈ X for all n > 0.

(ii) [5, 1.5]. A right X -resolution of M is an exact sequence X = 0 →
M → X0 → X1 → · · · with Xn ∈ X for all n > 0.

Now let X be any (left or right) X -resolution of M . We say
that X is co-proper if the sequence HomR(X, X) is exact for each
object X ∈ X .

(iii) [11, 1.6]. A degreewise finite projective (respectively, free) reso-
lution of M is a left projective (respectively, free) resolution P of
M such that each Pi is finitely generated projective (respectively,
free). It is easy to verify that M admits a degreewise finite pro-
jective resolution if and only if M admits a degreewise finite free
resolution.

Definition 2.3. The X -projective dimension of an R-module M is
defined as:

(2.1) X − pdR(M)

= inf{sup{n | Xn ̸= 0} | X is a left X -resolution of M}.

Dually, one can also define the X -injective dimension of M .

The next lemma has a standard proof.

Lemma 2.4. Let M be an R-module. Consider the following exact
sequence in X :

X = · · · // X1

δX1 // X0

δX0 // X−1
// · · · .

Then the following hold :

(i) Assume M⊥X . If X is HomR(M,−) exact, then Ext>1
R (M, im(δXi ))

= 0 for all i. Conversely, if Ext1R(M, im(δXi )) = 0 for all i, then
X is HomR(M,−) exact.
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(ii) Assume M⊤X . If X is M⊗R-exact, then TorR>1(M, im(δXi )) = 0

for all i. Conversely, if TorR1 (M, im(δXi )) = 0 for all i, then X is
M⊗R-exact.

Definition 2.5. [3]. An R-module M is said to be Gorenstein flat if
there exists an exact sequence

X = · · · −→ F1 −→ F0 −→ F 0 −→ F 1 −→ · · ·

in R-Mod with each Fi and F i flat such that M ∼= im(F0 → F 0) and
X is I⊗R-exact for any injective R-module I. The exact sequence X is
called complete flat resolution of M .

In the following, we denote the class of Gorenstein flat modules by
G(F).

Definition 2.6. [1]. Let R be a ring. We call R GF-closed if the
class of Gorenstein flat R-modules is closed under extensions, that is,
if 0 → X → Y → Z → 0 is a short exact sequence with X and Z
Gorenstein flat modules, then Y is also Gorenstein flat.

It follows from [1] that the class of GF-closed rings includes strictly
the one of coherent rings and the one of rings of finite weak global
dimension.

Definition 2.7. [7]. An R-module is C-projective (respectively, C-
flat) if it has the form C ⊗R P for some projective (respectively, flat)
R-module P . An R-module is C-injective if it has the form HomR(C, I)
for some injective R-module I. We set:

PC = {C ⊗R P | P is a projective R-module}
FC = {C ⊗R F | F is a flat R-module}
IC = {HomR(C, I) | I is an injective R-module}.

Remark 2.8. The classes defined above are studied extensively in [7].
From [7], we know that
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(i) The classes FC and PC are closed under arbitrary direct sums
and summands, and, if R is coherent, then FC is also closed under
arbitrary direct products.

(ii) The class IC is closed under arbitrary direct products and sum-
mands.

Definition 2.9. [6]. An R-module N is said to be GC-injective (GC-
inj for short) if there exists an exact sequence

Y = · · · −→ HomR(C, I
1) −→ HomR(C, I

0) −→ I0 −→ I1 −→ · · ·

inR-Mod with each Ii and Ii injective such thatN ∼= im(HomR(C, I
0) →

I0) and Y is HomR(IC ,−) exact. The exact sequence Y is called a com-
plete ICI-resolution of N .

An R-module T is said to be GC-flat if there exists an exact sequence

Z = · · · −→ F1 −→ F0 −→ C ⊗R F 0 −→ C ⊗R F 1 −→ · · ·

in R-Mod with each Fi and F i flat such that M ∼= im(F0 → C ⊗R F 0)
and Z is IC ⊗R − exact. The exact sequence Z is called a complete
FFC-resolution of T .

We will denote the classes of GC-inj and GC-flat modules by GIC
and GFC , respectively.

Remark 2.10. Similar to the proofs in [11] one can easily get that:

(i) Every C-injective R-module is GC-inj, and the class GIC is core-
solving and closed under arbitrary direct products and summands.

