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THE FIXED POINT PROPERTY AND THE OPIAL
CONDITION ON TREE-LIKE BANACH SPACES

COSTAS POULIOS

ABSTRACT. We introduce some new tree-like Banach
spaces, belonging to the class of separable Banach spaces
not containing ℓ1 with non-separable dual, each one of
which satisfies the following: (1) the space has the fixed
point property and (2) the space does not satisfy the
Opial condition. In addition, one of these spaces contains
subspaces isomorphic to c0, whose Banach-Mazur distance
from c0 becomes arbitrarily large.

1. Introduction. Suppose that K is a weakly compact and convex
subset of a Banach space X. A mapping T : K → K is said to be
non-expansive if ∥Tx − Ty∥ ≤ ∥x − y∥ for any x, y ∈ K. In the case
where every non-expansive self mapping T : K → K has a fixed point,
we say that K has the fixed point property. The Banach space X is
said to have the fixed point property if every weakly compact, convex
subset K of X has the fixed point property.

Alspach’s example (see [1]) showed that the space L1[0, 1] fails the
fixed point property. On the other hand, many positive results are
known. The earlier of these results are due to Browder [3], who proved
that any uniformly convex Banach space enjoys the fixed point property
and to Kirk [10], who showed that normal structure also implies the
fixed point property.

In the proofs of positive results, the notion of minimal invariant
sets is highly used. Suppose that K is a weakly compact, convex set
and T : K → K is a non-expansive mapping. A nonempty, weakly
compact, convex subset C of K such that T (C) ⊆ C is called minimal
for T if there is no strictly smaller weakly compact, convex subset of
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C which is invariant under T . A straightforward application of Zorn’s
lemma implies that K always contains minimal invariant subsets. So,
a standard approach in proving fixed point theorems is to first assume
that K itself is minimal for T and then use the geometrical properties
of the space to show that K must be a singleton. Therefore, T has a
fixed point.

Although a non-expansive map T : K → K does not have to have
fixed points, it is well known that T always has an approximate fixed
point sequence. This means that there is a sequence (xn) in K such
that limn→∞ ∥xn − Txn∥ = 0. For such sequences, the following result
holds (see [8]).

Theorem 1.1. Let K be a weakly compact, convex set in a Banach
space, T : K → K a non-expansive map, such that K is T -minimal,
and let (xn) be any approximate fixed point sequence. Then, for all
x ∈ K,

lim
n→∞

∥x− xn∥ = diam (K).

We pass now to another property of Banach spaces, which was
introduced by Opial [15] and is closely related to the fixed point
property. A Banach space X is said to satisfy the Opial condition
if, whenever a sequence (xn) in X converges weakly to x0 ∈ X, then
lim inf ∥xn − x0∥ < lim inf ∥xn − x∥ for all x ∈ X, x ̸= x0. It is known
that the Opial condition implies that the space X has normal structure
(see [5]) and therefore it has the fixed point property (a simple proof
that the Opial condition implies the fixed point property can also be
deduced directly by the definitions). On the other hand, the inverse
implication is by no means true, as the next proposition shows.

Proposition 1.2. Let X be a Banach space with the Opial condition.
Assume also that there is a sequence (xn) in X such that (xn) converges
weakly to 0 but it does not converge in norm. Consider the direct sum
Y = (X ⊕ X)0 endowed with the maximum norm, that is, ∥(x, z)∥ =
max{∥x∥, ∥z∥} for any x, z ∈ X. Then the space Y does not satisfy the
Opial condition; however, Y has the fixed point property.

Further examples are also given by the spaces Lp, 1 < p < ∞ p ̸= 2
(see [15]) and the space c0. It is straightforward to verify that c0 does
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not satisfy the Opial condition. On the other hand, the fact that c0
has the fixed point property is due to Maurey [14] (see also [4]) and is
based on the following fundamental result.

Theorem 1.3. Let K be a weakly compact convex subset of a Banach
space which is minimal for the non-expansive map T : K → K. Let
(xn) and (yn) be approximate fixed point sequences for T such that
limn→∞ ∥xn − yn∥ exists. Then there is an approximate fixed point
sequence (zn) in K such that

lim
n→∞

∥xn − zn∥ = lim
n→∞

∥yn − zn∥ =
1

2
lim
n→∞

∥xn − yn∥.

In the present work, we consider the important class of separable
Banach spaces not containing ℓ1 with nonseparable dual, and we study
the Opial condition, the fixed point property and the relation between
them in connection with the members of the aforementioned class. This
class was established by two fundamental examples. The first one is
the James tree space (JT ) invented by James [7], and the second one is
the James Function space (JF ) due to Lindenstrauss and Stegall [13].
Among the many interesting properties which hold for the space JT , it
has been proved that JT satisfies the Opial condition [9, 12] (in fact,
JT satisfies the uniform Opial condition).

Consider now the direct sum X = JT ⊕ JT endowed with the
maximum norm. It is known thatX is isomorphic to JT and, therefore,
X belongs to the class that we have considered. Furthermore, according
to Proposition 1.2, the space X has the fixed point property although
it does not satisfy the Opial condition. Therefore, the two properties
are distinguished trivially by the space (JT ⊕ JT )0. The purpose of
the present paper is to introduce some new nontrivial tree-like Banach
spaces which also distinguish the properties under consideration.

We close this introductory section by recalling some notation and
definitions concerning the standard dyadic tree D, that is, the set
D = ∪∞

n=0{0, 1}n of all finite sequences s in {0, 1} including the empty
sequence denoted by ∅. Elements s ∈ D are called nodes. If s is a
node and s ∈ {0, 1}n, we say s is on the nth level of D. We denote
the level of a node s by lev (s). The initial segment partial ordering
on D is denoted by ≤, and we write s < s′ if s ≤ s′ and s ̸= s′. If
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s, s′ are nodes such that neither s ≤ s′ nor s′ ≤ s, then s, s′ are called
non-comparable and we write s ⊥ s′.

A finite, linearly ordered subset I of D is called a segment if for
every s < t < s′, t belongs to I provided that s, s′ belong to I. An
infinite, linearly ordered subset B of D satisfying the above property is
called a branch. If lev (minB) = n, we say B is an nth branch.

A segment I is called initial if the empty sequence ∅ belongs to I.
For any node s, we set I(s) = {t ∈ D | t ≤ s}. Clearly, I(s) is an
initial segment. If s, s′ ∈ D, the ≤-infimum of {s, s′} is defined by
s ∧ s′ = max{I(s) ∩ I(s′)}.

The lexicographical ordering on D denoted by ≤lex is defined as
follows. For nodes s, s′ we have s ≤lex s′ if either s ≤ s′ or s ⊥ s′,
t⌢0 ≤ s and t⌢1 ≤ s′ where t = s ∧ s′. We also write s <lex s′

whenever s ≤lex s′ and s ̸= s′.

2. The case of the space TF . Before proceeding to the main part
of this paper, we devote this section to the examination of the space
TF (see [2]). This space has been used to describe the structure of
the subspaces of JF which have nonseparable dual. The space TF
belongs to the class under consideration, that is it is separable, with
nonseparable dual, and it does not contain ℓ1. It is also known that
TF contains isomorphs of c0 and ℓp for any p with 2 ≤ p < ∞. The
presence of c0 in the space TF leads us to think that TF may not have
Opial’s property. However, rather unexpectedly, TF does satisfy the
Opial condition. Therefore, TF contains isomorphic copies of c0 which
are quite strange, at least from our point of view. In the following, we
define the space TF and we prove that it satisfies the Opial condition.

We start with the next definition. Suppose that I, I1, I2 are (non-
empty) segments of the dyadic tree D. We set a = min I, b = max I,
a1 = min I1 and a2 = min I2. We say that I separates the segments
I1 and I2 if the following hold:

(1) a ≤ a1 ∧ a2,
(2) b ⊥ a1, b ⊥ a2 and either a1 <lex b <lex a2 or a2 <lex b <lex a1.

A family S of segments of D is called an (ns)-family if, for every I, I1
and I2 in S, we have that I does not separate I1 and I2.
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Consider now the vector space c00(D) of finitely supported functions
x : D → R. If I is any segment of D, we set I∗(x) =

∑
s∈I x(s). Then,

for any x ∈ c00(D), we define the norm

∥x∥TF = sup

( n∑
i=1

|I∗
i (x)|2

)1/2

where the supremum is taken over all finite (ns)-families {Ii}ni=1 of
pairwise disjoint segments. The space TF is the completion of c00(D)
with respect to the norm defined above.

For any node s ∈ D, the unit vector es is defined by es(t) = 1 if t = s
and es(t) = 0 otherwise. We also consider the standard enumeration
{sn} of the tree D, that is, n < m if either lev (sn) < lev (sm) or
lev (sn) = lev (sm) and sn <lev sm. Then the sequence (esn)n∈N
is a Shauder basis for the space TF . Therefore, for every vector
x ∈ TF , there is a unique sequence (λn)n∈N of real numbers such
that x =

∑∞
n=1 λnesn . For any level m, we define the projection

Pm : TF → TF by

Pm(x) = Pm

( ∞∑
n=1

λnesn

)
=

∑
lev (sn)≥m

λnesn .

