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THE EMBEDDING OF Od1d2
INTO Od1

⊗Od2

AMY B. CHAMBERS

ABSTRACT. As a particular example of a general theo-
rem presented in [2], there is a conditional expectation from
the tensor product of Cuntz algebras, Od1 ⊗ Od2 , onto the
Cuntz algebra Od1d2 . Motivated by this example, we exam-
ine the embedding of Od1d2 in Od1 ⊗Od2 , first by examining
the index of the conditional expectation mentioned, and then
by expressing Od1 ⊗Od2 as a concrete Paschke crossed prod-
uct by an endomorphism and then abstractly as the image
of a faithful representation of the Stacey crossed product of
Od1d2 by the same endomorphism.

1. Introduction. The aim of this paper is to study in more detail
an embedding of a copy of Od1d2 in Od1 ⊗ Od2 that was studied in
greater generality in [2]. In that paper, it was shown that, if E1 and
E2 are directed graphs, then there is a conditional expectation from
the tensor product of the graph algebras C∗(E1) and C

∗(E2) onto the
C∗-algebra D, where

D = span {SµS
∗
ν ⊗ S̃αS̃β

∗
: s(µ) = s(ν), s(α) = s(β),

|µ| − |ν| = |α| − |β|}.

We form a directed graph E by constructing the Cartesian product of E1

and E2 as follows: E = (E0, E1, r, s) where E0 = {(v, w) : v ∈ E0
1 , w ∈

E0
2} and E1 = {(e, f) : e ∈ E1

1 , f ∈ E1
2} with s(e, f) = (s(e), s(f)) and

r(e, f) = (r(e), r(f)). If E1 and E2 are row-finite, then so is E . If E
is the directed graph formed by constructing the Cartesian product of
E1 and E2, with the additional hypothesis that E has no sources, we
have that D ∼= C∗(E). The following theorem summarizes this.
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Theorem 1.1. Let E1 and E2 be row-finite directed graphs such that
every cycle has an entry. Let {Pv, Se} be the Cuntz-Krieger E1-system

corresponding to C∗(E1), and let {P̃w, S̃f} be the Cuntz-Krieger E2-
system corresponding to C∗(E2). Further, assume that Pv ̸= 0 for

every v ∈ E0
1 and P̃w ̸= 0 for every w ∈ E0

2 . If E has no sources, there
exists a conditional expectation from C∗(E1)⊗C∗(E2) to a subalgebra D
isomorphic to C∗(E) for E defined as the graph formed by constructing
the Cartesian product of E1 and E2. If E has sources, then we can
still find a conditional expectation from C∗(E1) ⊗ C∗(E2) onto D =

span {SµS
∗
ν ⊗ S̃αS̃β

∗
: s(µ) = s(ν), s(α) = s(β), |µ| − |ν| = |α| − |β|},

but D need not be isomorphic to C∗(E).

As a particular application of this theorem, taking E1 and E2 to be
the graphs with one vertex and d1 and d2 loops, respectively, we obtain
that there exists a conditional expectation from the tensor product of
Cuntz algebras, Od1⊗Od2 , onto the Cuntz algebraOd1d2 . In addition, it
is possible to realize Od1 ⊗Od2 as the Paschke crossed product of Od1d2

by a canonical endomorphism. We examine this particular example
further and study in greater depth the embedding of the subalgebra
isomorphic to Od1d2

in Od1
⊗Od2

. In Section 2, we describe briefly how
for d1, d2 ≥ 2, it is impossible for Od1d2 to be isomorphic to the tensor
product Od1⊗Od2 . In Section 3 we give details of a proof, first sketched
to us by Watatani, that the conditional expectation associated to this
particular embedding of Od1d2 in Od1 ⊗Od2 is not of index finite type.
We conclude in Section 4 by first establishing that Od1 ⊗ Od2 can be
viewed as a Paschke crossed product of Od1d2 by an endomorphism, and
finally by establishing a much more delicate fact: that Od1⊗Od2 can be
expressed as the image of a faithful representation of the Stacey crossed
product of Od1d2 by the same endomorphism. We thank Astrid an Huef
and Iain Raeburn who allowed us access to their preprint at an early
stage. It is our hope that by establishing that this representation of the
Stacey crossed product is faithful, the manner in which Od1d2 embeds
in Od1 ⊗Od2 is made more clear and that there will be generalizations
to different types of graph algebras.
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2. Comments on Od1 ⊗Od2 and Od1d2 .