(ii) Every C-flat R-module is GC-flat, and the class GFC is closed
under arbitrary direct sums.

(iii) Every kernel of a complete ICI-resolution (respectively, FFC-
resolution) belongs to GIC (respectively, GFC).

By using the definition of GC-flat modules and Remark 2.10, the
proof of the next lemma is a standard argument.

Lemma 2.11. The following are equivalent for an R-module M :

(i) M is GC-flat.
(ii) M satisfies the following two conditions:
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(a) IC⊤M and
(b) There exists an exact sequence 0 → M → C ⊗R F 0 →

C⊗RF 1 → · · · in R-Mod with each F i flat such that IC⊗R−
leaves it exact.

(iii) There exists a short exact sequence 0 → M → C ⊗R F → G → 0
in R-Mod with F flat and G ∈ GFC .

Definition 2.12 ([7]). The Auslander class AC with respect to C
consists of all R-modules M satisfying:

(i) TorR>1(C,M) = 0 = Ext>1
R (C,C ⊗R M) and

(ii) The natural evaluation map µCCM : M → HomR(C,C ⊗R M) is
an isomorphism.
Dually, the Bass class BC with respect to C consists of all R-
modules N satisfying

(a) Ext>1
R (C,N) = 0 = TorR>1(C,HomR(C,N)), and

(b) The natural evaluation map νCCN : C ⊗R HomR(C,N) → N
is an isomorphism.

We now display some necessary results about the classes AC and
BC .

Lemma 2.13. ([7]). The following hold :

(i) If any two R-modules in a short exact sequence are in AC ,
respectively BC , then so is the third.

(ii) The class AC contains all modules of finite flat dimension and
those of finite IC-injective dimension. The class BC contains
all modules of finite injective dimension and those of finite FC-
projective dimension.

To be a direct corollary of [7, Theorem 6.4], we have the following
lemma:

Lemma 2.14. PC⊥,BC , AC⊥IC and AC⊤FC .

3. WF -Gorenstein modules. We begin this section with the fol-
lowing notion of a WF -Gorenstein module.
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Definition 3.1. An R-module M is said to be WF -Gorenstein if there
exists an exact sequence

W• = · · · −→ W1 −→ W0 −→ W 0 −→ W 1 −→ · · ·

in FC such that M ∼= im(W0 → W 0) and W• is HomR(PC ,−) and
IC⊗R-exact.

It is clear that each module in FC is WF -Gorenstein, and every
kernel of W• is WF -Gorenstein.

In the following, we denote by G(WF ) the class of WF -Gorenstein
modules.

Proposition 3.2. PC⊥G(WF ) and IC⊤G(WF ).

Proof. It follows directly from Lemmas 2.4 and 2.14. �

Proposition 3.3. Let W• = · · · → W1 → W0 → W 0 → W 1 → · · ·
be an exact sequence in FC and M ∼= im(W0 → W 0). Then W• is
HomR(PC ,−) exact if and only if M ∈ BC .

Proof. Suppose M ∈ BC . By Lemma 2.13, every kernel of W• is in
BC , and so W• is HomR(PC ,−) exact by Lemmas 2.4 and 2.14.

Conversely, if W• is HomR(PC ,−) exact, then by Lemmas 2.4 and
2.14, we have PC⊥M . Hence, there exists an exact sequence

· · · −→ W1 −→ W0 −→ I0 −→ I1 −→ · · ·

in R-Mod with each Ii injective such that M ∼= im(W0 → I0) and
HomR(PC ,−) leaves it exact. Thus, M ∈ BC by [7, Theorem 6.1]. �

Now we are in a position to give the result linking the classes GFC

and G(WF ).

Theorem 3.4. Let M be an R-module. Then M ∈ G(WF ) if and only
if M ∈ GFC ∩ BC .

Proof. (⇒). Let M ∈ G(WF ). We first have IC⊤M by Proposi-
tion 3.2. Then M ∈ GFC ∩ BC by Lemma 2.11 and Proposition 3.3.
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(⇐). Let M ∈ GFC ∩ BC . Since M ∈ GFC , we have that IC⊤M ,
and there exists an exact sequence

0 −→ M −→ W 0 −→ W 1 −→ · · ·

in R-Mod with each W i ∈ FC such that IC⊗R-leaves it exact by
Lemma 2.11. On the other hand, since M ∈ BC , it is easy to verify
that M has a proper left PC-resolution

· · · −→ V1 −→ V0 −→ M −→ 0.