It is easy to verify that Pm is a bounded projection of norm one. For
more details concerning the space TF we refer to [2]. We restrict
ourselves to the following result.

Theorem 2.1. The space TF satisfies the Opial condition.

Proof. Let us suppose that TF does not satisfy the Opial condition.
Then there exist a sequence (xn) in TF and a vector x ∈ TF , x ̸= 0

such that xn
w→ 0, lim inf ∥xn∥TF = 1 and lim inf ∥xn − x∥TF ≤ 1.

Let s0 be a node such that |x(s0)| = max{|x(s)| : s ∈ D}. Since
x ̸= 0, we have that |x(s0)| > 0. Now fix a positive integer N ∈ N, and
let ϵ = 1/N . Then there exists a finitely supported vector yN ∈ TF so
that ∥yN − x∥TF < ϵ. We also consider a level m with m > lev (s0)
and Pm(yN ) = 0.

The assumption that (xn) is weakly null implies that, for any
sufficiently large n ∈ N, we have ∥xn − Pmxn∥TF < ϵ. For any such
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n, we consider an (ns)-family {Ii,n}rni=1 consisting of pairwise disjoint
segments such that( rn∑

i=1

|I∗
i,n(xn)|2

)1/2

≥ ∥xn∥TF − ϵ.

Without loss of generality, we may assume that lev (min Ii,n) ≥ m for
every i = 1, 2, . . . , rn (otherwise, we replace Ii,n by Ji,n = Ii,n ∩ {s ∈
D | lev (s) ≥ m}). We also set I = {s0}.

We now claim that the collection S = {I} ∪ {Ii,n | i = 1, 2, . . . , rn}
forms an (ns)-family of pairwise disjoint segments. Indeed, by the
definition given at the beginning of Section 2, we conclude that,
whenever a segment I separates two other segments, then I must
contain at least two nodes. Hence, the segment I = {s0} cannot
separate anything and S is an (ns)-family. By this observation, we
get the following:

∥xn − yN∥2TF ≥
rn∑
i=1

|I∗
i,n(xn − yN )|2 + |I∗(xn − yN )|2

=

rn∑
i=1

|I∗
i,n(xn)|2 + |yN (s0)− xn(s0)|2

≥ (∥xn∥TF − ϵ)2 + |yN (s0)− xn(s0)|2.

On the other hand,

∥xn − yN∥TF ≤ ∥xn − x∥TF + ∥x− yN∥TF

≤ ∥xn − x∥TF + ϵ.

Combining the two inequalities, we obtain:

(∥xn∥TF − ϵ)2 + |yN (s0)− xn(s0)|2 ≤ (∥xn − x∥TF + ϵ)2.

Since lim inf ∥xn∥TF = 1, xn
w→ 0 and lim inf ∥xn − x∥TF ≤ 1, the

above inequality implies that

|yN (s0)| ≤ 2
√
ϵ.

Finally, we have

|x(s0)| ≤ |x(s0)− yN (s0)|+ |yN (s0)|
≤ ϵ+ 2

√
ϵ.
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Therefore, for any N ∈ N,

|x(s0)| ≤
1

N
+

2√
N

,

and, letting N tend to infinity, we have x(s0) = 0, which is a contra-
diction. �

3. The definition of the space X. In this section, we introduce a
new tree-like Banach space, and we show that it belongs to the class of
separable Banach spaces with nonseparable dual which do not contain
ℓ1. In Sections 4 and 5 we study the fixed point property, the Opial
condition and the embedding of c0 in the space X. We start with the
following definition.

Definition 3.1. Let S be a finite family of pairwise disjoint segments
of the dyadic tree. The family S is called admissible if for any
segment I ∈ S there exists at most one segment I ′ ∈ S such that
min I < min I ′.

Admissible families (in the previous sense) have a much simpler
geometry on the dyadic tree than (ns)-families, which were defined in
Section 2. Indeed, loosely speaking, suppose that we want to build an
admissible family on D, and let us start with any segment I1. Then we
are allowed to choose at most one segment I2 contained in the subtree
Ds1 = {s | s ≥ s1} where s1 = min I1. Assume that the segment I2
has been chosen and min I1 < min I2. Then we are obliged to choose
I3 such that min I3 ⊥ min I1. Again, we are able to consider at most
one segment I4 with min I4 > min I3, and so on. Therefore, it is easy
to draw the arbitrary admissible family.

Some remarks concerning admissible families follow. First, assume
that S is an admissible family of pairwise disjoint segments and, for
each I ∈ S, consider a segment I ′ with I ′ ⊆ I. Let S ′ = {I ′ | I ∈ S}.
By the above definition (and the picture obtained by the previous
discussion), it is easy to see that S ′ is also an admissible family.
Secondly, suppose that S and S ′ are admissible families. Then the
family S ∪ S ′ need not be admissible, even if it consists of pairwise
disjoint segments.
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Consider now the vector space c00(D). For any x ∈ c00(D), we define
the norm

∥x∥ = sup

[ r∑
i=1

|I∗
i (x)|2

]1/2
where the supremum is taken over all finite admissible families {Ii}ri=1

of pairwise disjoint segments. The Banach space X is the completion
of c00(D) with respect to the norm we have just defined.

For any node s ∈ D, the unit vector es ∈ X is defined in the usual
way. Then, it is easily verified that the sequence (es)s∈D, where the
tree D is given its standard enumeration, is a normalized, monotone
Shauder basis for the spaceX. Therefore, X is separable. Furthermore,
as in the case of the space JT , it is proved that the dual X∗ of X is
nonseparable.

In order to proceed to the study of the space X, we need first to es-
tablish some notation. Let (e∗s)s∈D denote the sequence of biorthogonal
functionals associated with the basis (es)s∈D. We set F = span{e∗s |
s ∈ D} the subspace of X∗ generated by the sequence (e∗s)s∈D. Also let
Γ denote the set of all maximal branches of the dyadic tree D. Then Γ
has the cardinality of the continuum. For any branch B, we define the
functional B∗ : X → R by

B∗(x) = B∗
(∑

s∈D
λses

)
=

∑
s∈B

λs.

Then it is easily shown that B∗ is a bounded linear functional of norm
one. Finally, the function Pm : X → X with Pm(

∑
s∈D λses) =∑

lev (s)≥m
λses defines for any level m a bounded linear projection

on X of norm one.

We can now quote the first result for the space X.

Theorem 3.2.

(i) The quotient space X∗/F is isomorphic to ℓ2(Γ).
(ii) The second dual X∗∗ of X is isomorphic to F ∗ ⊕ ℓ2(Γ).

Proof. The first part of the theorem is proved as the corresponding
statement for the space JT (see [13]). For the second part, we cannot
imitate the arguments of JT , since the basis (es)s∈D of the space X
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is not boundedly complete. However, in this case, we can appeal to
the arguments used in the so-called Hagler tree space (HT) (see [6]).
This is a tree-like Banach space not containing ℓ1 with non separable
dual and its basis is not boundedly complete. The second part of our
theorem is proved in a similar way as [6, Lemma 9]. �

The second part of the above theorem implies that the second dual
X∗∗ has the cardinality of the continuum. Therefore, X does not
contain a subspace isomorphic to ℓ1.

One further consequence of Theorem 3.2 is that the dual X∗ is
determined in some sense by the biorthogonal functionals (e∗s)s∈D and
the functionals (B∗)B∈Γ. More precisely, by the proof of Theorem 3.2,
the next corollary follows which will be used in the sequel.

Corollary 3.3. Suppose that (xn) is a bounded sequence of elements
of X. Then (xn) converges weakly to zero if and only if e∗s(xn) → 0 for
any s ∈ D and B∗(xn) → 0 for any branch B ∈ Γ.

We close this section with some observations concerning the sub-
spaces of X. We first recall that a chain of D is an infinite linearly
ordered subset of D. An antichain is an infinite subset of D whose
elements are pairwise non-comparable.

Proposition 3.4.

(i) For any chain (sn)n∈N of D, the sequence (esn)n∈N is equivalent to
the summing basis of c0. Therefore, the space span {esn | n ∈ N}
is isomorphic to c0.

(ii) For any antichain (sn)n∈N of D, the sequence (esn)n∈N is equiv-
alent to the usual basis of ℓ2 and the space span {esn | n ∈ N} is
isometrically isomorphic to ℓ2.

4. The fixed point property. This section is entirely devoted to
the proof of the following theorem.

Theorem 4.1. The space X has the fixed point property.
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Proof. Let K be a weakly compact and convex subset of X, and let
T : K → K be a non-expansive map. We assume that K is minimal
for T and, using the geometry of the space X, we will prove that
diam (K) = 0. Suppose on the contrary that diam (K) > 0. Without
loss of generality, we may assume that diam (K) = 1.