2.1. Od1d2 as a subalgebra of Od1 ⊗ Od2 . Let Od1 and Od2 be
Cuntz algebras, that is, Od1 = C∗({Si : 0 ≤ i ≤ d1 − 1}) and

Od2 = C∗({S̃j : 0 ≤ j ≤ d2 − 1}) where the Si’s and S̃j ’s are
isometries satisfying the Cuntz relations. In [3], Cuntz showed that
On = span {SµS

∗
ν : µ, ν are words in {0, . . . , n − 1}}. Using this and

the fact that On is nuclear,

Od1 ⊗Od2 = span {SµS
∗
ν ⊗ S̃αS̃β

∗
: µ, ν are words in {0, . . . , d1 − 1}

and α, β are words in {0, . . . , d2 − 1}}.

It can also be shown that

Od1 ⊗Od2 = C∗({Si ⊗ Id : 0 ≤ i ≤ d1 − 1}

∪ {Id⊗ S̃j : 0 ≤ j ≤ d2 − 1}).

Since this paper is centered on investigating Od1d2 as a subalgebra of
Od1 ⊗Od2 , it is important to determine what a subalgebra of Od1 ⊗Od2

that is isomorphic to Od1d2 might look like. From [2], we see that

Od1d2
∼= span {SµS

∗
ν ⊗ S̃αS̃β

∗
: s(µ) = s(ν),

s(α) = s(β), |µ| − |ν| = |α| − |β|}

= C∗({Si ⊗ S̃j : 0 ≤ i ≤ d1 − 1, 0 ≤ j ≤ d2 − 1}).

2.2. Structure of Od1 ⊗ Od2 and Od1d2 . For d1, d2 ≥ 2, we would
like to show that Od1d2 is not isomorphic to Od1 ⊗Od2 . The easiest way
to see this is to use some results from K-theory for C∗-algebras. Due to
the Kunneth formula, which can be found in [11], we know there is a
short exact sequence that helps us determine the structure of Od1⊗Od2 .
Also, from sources such as [10, 15] we know thatK0(Od1) = Z/(d1−1),
K0(Od2) = Z/(d2 − 1), K1(Od1) = 0, and K1(Od2) = 0. We have the
short exact sequence:

0 −→ K0(Od1)⊗K0(Od2) −→ K0(Od1 ⊗Od2)

−→ Tor (K1(Od1),K0(Od2)) −→ 0.
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But, K1(Od1) = 0, and so Tor (K1(Od1),K0(Od2)) = Tor (0,K0(Od2))
= 0. Then, we have the short exact sequence

0 → Z/(d1 − 1)⊗ Z/(d2 − 1) → K0(Od1 ⊗Od2) → 0.

Therefore, K0(Od1 ⊗ Od2) is isomorphic to Z/(d1 − 1) ⊗ Z/(d2 − 1).
Now, we know that a Cuntz algebra and a tensor product of Cuntz
algebras are simple, purely infinite, separable and classifiable. Then,
by [9], a Cuntz algebra is isomorphic to a tensor product of two other
Cuntz algebras if and only if they have isomorphic k-theory. But,
K0(Od1d2) = Z/(d1d2−1) andK0(Od1⊗Od2) = Z/(d1−1)⊗Z/(d2−1).
From [4], Z/mZ⊗ Z/nZ is isomorphic to Z/dZ where d = gcd(m,n).
In general, it is not the case that d1d2 − 1 = gcd (d1 − 1, d2 − 1). So, in
general, Od1d2

is not isomorphic to Od1
⊗Od2

.

It is also interesting to note that Od1
⊗Od2

is not even necessarily a
Cuntz algebra. We stated above that the K1-group of a Cuntz algebra
is 0. This is not in general the case with Od1

⊗Od2
. By the Kunneth

formula, we have the exact sequence

0 → 0⊗Z/(d2−1) → K1(Od1
⊗Od2

) → Tor (Z/(d1−1),Z/(d2−1)) → 0.

By [5], Tor (Z/(d1 − 1),Z/(d2 − 1)) is isomorphic to Z/qZ where
q = gcd (d1 − 1, d2 − 1). So, we have the exact sequence

0 −→ 0 −→ K1(Od1 ⊗Od2) −→ Z/qZ −→ 0.

Thus, K1(Od1 ⊗ Od2) is isomorphic to Z/qZ where q = gcd(d1 −
1, d2 − 1). Now, Z/qZ is isomorphic to 0 if and only if q = 1. So,
K1(Od1⊗Od2) = 0 if and only if gcd (d1−1, d2−1) = 1. Then, Od1⊗Od2

need not even be a Cuntz algebra unless gcd (d1 − 1, d2 − 1) = 1. In
this case, the deep results of Kirchberg and Rordam (see [9]) show
that if gcd (d1 − 1, d2 − 1) = 1, then Od1 ⊗ Od2 is isomorphic to
Ogcd (d1−1,d2−1)+1

. From this, we see that O2 ⊗O2 is a Cuntz algebra

since gcd (2 − 1, 2 − 1) = 1 implies that O2 ⊗ O2 is isomorphic to O2.
More generally, On ⊗O2 is isomorphic to O2 for any n. This certainly
makes sense becauseK1(On⊗O2) = Z/Z ∼= 0 since gcd (n−1, 2−1) = 1.
But, in general, it is not the case that Od1 ⊗ Od2 is isomorphic to a
Cuntz algebra.
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3. Index of the conditional expectation.