It follows from Lemmas 2.13 and 2.14 that IC ⊗R − leaves it exact.
Thus, we have the following exact sequence:

· · · −→ V1 −→ V0 −→ W 0 −→ W 1 −→ · · ·

such that M ∼= im(V0 → W 0). By Proposition 3.3, we know that
HomR(PC ,−) leaves it exact. It follows that M ∈ G(WF ). �

The following equivalence is comparable to [4, Theorem 3.11].

Theorem 3.5. There exists equivalence of categories:

G(F) ∩ AC

C⊗R− // G(WF ).
HomR(C,−)

oo

Proof. We first show that the functor HomR(C,−) maps G(WF ) to
G(F)∩AC . Assume M ∈ G(WF ). Then there exists an exact sequence:

W• = · · · −→ W1 −→ W0 −→ W 0 −→ W 1 −→ · · ·

in FC such that M ∼= im(W0 → W 0) and W• is HomR(PC ,−) and
IC⊗R-exact. So M ∈ BC by Theorem 3.4, and hence every kernel of
W• is in BC by Lemma 2.13. Thus, HomR(C,W•) is exact; moreover,
HomR(C,M) ∈ AC by [7, Proposition 4.1]. On the other hand,
suppose that Wi

∼= C ⊗R Fi and W i ∼= C ⊗R F i, where each Fi and F i

flat. Then we have the following exact sequence in R-Mod:

HomR(C,W•) = · · · −→ F1 −→ F0 −→ F 0 −→ F 1 −→ · · ·
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such that HomR(C,M) ∼= im(F0 → F 0). For each injective R-module
I, we have

I ⊗R HomR(C,W•) ∼= C ⊗R HomR(C, I)⊗R HomR(C,W•)

∼= HomR(C, I)⊗R W•

is exact. Hence, HomR(C,M) ∈ G(F).

The proof of C⊗R-maps G(F) ∩ AC to G(WF ) is similar. �

The next result on the properties of the class G(WF ) will be used
frequently in the sequel.

Corollary 3.6. Let R be a GF-closed ring. Then the class G(WF ) is
closed under extensions, kernels of epimorphisms and direct summands.

Proof. We first show that the class G(WF ) is closed under extensions
when R is GF-closed. Consider the following short exact sequence:

0 −→ M −→ N −→ K −→ 0

with M and K belonging to G(WF ). Since M ∈ BC by Theorem 3.4,
we get the next exact sequence:

0 −→ HomR(C,M) −→ HomR(C,N) −→ HomR(C,K) −→ 0.

It follows from Theorem 3.5 that HomR(C,M) and HomR(C,K) belong
to G(F) ∩ AC . Thus, HomR(C,N) belongs to G(F) ∩ AC . On
the other hand, since N ∈ BC by Lemma 2.13 and Theorem 3.4,
N ∼= C ⊗R HomR(C,N) ∈ G(WF ) by Theorem 3.5.

The proofs of the class G(WF ) is closed under kernels of epimor-
phisms and direct summands are similar to [1, Theorem 2.3 and Corol-
lary 2.6]. �

The next lemma will be used in the proof of Theorem 3.8.

Lemma 3.7. Let R be a GF-closed ring. For every short exact sequence
0 → G1 → G0 → M → 0 in R-Mod with G0, G1 ∈ G(WF ), if

TorR1 (IC ,M) = 0, then M ∈ G(WF ).
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Proof. By the fact that the class FC is a closed direct summand
and [9, Lemma 4.1], the proof of the lemma is similar to [1, Theorem
2.3]. �

One can compare the following theorem on G(WF )-projective dimen-
sion to [1, Theorem 2.8] and [8, Theorem 2.6].

Theorem 3.8. Let R be a GF-closed ring and M an R-module with
finite G(WF )-projective dimension. Let n be a non-negative integer.
Then the following are equivalent :

(i) G(WF )-pdR(M) 6 n.
(ii) For every non-negative integer t such that 0 6 t 6 n, there exists

an exact sequence 0 → Wn → · · · → W1 → W0 → M → 0 in
R-Mod such that Wt ∈ G(WF ) and Wi ∈ FC for i ̸= t.