Consider a sequence (xn) in K such that limn→∞ ∥xn − Txn∥ = 0.
By passing to a subsequence and by translation, if necessary, we may
assume that (xn) converges weakly to 0. By Theorem 1.1, it follows
that limn→∞ ∥xn∥ = diam (K) = 1. We next define a subsequence
(xkn) = (yn) of (xn) such that, for each n, the vectors xn and
yn have essentially disjoint supports. The sequence (yn) is defined
inductively as follows. Assume that we have found the elements
y1 = xk1 , y2 = xk2 , . . . , yn−1 = xkn−1 . Consider now the vector xn.
We know that there is a level Nn such that

∥PNn(xn)∥ <
1

n
.

Since (xn) converges weakly to 0, we find yn = xkn with kn > kn−1

such that

∥yn − PNn(yn)∥ <
1

n
.

After the sequence (yn) has been defined, we pass now to the
following claim.

Claim. The limit limn→∞ ∥xn − yn∥ is equal to 1.

Indeed, we fix n ∈ N, and we consider an admissible family {Ii}ri=1

of pairwise disjoint segments such that

∥xn∥2 − 1/n <

r∑
i=1

|I∗
i (xn)|2.

We next prune these segments at the level Nn, and we set Ji = Ii∩{s |
lev (s) < Nn}. Both families {Ji}ri=1 and {Ii \ Ji}ri=1 are admissible.
So, we obtain( r∑

i=1

|I∗
i (xn)|2

)1/2

≤
( r∑

i=1

|J ∗
i (xn)|2

)1/2

+

( r∑
i=1

|(Ii \ Ji)
∗(xn)|2

)1/2
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≤
( r∑

i=1

|J ∗
i (xn)|2

)1/2

+ ∥PNn(xn)∥

≤
( r∑

i=1

|J ∗
i (xn)|2

)1/2

+
1

n
.

Therefore,

∥xn − yn∥ ≥
( r∑

i=1

|J ∗
i (xn)− J ∗

i (yn)|2
)1/2

≥
( r∑

i=1

|J ∗
i (xn)|2

)1/2

−
( r∑

i=1

|J ∗
i (yn)|2

)1/2

≥
( r∑

i=1

|I∗
i (xn)|2

)1/2

− 1

n
− ∥yn − PNn(yn)∥

≥
(
∥xn∥2 −

1

n

)1/2

− 2

n
,

and the result follows.

We now fix a positive integer, N , which will be chosen properly at
the end of the proof, and we set ϵ = 2−N . By iterating applications of
Theorem 1.3, we find a sequence (zn) of elements of K, such that the
following hold:

(i) (zn) is an approximate fixed point sequence for the mapping T .
Therefore, by Theorem 1.1, limn→∞ ∥zn∥ = 1.

(ii) limn→∞ ∥zn − xn∥ = 1− ϵ and limn→∞ ∥zn − yn∥ = ϵ.

Without loss of generality, by omitting finitely many terms of the
sequences, we may assume that, for each n ∈ N, we have the following:

∥zn∥2 > 1− ϵ

4
,

1− 5ϵ

4
< ∥zn − xn∥ < 1− 3ϵ

4
,

3ϵ

4
< ∥zn − yn∥ <

5ϵ

4
,

1

n
<

ϵ

4
.
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By the definition of the norm in space X, it follows that there is an
admissible family {Ii}ri=1 of pairwise disjoint segments such that

r∑
i=1

|I∗
i (zn)|2 > 1− ϵ

4
.

We also have
r∑

i=1

|I∗
i (zn)|2 ≤ ∥zn∥2 ≤ 1.

Our next concern is to find out some more information about the place
of the segments {Ii}ri=1 on the dyadic tree. In particular, we consider
the following cases.

Case 1. Assume that lev (max Ii) < Nn for any i = 1, 2, . . . , r. Then
we have:( r∑

i=1

|I∗
i (zn)|2

)1/2

=

( r∑
i=1

|I∗
i (zn − yn) + I∗

i (yn)|2
)1/2

≤
( r∑

i=1

|I∗
i (zn − yn)|2

)1/2

+

( r∑
i=1

|I∗
i (yn)|2

)1/2

≤ ∥zn − yn∥+ ∥yn − PNn(yn)∥

≤ 5ϵ

4
+

ϵ

4

=
6ϵ

4
,

which is a contradiction.

Case 2. Assume that lev (min Ii) ≥ Nn for each i = 1, 2, . . . , r. As
in Case 1, using the vector xn instead of yn, we obtain:( r∑

i=1

|I∗
i (zn)|2

)1/2

=

( r∑
i=1

|I∗
i (zn − xn) + I∗

i (xn)|2
)1/2

≤
( r∑

i=1

|I∗
i (zn − xn)|2

)1/2

+

( r∑
i=1

|I∗
i (xn)|2

)1/2
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≤ ∥zn − xn∥+ ∥PNn(xn)∥

≤ 1− 3ϵ

4
+

ϵ

4

= 1− ϵ

2
,

which is also a contradiction.

Case 3. Assume that there is a partition {1, 2, . . . , r} = A1 ∪ A2

such that lev (max Ii) < Nn for each i ∈ A1 and lev (min Ii) ≥ Nn for
each i ∈ A2. Combining Cases 1 and 2, we obtain

r∑
i=1

|I∗
i (zn)|2 =

∑
i∈A1

|I∗
i (zn)|2 +

∑
i∈A2

|I∗
i (zn)|2

≤
(
3ϵ

2

)2

+

(
1− ϵ

2

)2

= 1 +
5ϵ2

2
− ϵ.

If ϵ is small enough (ϵ < 3/10), then we have

1 +
5ϵ2

2
− ϵ < 1− ϵ

4
,

and we have reached a contradiction.

By the above discussion, we conclude that the admissible family
{Ii}ri=1 must contain at least one segment Ii which passes through the
level Nn, in the sense that lev (min Ii) < Nn ≤ lev (max Ii). We now
set:

A1 = {i | lev (max Ii) < Nn}
A2 = {i | lev (min Ii) ≥ Nn}
A3 = {i | lev (min Ii) < Nn ≤ lev (max Ii)}.

Then, A3 is nonempty. For each i ∈ A3, we divide the segment Ii into
two segments, as follows:

Ei = Ii ∩ {s ∈ D | lev (s) < Nn}
Ki = Ii ∩ {s ∈ D | lev (s) ≥ Nn}.

It is easy to observe that both {Ii}i∈A1 ∪ {Ei}i∈A3 and {Ii}i∈A2 ∪
{Ki}i∈A3 are admissible families of pairwise disjoint segments. Now,
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for some δ > 0, which will be chosen properly, and using Cases 1 and
2, we obtain:

1− ϵ

4
<

r∑
i=1

|I∗
i (zn)|2 =

∑
i∈A1

|I∗
i (zn)|2 +

∑
i∈A2

|I∗
i (zn)|2 +

∑
i∈A3

|I∗
i (zn)|2

=
∑
i∈A1

|I∗
i (zn)|2 +

∑
i∈A2

|I∗
i (zn)|2 +

∑
i∈A3

|E∗
i (zn) +K∗

i (zn)|2

=
∑
i∈A1

|I∗
i (zn)|2 +

∑
i∈A2

|I∗
i (zn)|2

+

(
1 +

1

δ

) ∑
i∈A3

|E∗
i (zn)|2 + (1 + δ)

∑
i∈A3

|K∗
i (zn)|2

=

( ∑
i∈A1

|I∗
i (zn)|2 +

∑
i∈A3

|E∗
i (zn)|2

)
+

( ∑
i∈A2

|I∗
i (zn)|2 +

∑
i∈A3

|K∗
i (zn)|2

)
+

1

δ

∑
i∈A3

|E∗
i (zn)|2 + δ

∑
i∈A3

|K∗
i (zn)|2

≤
(
3ϵ

2

)2

+

(
1− ϵ

2

)2

+
1

δ

(
3ϵ

2

)2

+ δ

(
1− ϵ

2

)2

.

The function

f(δ) =

(
3ϵ

2

)2

+

(
1− ϵ

2

)2

+
1

δ

(
3ϵ

2

)2

+ δ

(
1− ϵ

2

)2

attains its minimum value for δ = (3ϵ/2)/(1− ϵ/2). For this choice
of δ, we have f(δ) = (1 + ϵ)2. It follows that each one of the above
inequalities brings an increase not bigger than

(1 + ϵ)2 −
(
1− ϵ

4

)
= ϵ2 + 2ϵ+

ϵ

4
.

In particular, (
1− ϵ

2

)2

−
∑
i∈A3

|K∗
i (zn)|2 < ϵ2 + 2ϵ+

ϵ

4
,
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which implies that ∑
i∈A3

|K∗
i (zn)|2 > 1− 5ϵ.

Consequently, we have proved that a large part of the norm of zn is
given by the family {Ki}i∈A3 . Since zn is close to yn, it follows that a
similar result holds for the vector yn. More specifically, we have

5ϵ

4
> ∥zn − yn∥ ≥

( ∑
i∈A3

|K∗
i (zn − yn)|2

)1/2

≥
( ∑

i∈A3

|K∗
i (zn)|2

)1/2

−
( ∑

i∈A3

|K∗
i (yn)|2

)1/2

> (1− 5ϵ)1/2 −
( ∑

i∈A3

|K∗
i (yn)|2

)1/2

> 1− 5ϵ−
( ∑

i∈A3

|K∗
i (yn)|2

)1/2

.