(iii) There exists a short exact sequence 0 → K → G → M → 0 in
R-Mod with G ∈ G(WF ) and FC-pdR(K) 6 n− 1.

(iv) There exists a short exact sequence 0 → M → K ′ → G′ → 0 in
R-Mod with G′ ∈ G(WF ) and FC-pdR(K

′) 6 n.
(v) There exists an exact sequence 0 → G → Vn−1 → · · · → V0 →

M → 0 in R-Mod with G ∈ G(WF ) and Vi ∈ PC for all
0 6 i 6 n− 1.

(vi) For every exact sequence 0 → Kn → Gn−1 → · · · → G0 → M → 0
in R-Mod with Gi ∈ G(WF ) for all 0 6 i 6 n − 1, then also
Kn ∈ G(WF ).

(vii) Torn+j
R (U,M) = 0 for all j > 1 and all U ∈ IC .

(viii) Torn+j
R (U,M) = 0 for all j > 1 and all U with IC-rm idR(U) <

∞.

Furthermore, we have

G(WF )-pdR(M) = sup{n ∈ N | TornR(U,M) ̸= 0for some U ∈ IC}
= sup{n ∈ N | TornR(U,M) ̸= 0for some U with

IC-idR(U) < ∞}.

Proof. (ii) ⇒ (iii) ⇒ (i) and (vi) ⇒ (i) are clear.

(i) ⇒ (vii) ⇒ (viii) follow from the usual dimension shifting argu-
ment.
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(1) ⇒ (ii). Since the class G(WF ) is closed under extensions by
Corollary 3.6, the proof is similar to [8, Theorem 2.6].

(iii) ⇒ (iv). Since G ∈ G(WF ), there exists a short exact sequence
0 → G → W → G′ → 0 in R-Mod with W ∈ FC and G′ ∈ G(WF ).
Now consider the following push-out diagram:

0

��

0

��
0 // K // G

��

// M

��

// 0

0 // K // W

��

// K ′

��

// 0

G′

��

G′

��
0 0

From the second row in the above diagram, we know FC-pdR(K
′) 6 n.

So the third column is as desired.

(iv) ⇒ (iii). Since FC-pdR(K
′) 6 n, there exists a short exact

sequence 0 → K → W → K ′ → 0 in R-Mod with W ∈ FC and
FC-pdR(K) 6 n− 1. Then consider the following pullback diagram:
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0

��

0

��
K

��

K

��
0 // G

��

// W

��

// G′ // 0

0 // M

��

// K ′

��

// G′ // 0

0 0

From the second row, we know that G ∈ G(WF ) by Corollary 3.6. So
the first column is as desired.

(i) ⇒ (v). It suffices to prove the case n = 1. Assume that G(WF )-
pdR(M) 6 1. Then there exists a short exact sequence 0 → G1 →
G0 → M → 0 in R-Mod with G0, G1 ∈ G(WF ). By Theorem 3.4, we
know that G0 ∈ BC . Hence, it is easy to verify that there exists a short
exact sequence 0 → G′

0 → V → G0 → 0 in R-Mod such that V ∈ PC ,
and also V ∈ G(WF ). By Corollary 3.6, we have G′

0 ∈ G(WF ). Now
consider the following pullback diagram:

0

��

0

��
G′

0

��

G′
0

��
0 // G

��

// V

��

// M // 0

0 // G1

��

// G0

��

// M // 0

0 0
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From the first column in the above diagram, we know that G ∈ G(WF )
by Corollary 3.6. So the middle row is as desired.

(v) ⇒ (vi). Let 0 → Kn → Gn−1 → · · · → G0 → M → 0 be an
exact sequence in R-Mod with each Gi ∈ G(WF ). Then also Gi ∈ BC

by Theorem 3.4. Hence, Kn ∈ BC and PC⊥Kn by Lemmas 2.13 and
2.14. Then we have the following commutative diagram with exact
rows:

0 // Gn

��

// Vn−1

��

// · · · // V1

��

// V0

��

// M // 0

0 // Kn
// Gn−1

// · · · // G1
// G0

// M // 0

Thus, the mapping cone

0 −→ Gn −→ Vn−1 ⊕Kn −→ · · · −→ V0 ⊕G1 −→ G0 −→ 0

is exact. It follows from Corollary 3.6 that Kn ∈ G(WF ).