Therefore, ( ∑
i∈A3

|K∗
i (yn)|2

)1/2

≥ 1− 7ϵ.

At this point, let us summarize what we have proved so far. Firstly
we have found approximate fixed point sequences (xn) and (yn) such
that, for each n, the vectors xn and yn have essentially disjoint sup-
ports. Further, for each n, we have found pairwise disjoint segments
which depend on n, and, for this reason, we now use the notation
{Ki,n}mn

i=1, such that

(i) (
∑mn

i=1 |K∗
i,n(yn)|2)1/2 ≥ 1− 7ϵ

(ii) for each i, the minimum node of Ki,n lies on the level Nn.

Clearly, property (ii) is the most important. Finding just an admissible
family whose segments start below the level Nn and satisfy property (i)
is quite easy since it is an immediate consequence of the definition of
the norm. However, property (ii) gives much more information about
the place of {Ki,n}mn

i=1 on the dyadic tree. We also notice that we will
no longer make use of the sequence (zn). We used it in order to derive
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the previous result concerning the sequences (xn) and (yn), and we now
just forget it.

We next choose a further subsequence (y′n) = (xln) of (xn), and we
repeat the previous arguments to the (y′n). First, the sequence (y′n) is
defined inductively as follows. Assume that we have chosen the vectors
y′1 = xl1 , . . . , y

′
n−1 = xln−1 . Consider now the vector xn and the level

Nn for which we know that ∥PNn(xn)∥ < 1/n. Since (xn) is weakly
null, it follows that, for any segment I, we have I∗(xn) → 0. Therefore,
there is an integer ln > ln−1 such that the term y′n = xln satisfies the
following:

(a) ∥y′n − PNn(y
′
n)∥ < 1/n, that is, xn and y′n have essentially disjoint

supports, and
(b) (

∑
|I∗(y′n)|2)1/2 < ϵ, where the sum is taken over all the segments

I such that I ⊆ Ki,n for some i = 1, . . . ,mn.

Note that, for a fixed n, there are only finitely many segments I such
that I ⊆ ∪mn

i=1Ki,n, and therefore the choice of y′n is possible.

Now repeat the first part of the proof for the sequences (xn) and
(y′n). In this way, for each n, we find an admissible family of pairwise
disjoint segments {Λj,n}µn

j=1 such that

(i) (
∑µn

j=1 |Λ∗
j,n(y

′
n)|2)1/2 ≥ 1− 7ϵ

(ii) for each j = 1, . . . , µn, the minimum node of Λj,n lies on the level
Nn.

Consider now a segment Λj,n for some j = 1, . . . , µn. Then,
we do not know whether the sets Λj,n and ∪mn

i=1Ki,n are disjoint or
not. There may be at most one i = i(j) ∈ {1, 2, . . . ,mn} such that
Λj,n ∩ Ki(j),n ̸= ∅. In this case, by the whole construction, we have
that the segments Λj,n and Ki(j),n share the same minimum node and
the intersection Λj,n ∩ Ki(j),n is an initial part of Λj,n. However, the
choice of the sequence (y′n) and, in particular, property (b) indicates
that |(Λj,n ∩Ki(j),n)

∗(y′n)| is very small. So, if, for each j = 1, . . . , µn,
we set Γj,n = Λj,n \ (Λj,n ∩Ki(j),n), then we have( µn∑

j=1

|Γ∗
j,n(y

′
n)|2

)1/2

=

( µn∑
j=1

|Λ∗
j,n(y

′
n)− (Λj,n ∩Ki(j),n)

∗(y′n)|2
)1/2
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≥
( µn∑

j=1

|Λ∗
j,n(y

′
n)|2

)1/2

−
( µn∑

j=1

|(Λj,n ∩Ki(j),n)
∗(y′n)|2

)1/2

≥ 1− 7ϵ− ϵ

= 1− 8ϵ.

At this point, we can set S = {Ki,n}mn
i=1 ∪ {Γj,n}µn

j=1. Then we
observe that S consists of pairwise disjoint segments. What is more,
for each segment of the form Ki,n, there is at most one segment of S
whose minimum node is a follower of minKi,n. And, for each segment
Γj,n, there is no segment in S so that its minimum node is a follower
of minΓj,n. That is, the family S is admissible.

Since S is admissible, we use the choice of the sequence (y′n) (prop-
erty (b)) to obtain:

∥yn − y′n∥2 ≥
µn∑
j=1

|Γ∗
j,n(yn − y′n)|2 +

mn∑
i=1

|K∗
i,n(yn − y′n)|2

≥
µn∑
j=1

|Γ∗
j,n(yn − y′n)|2 +

mn∑
i=1

|K∗
i,n(yn)−K∗

i,n(y
′
n)|2

≥
µn∑
j=1

|Γ∗
j,n(yn − y′n)|2

+

[( mn∑
i=1

|K∗
i,n(yn)|2

)1/2

−
( mn∑

i=1

|K∗
i,n(y

′
n)|2

)1/2]2
≥

µn∑
j=1

|Γ∗
j,n(yn − y′n)|2 + (1− 7ϵ− ϵ)2

=

µn∑
j=1

|Γ∗
j,n(yn − y′n)|2 + (1− 8ϵ)2.
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On the other hand, ∥yn − y′n∥ ≤ diam (K) = 1. Therefore,

µn∑
j=1

|Γ∗
j,n(yn − y′n)|2 ≤ 1− (1− 8ϵ)2 ≤ 16ϵ.

Roughly speaking, the above inequality says that, for each j, Γ∗
j,n(yn)

is close to Γ∗
j,n(y

′
n). Since( µn∑

j=1

|Γ∗
j,n(y

′
n)|2

)1/2

> 1− 8ϵ,

it follows that the sum ( µn∑
j=1

|Γ∗
j,n(yn)|2

)1/2

is also close to 1, and therefore the norm of yn must be close to 2. More
precisely, we have

∥yn∥2 ≥
mn∑
i=1

|K∗
i,n(yn)|2 +

µn∑
j=1

|Γ∗
j,n(yn)|2

≥ (1− 7ϵ)2

+

µn∑
j=1

|Γ∗
j,n(y

′
n) + Γ∗

j,n(yn − y′n)|2

≥ (1− 7ϵ)2

+

[( µn∑
j=1

|Γ∗
j,n(y

′
n)|2

)1/2

−
( µn∑

j=1

|Γ∗
j,n(yn − y′n)|2

)1/2
]2

≥ (1− 7ϵ)2 + [(1− 8ϵ)− 4
√
ϵ ]2

≥ 2− 22
√
ϵ.

Therefore, lim ∥yn∥2 ≥ 2 − 22
√
ϵ. On the other hand, lim ∥yn∥ =

diam (K) = 1. Hence, 1 ≥ 2 − 22
√
ϵ. If ϵ has been chosen small

enough, the previous inequality does not hold, and we have reached a
contradiction. Consequently, the space X has the fixed point property.

�
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5. Opial condition, normal structure and the embedding of
c0 in the space X. We already know that the space X contains a
plethora of isomorphic copies of c0. Indeed, if B is any branch of the
dyadic tree, then by Proposition 3.4, the space span {es | s ∈ B}, which
will be denoted by E, is isomorphic to c0. Further, it is not hard to
prove that E does not satisfy the Opial condition and therefore X does
not either. However, much more can be said concerning the embedding
of c0 in the space X.

Towards this direction, we first prove that there are subspaces Y ofX
isomorphic to c0 such that the Banach-Mazur distance d(Y, c0) becomes
arbitrarily large. Recall that, if Y and Z are isomorphic Banach spaces,
then the Banach-Mazur distance d(Y, Z) is defined by

d(Y,Z) = inf{∥T∥ · ∥T−1∥ : T is an isomophism from Y onto Z}.

Theorem 5.1. For any positive real number M there exists a subspace
Y of X such that Y is isomorphic to c0 and d(Y, c0) > M .

Proof. For our convenience, we consider four distinct maximal
branches (Bi)

3
i=0 of the tree D. The general case of N distinct

branches is almost identical. Let m be a level such that the sets
Ai = Bi ∩{s | lev (s) ≥ m}, i = 0, 1, 2, 3, are pairwise disjoint. We also
consider the following enumerations of the sets {Ai}3i=0:

A0 = {s0 < s4 < s8 < · · · } = {s4k}∞k=0

A1 = {s1 < s5 < s9 < · · · } = {s4k+1}∞k=0,

and so on. Finally, we set Y = span {es | s ∈ ∪3
i=0Ai} = span {esn |

n ∈ N}. It is clear that Y is isomorphic to the direct sum E⊕E⊕E⊕E,
and therefore it is isomorphic to c0.

We next try to estimate the Banach-Mazur distance d = d(Y, c0).
For any ϵ > 0, there is an isomorphism T : Y → c0 onto c0 such that,
for every y ∈ Y , we have

(5.1) ∥y∥ ≤ ∥Ty∥c0 ≤ (d+ ϵ)∥y∥.