(viii) ⇒ (i). By Lemma 3.7, the proof is similar to [1, Theorem 2.8].

The last claim is an immediate consequence of the equivalence of (i),
(vii) and (viii). �

Let n be a non-negative integer. In what follows, we denote by
G-flat6n (respectively, GC-flat6n) the class of modules with finite
Gorenstein flat (respectively, G(WF )-projective) dimension at most n.

Theorem 3.9. (Foxby equivalence). Let F be the class of flat modules.
There are equivalences of categories:
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F� _

��

C⊗R− // FC� _

��

HomR(C,−)

oo

G(F) ∩ AC� _

��

C⊗R− // G(WF )� _

��

HomR(C,−)

oo

G-flat6n ∩ AC� _

��

C⊗R− // GC-flat6n� _

��

HomR(C,−)

oo

AC

C⊗R− // BC
HomR(C,−)

oo

Proof. Let M be an R-module. It suffices to prove the equivalence
of categories of the third row in the above diagram.

For the third row, it suffices to prove the case n = 1. Assume that
M ∈ GC-flat61. Then there exists a short exact sequence

0 −→ G1 −→ G0 −→ M −→ 0

in R-Mod with G0, G1 ∈ G(WF ). Since G1 ∈ BC by Theorem 3.4, we
have the following exact sequence in R-Mod:

0 −→ HomR(C,G1) −→ HomR(C,G0) −→ HomR(C,M) −→ 0

with HomR(C,G0), HomR(C,G1) ∈ G(F)∩AC by Theorem 3.5. Hence,
by Lemma 2.13, HomR(C,M) ∈ G-flat61 ∩ AC .

Conversely, assume that M ∈ G-flat61 ∩ AC . Then there exists
a short exact sequence 0 → G1 → G0 → M → 0 in R-Mod with

G0, G1 ∈ G(F)∩AC . SinceM ∈ AC by Lemma 2.13, Tor>1
R (C,M) = 0.

Thus, there exists a short exact sequence:

0 −→ C ⊗R G1 −→ C ⊗R G0 −→ C ⊗R M −→ 0

in R-Mod. By Theorem 3.5, we know that C⊗RG0, C⊗RG1 ∈ G(WF ).
Hence, C ⊗R M ∈ GC-flat61. �
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4. Stability of categories. We start with the following definition.

Definition 4.1. Let M be an R-module and n > 2 an integer. We say
that M ∈ Gn(WF ) if there exists an exact sequence

G• = · · · −→ G1 −→ G0 −→ G0 −→ G1 −→ · · ·

in Gn−1(WF ) such that M ∼= im(G0 → G0) and G• is

HomR(Gn−1(WF ),−)

and
Gn−1(WF )

+ ⊗R -exact.

Set G0(WF ) = FC , G1(WF ) = G(WF ). One can easily check that
there is a certain Gn(WF ) ⊆ Gn+1(WF ) for all n > 0.

Similarly, one can also define modules which belong to Gn(GFC∩BC)
or Gn(F) for n > 2.

The next two results are given in service of the proof of Lemma 4.4.

Lemma 4.2. PC⊥G2(WF ) and IC⊤G2(WF ).

Proof. It follows directly from Lemma 2.4, Proposition 3.2, and the
fact that PC ⊆ G(WF ) and IC ⊆ G(WF )

+. �

Lemma 4.3. Let R be a GF-closed ring. Then PC is a projective
generator for G(WF ).

Proof. Let M be an R-module and M ∈ G(WF ). So M ∈ BC by
Theorem 3.4. Hence, we have a short exact sequence

0 −→ M ′ −→ C ⊗R P −→ M −→ 0

in R-Mod with P projective. By Corollary 3.6, we know that M ′ ∈
G(WF ).

On the other hand, it follows from Proposition 3.2 that PC⊥G(WF ).
Thus, PC is a projective generator for G(WF ). �
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Lemma 4.4. Let R be a GF-closed ring, and let M be an R-module
which belongs to G2(WF ). Then M admits a proper left PC-resolution.

Proof. It follows directly from the definition of modules which belong
to G2(WF ), Lemma 4.2, Lemma 4.3 and [10, Lemma 2.2 (b)]. �

Now we can give another main result in the paper.