We now define a sequence (yn) in Y . Instead of giving a formal
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definition, we write down the first few terms of (yn) which go as follows:

y0 = es0 − es4 , y1 = es1 − es5 ,

y2 = es2 − es6 , y3 = es3 − es7 ,

y4 = es8 − es12 , y5 = es9 − es13 ,

and we continue in an obvious manner. It is easy to see that ∥yn∥ =
√
2

for each n ∈ N. Moreover, by Corollary 3.3, it follows that (yn)
converges weakly to 0.

Let un = Tyn ∈ c0 for each n ∈ N. Since T is w-w continuous, we
have that (un) is weakly null. By the inequality (5.1), we also have

(5.2)
√
2 ≤ ∥un∥c0 ≤ (d+ ϵ)

√
2 for any n ∈ N.

Let us write u0 = (u0(i))i∈N. Then there is an i1 ∈ N such that
|u0(i)| < ϵ for each i ≥ i1. Since the subsequence (u4k+1)k∈N is weakly
null, we find k ∈ N such that |u4k+1(i)| < ϵ for any i < i1. Repeating
this argument, we find i2 > i1 such that |u4k+1(i)| < ϵ for any i ≥ i2,
and an integer l such that |u4l+2(i)| < ϵ for any i < i2. The integers
i3 and m are also chosen so that i3 > i2, |u4l+2(i)| < ϵ for any i ≥ i3
and |u4m+3(i)| < ϵ for any i < i3. The inequality (5.2) and the above
construction imply that, for each i ∈ N,

|u0(i) + u4k+1(i) + u4l+2(i) + u4m+3(i)| ≤ (d+ ϵ)
√
2 + 3ϵ.

Therefore,

∥u0 + u4k+1 + u4l+2 + u4m+3∥c0 ≤ (d+ ϵ)
√
2 + 3ϵ.

On the other hand,

∥u0 + u4k+1 + u4l+2 + u4m+3∥c0
= ∥T (y0 + y4k+1 + y4l+2 + y4m+3)∥c0
≥ ∥y0 + y4k+1 + y4l+2 + y4m+3∥.

Now consider the admissible family {Ij}8j=1 where each Ij is a singleton
consisting of one node, s, belonging to the support of some of the
vectors y0, y4k+1, y4l+2, y4m+3. Then it is easy to see that |I∗

j (y0 +
y4k+1 + y4l+2 + y4m+3)| = 1 and

∥y0 + y4k+1 + y4l+2 + y4m+3∥ ≥
√
8.
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Consequently,

(5.3)
√
8 ≤ (d+ ϵ)

√
2 + 3ϵ,

and, when ϵ tends to 0, we get that d ≥
√
4.

If we start with N distinct branches, then the inequality (5.3)
becomes √

2N ≤ (d+ ϵ)
√
2 + (N − 1)ϵ,

which implies that
√
N ≤ d, and the desired result follows. �

A long-standing question in metric fixed point theory is the follow-
ing. Find a non-trivial class of Banach spaces invariant under isomor-
phisms such that each member of the class has the fixed point property.
(The trivial example is given by the spaces isomorphic to ℓ1.) By the
above theorem and the result of Section 4, we obtain the next corollary.

Corollary 5.2. For any real number M > 0, there exists a Banach
space Y isomorphic to c0 such that d(Y, c0) > M , and Y has the fixed
point property.

We do not know whether the space c0 solves the aforementioned
problem. What we say is that we can go as far away from c0 as we
want (in the sense of Banach-Mazur distance), and we find spaces with
the fixed point property.

We now continue the investigation of the embedding of c0 in the
space X. Our goal is to prove that there are subspaces of X isomorphic
to c0 which are not generated by finitely many branches. (This
argument will be useful to us in Section 6, where we introduce a second
tree-like Banach space, and we show that it also contains isomorphic
copies of c0.) For this reason, we consider the sequence (xn) in X
where, for each n ∈ N, xn : D → R is defined as follows:

xn(s) =

{
1

2n/2 if lev (s) = n;
0 otherwise.

It is easy to see that ∥xn∥ = 1 for any n ∈ N. For this sequence, we
have the following.
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Theorem 5.3. The sequence (xn) is equivalent to the usual basis of
c0.

Proof. It suffices to prove that, for any n ∈ N and any t1, . . . , tn ∈ R,
the following inequalities hold:

max
1≤i≤n

|ti| ≤
∥∥∥∥ n∑

i=1

tixi

∥∥∥∥ ≤
√
3(
√
2 + 1) max

1≤i≤n
|ti|.

The proof of the left-hand inequality is straightforward. For any
fixed k ∈ {1, 2, . . . , n}, we set Ij = {sj}, j = 1, 2, . . . , 2k, where
{s1, s2, . . . , s2k} is an enumeration of the nodes on the level k. Then,
for each j,

I∗
j

( n∑
i=1

tixi

)
= tk

1

2k/2
,

and {Ij}2
k

j=1 is an admissible family of pairwise disjoint segments.
Therefore,∥∥∥∥ n∑

i=1

tixi

∥∥∥∥2 ≥
2k∑
j=1

∣∣∣∣I∗
j

( n∑
i=1

tixi

)∣∣∣∣2 =
2k∑
j=1

(
tk
2k/2

)2

= t2k.

Thus, ∥∥∥∥ n∑
i=1

tixi

∥∥∥∥ ≥ max
1≤i≤n

|ti|.

We proceed now to the right-hand inequality. The following claim
is the main argument for our proof.

Claim 5.4. For any n ∈ N, we have

∥x0 + x1 + · · ·+ xn∥ ≤
√
3(
√
2 + 1).

Proof of the claim. Fix n ∈ N, and let x = x0 + x1 + · · · + xn. In
order to prove the claim, we need to show that, for any admissible
family S of pairwise disjoint segments, we have∑

I∈S

|I∗(x)|2 ≤ 3(
√
2 + 1)2.
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We start with a special case. Suppose that the family S consists of two
segments I1 and I2 such that min I1 < min I2 and lev (min I1) = m.
Then we have

|I∗
1 (x)|2 + |I∗

2 (x)|2 ≤
( ∞∑

k=m

1

(
√
2)k

)2

+

( ∞∑
k=m+1

1

(
√
2)k

)2

=
2(
√
2 + 1)2

2m
+

2(
√
2 + 1)2

2m+1

=
3(
√
2 + 1)2

2m
.

Now consider an arbitrary admissible family S. We set m1 =
min{lev (min I) | I ∈ S}. We also assume that there are k1 segments,
say I1, . . . , Ik1 , belonging to the family S such that, for each i, the
minimum node si of Ii lies on the level m1. Clearly, k1 ≤ 2m1 . Since
S is admissible, for every Ii there is at most one segment I ′

i ∈ S
with min Ii < min I ′

i. Let S1 be the subfamily of S consisting of the

segments {Ii}k1
i=1 and the segments {I ′

i}
k1
i=1 (as many as there exist).

Then by the special case studied above, we obtain∑
I∈S1

|I∗(x)|2 ≤ k1
2m1

3(
√
2 + 1)2.

We next set m2 = min{lev (min I) | I ∈ S \S1}, and we assume that
there are k2 segments I such that I ∈ S \ S1 and lev (min I) = m2.
Observe that, for such a segment I, its minimum node cannot be a
follower of the k1 nodes on the level m1 which were found at the
previous step, namely, the nodes s1 = min I1, . . . , sk1 = min Ik1

(otherwise I ∈ S1). Since there are k12
m2−m1 nodes on the level

m2 which are followers of the nodes s1, . . . , sk1 , we deduce that k2 ≤
2m2 − k12

m2−m1 . As previously, we set S2 = {J ∈ S | J /∈ S1, and
there is I ∈ S \ S1 such that lev (min I) = m2 and min I ≤ minJ }.
Then we have ∑

I∈S2

|I∗(x)|2 ≤ k2
2m2

3(
√
2 + 1)2.

Repeating the same argument, after finitely many steps, we exhaust
all the segments of the family S. Let us describe what we have at the
last step. We set ml = min{lev (min I) | I ∈ S \ (S1 ∪ · · · ∪ Sl−1)}. We
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also assume that there are kl segments I such that I ∈ S \ (S1 ∪ · · · ∪
Sl−1) and lev (min I) = ml. Then we observe that

kl ≤ 2ml − k12
ml−m1 − . . .− kl−12

ml−ml−1 .

Therefore,
k1
2m1

+
k2
2m2

+ . . .+
kl
2ml

≤ 1.

Finally, we set Sl = {J ∈ S | J /∈ S1 ∪ · · · ∪ Sl−1, and there is

I ∈ S \ ∪l−1
k=1Sk such that lev (min I) = ml and min I ≤ minJ }, and

we have ∑
I∈Sl

|I∗(x)|2 ≤ kl
2ml

3(
√
2 + 1)2.

It is easy now to estimate the sum
∑

I∈S |I∗(x)|2. Indeed,∑
I∈S

|I∗(x)|2 =
∑
I∈S1

|I∗(x)|2 + · · ·+
∑
I∈Sl

|I∗(x)|2

≤ k1
2m1

3(
√
2 + 1)2 + · · ·+ kl

2ml
3(
√
2 + 1)2

≤ 3(
√
2 + 1)2

[ k1
2m1

+ · · ·+ kl
2ml

]
≤ 3(

√
2 + 1)2,

and the proof of the claim is complete. �

To finish the proof of the theorem we need only observe that, for
any n ∈ N and any t1, . . . , tn ∈ R, we have∥∥∥∥ n∑

i=1

tixi

∥∥∥∥ ≤ max
1≤i≤n

|ti|
∥∥∥∥ n∑

i=1

xi

∥∥∥∥.
Indeed, if we set u =

∑n
i=1 tixi and x =

∑n
i=1 xi, then, for any node

s ∈ D, we obtain

u(s) =
n∑

i=1

tixi(s) = tlev (s)

1

2lev (s)/2
.
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Thus, for any segment I,

|I∗(u)| ≤
∑
s∈I

|u(s)| =
∑
s∈I

|tlev (s)
| 1

2lev (s)/2

≤ max
1≤i≤n

|ti|
∑
s∈I

1

2lev (s)/2

= max
1≤i≤n

|ti||I∗(x)|.

Hence, for any admissible family S,∑
I∈S

|I∗(u)|2 ≤ (max |ti|)2
∑
I∈S

|I∗(x)|2,

and the result follows. Therefore, using the previous claim, we have∥∥∥∥ n∑
i=1

tixi

∥∥∥∥ ≤
√
3(
√
2 + 1) max

1≤i≤n
|ti|,

that is, the sequence (xi) is equivalent to the usual basis of c0. �

We now turn our attention to the Opial condition. As the space TF
indicates, the embedding of c0 in a Banach space does not imply that
the latter does not satisfy the Opial condition. However, in our case,
it seems that it is the presence of c0 which causes X to fail the Opial
property.

In the following, rather than showing that X does not satisfy the
Opial condition, we prove a stronger result. Recall that a nonempty
closed bounded convex subset K of a Banach space is said to have
normal structure if each closed, bounded, convex subset C of K with
at least two points contains a non-diametral point, that is, there exists
x0 ∈ C such that sup{∥x0 − x∥ | x ∈ C} < diam (C). A Banach space
is said to have weak normal structure if every weakly compact, convex
subset K with diam (K) > 0 has normal structure.

Theorem 5.5. The space X does not possess weak normal structure.

Proof. According to a characterization of normal structure, it suf-
fices to show that X contains a weakly null diametral sequence (yn).
Recall that a bounded sequence (yn) is said to be diametral if it is
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nonconstant and

lim
n→∞

d(yn, co {y0, . . . , yn−1}) = diam ({yn}),

where d(yn, co {y0, . . . , yn−1}) = inf{∥yn − y∥ | y ∈ co {y0, . . . , yn−1}}.
Once the sequence (yn) has been constructed, then we have that the
set K = co {yn | n ∈ N} is a weakly compact convex set which does
not have normal structure.

Since the standard example of a diametral sequence is the usual
basis of c0, our first thought is to examine the sequence (xn) given
in Theorem 5.3. An easy estimate, though, implies that (xn) is not
diametral. However, a block basis of (xn) solves our problem.

Indeed, we first consider a sequence k0 = 0 < k1 < k2 < · · · of levels
of the tree D such that, for each n ∈ N,

1

(
√
2)kn

+
1

(
√
2)kn+1

<
1

(
√
2)kn−1+1

.

Then we set yn = xkn + xkn+1. Since (xn) is weakly null, we have
that (yn) also converges weakly to zero. We next show that (yn) is a
diametral sequence.

We first estimate the norm of yn. Observe that, for each n, the
support of the vector yn consists of the nodes s on the level kn, where
yn(s) = 1/[(

√
2)kn ], and of the nodes s on the level kn + 1, where

yn(s) = 1/[(
√
2)kn+1]. Let S be an admissible family. Then there is

no point in choosing the segments I ∈ S so that lev (min I) < kn.
Thus, the best choice for S is the following. S consists of the segments
Is = {s, s⌢0} and the segments Js = {s⌢1}, where s varies over the
nodes of the level kn. Hence, we have

∥yn∥2 =
2kn∑
i=1

[
|I∗

i (yn)|2 + |J ∗
i (yn)|2

]

=
2kn∑
i=1

[(
1

(
√
2)kn

+
1

(
√
2)kn+1

)2

+

(
1

(
√
2)kn+1

)2]
= 2 +

√
2.

Therefore, ∥yn∥ =
√
2 +

√
2 for each n ∈ N. Now let y be any vector

belonging to co {y0, . . . , yn−1}. Then y and yn have disjoint supports.
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Hence, it is easy to see that ∥yn − y∥ ≥ ∥yn∥ =
√
2 +

√
2. Therefore,

d(yn, co {y0, . . . , yn−1}) ≥
√

2 +
√
2 for each n ∈ N, which implies that

lim
n→∞

d(yn, co {y0, . . . , yn−1}) ≥
√
2 +

√
2.

We next argue that, for any n,m ∈ N, n < m, we have ∥yn − ym∥ =√
2 +

√
2. For our convenience, let us set kn = k, km = l and

x = yn − ym. The choice of the sequence (kn) implies that

(5.4)
1

(
√
2)l

+
1

(
√
2)l+1

<
1

(
√
2)k+1

.

Observe that the support of the vector x consists of the nodes on the
levels k and k + 1, where the coordinates of x are positive, and of the
nodes on the levels l and l+1, where the coordinates x(s) are negative.
Let S be an admissible family on the dyadic tree. We search for that
S which maximizes the sum

∑
I∈S |I∗(x)|2. First, let us assume that

the segments I of S intersect only the support of yn (respectively, ym).

Then we have
∑

I∈S |I∗(x)|2 ≤ ∥yn∥2 (respectively, ∥ym∥2) = 2 +
√
2.

Let us now assume that there are segments I ∈ S which intersect
both the supports of yn and ym. Since the coordinates x(s), where
lev (s) = l or l + 1, are negative, if we set J = I ∩ {s | lev (s) =
k or k+1} then (using the inequality (5.4)) we have |I∗(x)| ≤ |J ∗(x)|.
Therefore, the family S that we are looking for cannot contain such seg-
ments I, since any of these segments can be replaced by its intersection
with the levels k and k + 1.

There is only one possibility for the family S which remains open.
The case where S contains segments which intersect only the support
of yn, and at the same time S contains segments which intersect only
the support of ym. Let s be any node on the level k. Then we may
assume that Is = {s, s⌢0} belongs to S. Since S is admissible, we are
allowed to choose only one segment whose minimum node is a follower
of s. By the inequality (5.4), the best choice for us is to consider the
segment Js = {s⌢1}. Hence, the family S which maximizes the sum∑

I∈S |I∗(x)|2 is S = {Is,Js}s:lev (s)=k, which is exactly the family

giving the norm of ∥yn∥. Thus, ∥x∥ = ∥yn∥ =
√

2 +
√
2. (We can also

consider the family S which contains all segments {s⌢0} and {s⌢1},
where lev (s) = k, each one of which is combined with one and only one
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segment intersecting the support of ym. However, a simple estimation
shows that this is not the best choice for S.)

Finally, for any n ̸= m, we have ∥yn − ym∥ =
√

2 +
√
2, and hence

diam ({yn}) = supn,m ∥yn − ym∥ =
√
2 +

√
2. Consequently,

diam ({yn}) ≤ lim
n→∞

d(yn, co {y0, . . . , yn−1}).

The reverse inequality is obvious. Thus, (yn) is a weakly null diametral
sequence. �

It is well known (see [5]) that the Opial condition implies that the
space has weak normal structure. Hence, by the above theorem, we
immediately get the following.

Corollary 5.6. The space X does not satisfy the Opial condition.

Finally, we observe that Theorem 5.3 provides us with a lot of
subspaces isomorphic to c0, and Theorem 5.5 provides us with a lot of
weakly compact convex subsets which do not possess normal structure.
This will become clear as soon as the next proposition is proved. Recall
that a partially ordered set T is called a dyadic tree if it is order
isomorphic to (D,≤). If T is a dyadic tree and T ⊆ D, then we say
that T is a subtree of D.

Proposition 5.7. For any subtree T of D, the space span {es | s ∈ T }
is isometric to X.

Proof. Suppose that φ : D → T is an order isomorphism. We need
only show that, for any finitely supported sequence (λs)s∈D of scalars,
we have ∥∥∥∥∑

s∈D
λses

∥∥∥∥ =

∥∥∥∥∑
s∈D

λseφ(s)

∥∥∥∥.
Let us write x =

∑
s∈D λses and y =

∑
s∈D λseφ(s). By the definition

of the norm, there is an admissible family S = {Ii}ri=1 of segments of
D such that

∥x∥ =

( r∑
i=1

|I∗
i (x)|2

)1/2

.
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For any i = 1, 2, . . . , r, we set Ji = {s ∈ D | φ(min Ii) ≤ s ≤
φ(max Ii)}. Clearly, {Ji}ri=1 are pairwise disjoint segments of D, and
we have J ∗

i (y) = I∗
i (x). Further, the family {Ji}ri=1 is admissible.