Theorem 4.5. Let R be a GF-closed ring. Then we have Gn(WF ) =
G(WF ) for all n > 1.

Proof. It suffices to prove the case n = 2. Let M be an R-module
and M ∈ G2(WF ). Following from Lemma 4.4, we have the exact
sequence

(α) = · · · −→ C ⊗R P1 −→ C ⊗R P0 −→ M −→ 0

in R-Mod with each Pi projective such that HomR(PC ,−) leaves it
exact. By Lemma 2.4, Lemma 2.14 and Lemma 4.2, we know that
IC ⊗R − leaves (α) exact as well.

On the other hand, since M ∈ G2(WF ), there exists a short exact
sequence 0 → M → G → M ′ → 0 in R-Mod with G ∈ G(WF ) and
M ′ ∈ G2(WF ). Since G ∈ G(WF ), there exists a short exact sequence
0 → G → C⊗R F 0 → G′ → 0 in R-Mod with F 0 flat and G′ ∈ G(WF ).
Then we have the push-out diagram
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0

��

0

��
0 // M // G

��

// M ′

��

// 0

0 // M // C ⊗R F 0

��

// K

��

// 0

G′

��

G′

��
0 0

Consider the following short exact sequence coming from the middle
row of the above diagram:

(β) = 0 −→ M −→ C ⊗R F 0 −→ K −→ 0.

From the third column of the above push-out diagram, we know that
IC⊤K by Proposition 3.2 and Lemma 4.2. Hence, (β) is HomR(PC ,−)
and IC ⊗R − exact. If we can construct a short exact sequence

(η) = 0 −→ K −→ C ⊗R F 1 −→ K ′ −→ 0

in R-Mod with F 1 flat and K ′ a module with the same property as K
(that is, there exists a short exact sequence (µ) = 0 → M ′′ → K ′ →
H ′′ → 0 in R-Mod with M ′′ ∈ G2(WF ) and H ′′ ∈ G(WF )), then the
following exact sequence can be constructed recursively:

(γ) = 0 // K // C ⊗R F 1 //

))

C ⊗R F 2 // · · ·

K ′
55

**
0

44

0

From the middle row of the above push-out diagram and (µ), we get
PC⊥K and IC⊤K ′ by Proposition 3.2, Lemma 2.14 and Lemma 4.2.
Then we have that (η) is HomR(PC ,−) and IC ⊗R − exact. So is
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(γ). Assembling the sequence (α), (β) and (γ), we get the next exact
sequence in R-Mod

· · · −→ C ⊗R P1 −→ C ⊗R P0 −→ C ⊗R F 0 −→ C ⊗R F 1 −→ · · ·

such that M ∼= im(C ⊗R P0 → C ⊗R F 0), and HomR(PC ,−) and
IC ⊗R − leave it exact. It follows that M ∈ G(WF ).

Indeed, since M ′ ∈ G2(WF ), there exists a short exact sequence
0 → M ′ → H → M ′′ → 0 in R-Mod with H ∈ G(WF ) and
M ′′ ∈ G2(WF ). Now consider the following push-out diagram:

0

��

0

��
0 // M ′ //

��

K

��

// G′ // 0

0 // H

��

// H ′

��

// G′ // 0

M ′′

��

M ′′

��
0 0

From the middle row of the above diagram, we know H ′ ∈ G(WF ) by
Corollary 3.6. Then there exists a short exact sequence 0 → H ′ →
C ⊗R F → H ′′ → 0 in R-Mod with F flat and H ′′ ∈ G(WF ). Consider
another push-out diagram
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0

��

0

��
0 // K // H ′

��

// M ′′

��

// 0

0 // K // C ⊗R F

��

// K ′

��

// 0

H ′′

��

H ′′

��
0 0

It is trivial that the third column in the above diagram is as desired.
This completes the proof. �

The following corollary is an immediate consequence of Theorem 3.4
and Theorem 4.5.

Corollary 4.6. Let R be a GF-closed ring. Then we have Gn(GFC ∩
BC) = GFC ∩ BC for all n > 1.

When we set C = R in Corollary 4.6, we obtain the next result on
the class of Gorenstein flat modules appeared in [12, Theorem 4.3] and
[2, 1.2].

Corollary 4.7. Let R be a GF-closed ring. Then we have Gn(F) =
G(F) for all n > 1.
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