Indeed, if this is not true, then there are three segments, say the
segments J1, J2 and J3, so that minJ1 < minJ2 and minJ1 < minJ3,
that is, φ(min I1) < φ(min I2) and φ(min I1) < φ(min I3). Since φ is
an order isomorphism, we obtain min I1 < min I2 and min I1 < min I3.
Hence, S is not admissible, and we have reached a contradiction.
Therefore, {Ji}ri=1 is admissible, and thus

∥x∥ =

( r∑
i=1

|J ∗
i (y)|2

)1/2

≤ ∥y∥.

Consider now an admissible family S = {Ji}ri=1 of segments of D
such that ∥y∥ = (

∑r
i=1 |J ∗

i (y)|2)1/2. For any i = 1, 2, . . . , r, we set
Ii = {s ∈ D | φ(s) ∈ Ji}. Then, {Ii}ri=1 are pairwise disjoint
segments, and we have I∗

i (x) = J ∗
i (y). Further, if we assume that

{Ii}ri=1 is not admissible, then there are three segments I1, I2 and
I3 with s1 = min I1 < s2 = min I2 and s1 < s3 = min I3. Hence,
φ(s1) < φ(s2) and φ(s1) < φ(s3). However, minJi ≤ φ(si), and thus
minJ1 < minJ2, minJ1 < minJ3 which is a contradiction. Therefore,
{Ii}ri=1 is admissible and

∥y∥ =

( r∑
i=1

|I∗
i (x)|2

)1/2

≤ ∥x∥. �

6. The second space. In this section we introduce a second tree-
like Banach space and we show that it shares similar properties to the
space X studied in the previous sections. The new space, which will be
denoted by Y , follows from a modification in the notion of admissibility.

Let S be a finite family of pairwise disjoint segments. Throughout
this section, S is called admissible whenever the following condition
holds: for any segment I ∈ S, if we set SI = {J ∈ S | min I ≤
minJ }, then the minimum nodes of the segments J ∈ SI are pairwise
comparable. The space Y is the completion of c00(D) with respect to
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the norm defined as follows: for any x ∈ c00(D),

∥x∥ = sup

(∑
I∈S

|I∗(x)|2
)1/2

where the supremum is taken over all finite admissible (in the previous
sense) families S of pairwise disjoint segments.

Some remarks on the notion of admissibility follow. First, loosely
speaking, suppose that we want to construct an admissible family,
and let us start with any segment I. Then we can consider as many
segments J as we want such that min I < minJ , provided that the
minimum nodes of these segments lie on the same branch. (On the
contrary, in Section 3, we were obliged to choose at most one segment
J with min I < minJ .) Note that, if we were allowed to consider
pairwise disjoint segments J with min I < minJ without any other
restriction, then we would simply obtain the space JT .

Secondly, suppose that S is an admissible family of pairwise disjoint
segments and S ′ a family of segments such that for any I ′ ∈ S ′ there is
I ∈ S with I ′ ⊆ I. Then S ′ need not be admissible. For example,
let S = {I0, I1, I2} where Ii, i = 0, 1, 2, are segments such that
min I0 = ∅, min I1 = {(1)} and min I2 = {(1, 1)}. Clearly, S is
admissible. However, if I1 is replaced by I ′

1 = I1 \ {min I1}, then
the family S ′ = {I0, I ′

1, I2} is not admissible. This situation brings
about some difficulty in the study of the space Y . Any time we want
to cut the segments of an admissible family we have to verify that
the new family obtained is also admissible. Nevertheless, the previous
example indicates actually the only case which causes some problems.
For instance it is not hard to see that if S is admissible and m is
any level then both S ′ = {I ∩ {s : lev (s) ≤ m} | I ∈ S} and
S ′′ = {I ∩ {s : lev (s) ≥ m} | I ∈ S} are admissible families.

The space Y has similar properties to the space X. First, we observe
that Y is separable, with non-separable dual, and it does not contain an
isomorphic copy of ℓ1. The latter follows from the fact that Theorem 3.2
remains valid for the space Y .

Theorem 6.1.

(i) The quotient space Y ∗/F is isomorphic to ℓ2(Γ) (where F is the
space generated by the biorthogonal functionals e∗s, s ∈ D).
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(ii) The second dual Y ∗∗ is isomorphic to F ∗ ⊕ ℓ2(Γ).

Further, we can prove the following.

Theorem 6.2. The space Y has the fixed point property.

The proof is the same as the proof of Theorem 4.1.

One basic difference between Y and X is detected in the structure
of their subspaces. More precisely, the analogue of Proposition 3.4 for
the space Y is the following.

Proposition 6.3.

(i) For any chain (sn) of D, the space span {esn | n ∈ N} is
isometrically isomorphic to the James quasi-reflexive space J .

(ii) For any antichain (sn) of D, the space span {esn | n ∈ N} is
isometrically isomorphic to ℓ2.

That is, for any branch B, the space generated by the vectors es,
s ∈ B, is not isomorphic to c0, but it is isomorphic to the space J .
Nevertheless, the analogue of Theorem 5.3 for the space Y remains
valid from which we deduce that Y also contains isomorphic copies of
c0.

Theorem 6.4. Suppose that (xn) is the sequence of Theorem 5.3, that
is, xn(s) = 1/2n/2 if lev (s) = n and xn(s) = 0 otherwise. Then (xn)
in the space Y is equivalent to the usual basis of c0. In particular, for
any n ∈ N and any t1, . . . , tn ∈ R, we have

max
1≤i≤n

|ti| ≤
∥∥∥∥ n∑

i=1

tixi

∥∥∥∥ ≤ 2(
√
2 + 1) max

1≤i≤n
|ti|.

Finally, we do not know whether the space Y has normal structure
or not. However, we can prove the next result.

Theorem 6.5. The space Y does not satisfy the Opial condition.
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Proof. We first consider the sequence (xn) as in the previous the-
orem. It is easy to see that ∥xn∥ = 1 for any n ∈ N and, therefore,
limn→∞ ∥xn∥ = 1. Further, by Corollary 3.3 (which also remains valid
for the space Y ), it follows that (xn) converges weakly to zero. In or-
der to prove the theorem we need to find a vector x ∈ Y , x ̸= 0, such
that limn→∞ ∥xn + x∥ = 1. For this reason, we set x = ae∅ where a is
any real number with 0 < |a| ≤ 1 and we show that x has the desired
property.

Indeed, fix a positive integer n, and let S = {Ii}ri=1 be an admissible
family of pairwise disjoint segments. In order to estimate the norm
∥xn + x∥, we search for the family S which maximizes the sum

( r∑
i=1

|I∗
i (xn + x)|2

)1/2

.

We distinguish two cases.

Case 1. Suppose that ∅ /∈ ∪r
i=1Ii. Then we can consider a family S

such that any node s with lev (s) = n belongs to some segment I ∈ S.
This turns out to be the best choice for S in this case. For instance, if
{0, 1}n = {s1, . . . , s2n} is an enumeration of the nodes on level n, then
we set S = {Ii}2

n

i=1, where Ii = {si}, and we have

( 2n∑
i=1

|I∗
i (xn + x)|2

)1/2

=

( 2n∑
i=1

(
1

2n/2

)2)1/2

= 1.

Case 2. Assume now that ∅ belongs to some segment of the family
S, and say that ∅ ∈ I1. Then min I1 ≤ min Ii for every i = 1, 2, . . . , r.
Since S is admissible, it follows that the minimum nodes of the segments
{Ii}ri=1 lie on the same branch. Therefore, there are at most n + 1
segments of S which intersect the level n, and hence at most n + 1
nodes on level n belong to the union ∪r

i=1Ii. Consequently, in this
case, the best choice for us is to consider a family S = {Ii}n+1

i=1 such
that ∅ ∈ I1, min Ii+1 is an immediate follower of min Ii and each Ii
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intersects the level n. Then we have( n+1∑
i=1

|I∗
i (xn + x)|2

)1/2

=

(
|I∗

1 (xn + x)|2 +
n+1∑
i=2

|I∗
i (xn + x)|2

)1/2

=

[(
a+

1

2n/2

)2

+
n

2n

]1/2
.

Therefore,

∥xn + x∥ = max

{
1,

[(
a+

1

2n/2

)2

+
n

2n

]1/2}
.

Since [(
a+

1

2n/2

)2

+
n

2n

]1/2
−→ |a| ≤ 1,

we deduce that limn→∞ ∥xn + x∥ = 1, and the proof is complete. �

7. Further remarks.

Remark 7.1. In Section 5 (respectively, 6) we proved that the space
X (respectively, Y ) does not satisfy the Opial condition. In the
following, we strengthen this result by showing that any closed finite
codimensional subspace of X (respectively, Y ) fails the Opial property.

Theorem 7.2. Suppose that Z is a closed, finite codimensional sub-
space of X (respectively, Y ). Then Z does not satisfy the Opial condi-
tion.

Proof. We describe the proof in the case of the space X. The
necessary changes for the space Y can be completed easily. We also
assume that Z is a subspace of X which has codimension one. The
general case of finite codimensional subspaces is similar.

Since Z has codimension one, there is x0 ∈ X with ∥x0∥ = 1, such
that X = Z ⊕ ⟨x0⟩. Therefore, any x ∈ X can be written uniquely in
the form x = z + λx0, where z ∈ Z and λ ∈ R.

Consider now the sequence (xn) of Theorem 5.3, that is, xn(s) =
1/2n/2 if lev (s) = n and xn(s) = 0, otherwise. We know that ∥xn∥ = 1
and (xn) converges weakly to zero. For every n ∈ N, the vector xn is



1278 COSTAS POULIOS

written in the form xn = zn + λnx0. Observe that (λn) is a bounded
sequence. Therefore, by passing to a subsequence, if necessary, we may
assume that λn → λ ∈ R. Then, for each x∗ ∈ X∗, we have

x∗(zn + λx0) = x∗(xn) + (λ− λn)x
∗(x0),

and hence, x∗(zn + λx0) → 0, that is, (zn) converges weakly to −λx0.
Since Z is closed, we deduce that −λx0 belongs to Z. However, this can
happen if and only if λ = 0. Therefore, λn → 0, and (zn) is a weakly
null sequence. Further, by the equation zn = xn − λnx0, it follows

∥xn∥ − |λn|∥x0∥ ≤ ∥zn∥ ≤ ∥xn∥+ |λn|∥x0∥,

which implies that limn→∞ ∥zn∥ = 1.

Consider now any nonzero element z0 ∈ Z whose support is finite.
Let m be a level such that Pmz0 = 0. By multiplication with a suitable
constant, we also have ∥z0∥ ≤ 1/(2(m+1)/2). To complete the proof of
the theorem we need to show that limn→∞ ∥zn−z0∥ = limn→∞ ∥zn∥ =
1.

Fix any integer n > m. In order to estimate the norm ∥zn − z0∥
we consider an admissible family {Ii}ri=1 of pairwise disjoint segments,
and we distinguish the following cases.

Case 1. Suppose that lev (min Ii) ≥ m for any i = 1, 2, . . . , r. Then
I∗
i (z0) = 0, and therefore,( r∑

i=1

|I∗
i (zn − z0)|2

)1/2

=

( r∑
i=1

|I∗
i (zn)|2

)1/2

≤ ∥zn∥.

Case 2. Assume now that there is at least one segment, say the
segment I1, such that lev (min I1) < m. Let us also set s1 = min I1
and k = lev (min I1) < m. Observe that there are 2n−k nodes on the
level n which are followers of the node s1. Further, since S is admissible,
at most two of these 2n−k nodes may belong to the union ∪r

i=1Ii. So,
if we set

A1 = {i | lev (max Ii) < m}
A2 = {i | lev (min Ii) ≥ m}
A3 = {i | lev (min Ii) < m ≤ lev (max Ii)},
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then there are at most 2n−2n−k +1 nodes on the level n which belong
to ∪i∈A2

Ii. We also observe that the cardinality of the set A3 is less
or equal to 2m. Now we have∑
i∈A1

|I∗
i (zn − z0)|2 =

∑
i∈A1

|I∗
i (xn) + I∗

i (−λnx0)− I∗
i (z0)|2

=
∑
i∈A1

|I∗
i (−λnx0)− I∗

i (z0)|2

≤
[( ∑

i∈A1

|I∗
i (−λnx0)|2

)1/2

+

( ∑
i∈A1

|I∗
i (z0)|2

)1/2]2
≤ (∥λnx0∥+ ∥z0∥)2

= (|λn|+ ∥z0∥)2.∑
i∈A3

|I∗
i (zn − z0)|2 =

∑
i∈A3

|I∗
i (xn) + I∗

i (−λnx0)− I∗
i (z0)|2

≤
[( ∑

i∈A3

|I∗
i (xn)|2

)1/2

+ ∥λnx0∥+ ∥z0∥
]2

≤
[(

2m
1

2n

)1/2

+ |λn|+ ∥z0∥
]2
.∑

i∈A2

|I∗
i (zn − z0)|2 =

∑
i∈A2

|I∗
i (zn)|2

=
∑
i∈A2

|I∗
i (xn) + I∗

i (−λnx0)|2

≤
[( ∑

i∈A2

|I∗
i (xn)|2

)1/2

+ |λn|
]2

≤
[(

(2n − 2n−k + 1)
1

2n

)1/2

+ |λn|
]2

=

[(
1− 1

2k
+

1

2n

)1/2

+ |λn|
]2

≤
[(

1− 1

2m
+

1

2n

)1/2

+ |λn|
]2
.

Therefore,
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r∑
i=1

|I∗
i (zn − z0)|2 ≤ (|λn|+ ∥z0∥)2 +

[(
2m

2n

)1/2

+ |λn|+ ∥z0∥
]2

+

[(
1− 1

2m
+

1

2n

)1/2

+ |λn|
]2
.

Finally, we have

∥zn−z0∥2 ≤ max

{
∥zn∥2, (|λn|+∥z0∥)2+

[(
2m

2n

)1/2

+ |λn|+∥z0∥
]2

+

[(
1− 1

2m
+

1

2n

)1/2

+ |λn|
]2}

.

As n tends to infinity, the sum

(|λn|+∥z0∥)2+
[(

2m

2n

)1/2

+|λn|+∥z0∥
]2
+

[(
1− 1

2m
+

1

2n

)1/2

+|λn|
]2

converges to 2∥z0∥2 + 1 − (1/2m). By the choice of z0 we have
2∥z0∥2 + 1 − (1/2m) < 1. Therefore, limn→∞ ∥zn − z0∥ = 1 =
limn→∞ ∥zn∥, and the proof is complete. �

By Proposition 3.4 (respectively, 6.3) we know that X (respectively,
Y ) contains subspaces which are isometrically isomorphic to ℓ2. There-
fore, there are infinite dimensional subspaces of X (respectively, Y )
satisfying the Opial condition. However, we expect that Theorem 7.2
can be expanded to a wider class of subspaces of X (respectively, Y ).
So, we state the next problem.

Problem 7.3. Does any subspace of X (respectively, Y ) with non-
separable dual fail the Opial property?

Remark 7.4. As it was mentioned in the introduction, the class of
separable Banach spaces not containing ℓ1 with non-separable dual
was established by two well-known examples: the James tree space
(JT ) and the James function space (JF ). The first one satisfies the
Opial condition. We now prove that the space JF does not satisfy this
condition. In order to do this, we use the fact that JF is isometric to
the space V 0

2 (see [2, 11]). We also use the notation from [2].
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Theorem 7.5. The space JF does not satisfy the Opial condition.

Proof. We set Rn(t) = 2n/2
∫ t

0
rn(x) dx, where {rn}∞n=0 denotes the

sequence of Rademacher functions. Then, we have ∥Rn∥ = 1 and
∥Rn∥∞ → 0. Since the weak and the pointwise topology coincide on
bounded subsets of V 0

2 , it follows that {Rn}n∈N is weakly null. We
now consider the identity map f(x) = x on [0, 1], and we show that
lim inf ∥f +Rn∥ ≤ 1.

Given ϵ > 0, we fix δ > 0 such that, for any family I of pairwise
disjoint open intervals of [0, 1] with |I| < δ for every I ∈ I, v2(f, I) < ϵ.
For every n ∈ N, we choose a family In of pairwise disjoint open
intervals of [0, 1] such that

∥f +Rn∥2 = v22(f +Rn, In)

= v22(f +Rn, I≥δ
n ) + v22(f +Rn, I<δ

n ),

where I≥δ
n = {I ∈ In : |I| ≥ δ} and I<δ

n = {I ∈ In : |I| < δ}.
Since ∥Rn∥∞ → 0, there is n0 ∈ N, such that, for every n > n0,
v2(Rn, I≥δ

n ) < ϵ. We also make use of the following inequalities
v22(Rn, I<δ

n ) ≤ λ(∪I<δ
n ), v22(f, I≥δ

n ) ≤ λ(∪I≥δ
n ), v2(f + Rn, I≥δ

n ) ≤
v2(f, I≥δ

n ) + v2(Rn, I≥δ
n ), v2(f +Rn, I<δ

n ) ≤ v2(f, I<δ
n ) + v2(Rn, I<δ

n ),
where λ(A) denotes the length (that is, Lebesgue measure) of the set
A ⊆ [0, 1]. Finally, we get

∥f +Rn∥2 ≤ λ(∪I≥δ
n ) + λ(∪I<δ

n ) + 2ϵ2 + 4ϵ ≤ 1 + 6ϵ,

for every n > n0. Therefore, lim inf ∥f +Rn∥ ≤ 1. �

In view of Theorem 7.5, it is natural to ask the following.

Problem 7.6. Does the space JF satisfy the fixed point property?

Remark 7.7. An important member of the class of separable Banach
spaces not containing ℓ1 with non-separable dual is the so-called Hagler
tree space (HT ) (see [6]). This space is c0-saturated, that is, any closed,
infinite dimensional subspace of HT contains an isomorphic copy of
c0. It is easily verified that HT does not satisfy the Opial condition.
However, we do not know if HT has the fixed point property.
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