3.1. Definition of the index of a conditional expectation. In
[2], we define an action α of T on Od1 ⊗ Od2 whose fixed point
subalgebra is isomorphic to Od1d2 . This action α acts as follows on
the generators of Od1 ⊗Od2 :

αz(SµSν
∗ ⊗ S̃αS̃β

∗
) = z|µ|−|ν|−(|α|−|β|)SµSν

∗ ⊗ S̃αS̃β

∗
.

Then

Φ(a) =

∫
T

αz(a) dz

defines a conditional expectation from Od1 ⊗ Od2 to a subalgebra
isomorphic to Od1d2 . We will now examine the topic of the index of
this conditional expectation, a concept first defined by Watatani in
[14]. We thank Yasuo Watatani for indicating to us the key elements
of the proof of the main result in this section and for allowing us to
reproduce it here ([13]).

Definition 3.1. Let ϕ be a conditional expectation from A onto B. A
finite family {(ui, vi) : i = 1, . . . , n} ⊆ A × A is a quasi-basis for the
conditional expectation ϕ if

n∑
i=1

uiϕ(via) = a =

n∑
i=1

ϕ(aui)vi for all a ∈ A.

Definition 3.2. A conditional expectation ϕ : A→ B is of index-finite
type if there exists a quasi-basis for ϕ. Otherwise we say it is not of
index-finite type.

Definition 3.3. If a conditional expectation ϕ is of index-finite type,
then the index of ϕ is

Indexϕ =
n∑

i=1

uivi.

Using a proof by contradiction, we will show that the conditional
expectation defined above is not of index finite-type. Before giving the
proof by contradiction, let us state and prove some useful lemmas.
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3.2. Useful lemmas. Let the set {Si ⊗ Id, Id ⊗ S̃j : 0 ≤ i ≤
d1−1, 0 ≤ j ≤ d2−1} be the set of canonical generators of Od1 ⊗Od2 .
Let a = (ak)k∈Z be a numerical bi-sequence of finite support. Let
fa ∈ C(T) be the element of the set of continuous functions on T
defined by fa(z) =

∑
k akz

k. Further, define Ta ∈ Od1 ⊗ Od2 by
Ta =

∑
j>0 a−j(S0 ⊗ Id)∗j +

∑
j≥0 aj(S0 ⊗ Id)j .

Lemma 3.4. Φ(T ∗
aTa) =

∑
k>0 |a−k|2(S0⊗Id)k(S0⊗Id)∗j+

∑
k≥0 |ak|2

(S0 ⊗ Id)∗k(S0 ⊗ Id)k.

Proof.

T ∗
aTa =

(∑
k>0

a−k(S0 ⊗ Id)k +
∑
k≥0

ak(S0 ⊗ Id)∗k
)

(∑
j>0

a−j(S0 ⊗ Id)∗j +
∑
j≥0

aj(S0 ⊗ Id)j
)

=
∑
k>0

∑
j>0

a−ka−j(S0 ⊗ Id)k(S0 ⊗ Id)∗j

+
∑
k>0

∑
j≥0

a−kaj(S0 ⊗ Id)k(S0 ⊗ Id)j

+
∑
k≥0

∑
j≥0

aka−j(S0 ⊗ Id)∗k(S0 ⊗ Id)∗j

+
∑
k≥0

∑
j≥0

akaj(S0 ⊗ Id)∗k(S0 ⊗ Id)j .

To find Φ(T ∗
aTa), consider how Φ acts on (S0 ⊗ Id)k(So ⊗ Id)∗j ,

(S0 ⊗ Id)k(S0 ⊗ Id)j , (S0 ⊗ Id)∗k(S0 ⊗ Id)∗j , and (S0 ⊗ Id)∗k(S0 ⊗ Id)j .
Note:

Φ[(S0 ⊗ Id)k(S0 ⊗ Id)∗j ] =

∫
T

αt[(S0 ⊗ Id)k(S0 ⊗ Id)∗j ]dt

=

(∫
T

tkt
j
dt

)
(S0 ⊗ Id)k(S0 ⊗ Id)∗j .

Direct calculation shows that Φ[(S0⊗Id)k(S0⊗Id)∗j)] = 0 unless k = j.
If k = j, then Φ[(S0 ⊗ Id)k(S0 ⊗ Id)∗j)] = (S0 ⊗ Id)k(S0 ⊗ Id)∗k.
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Similar calculations yield that

Φ[(S0 ⊗ Id)k(S0 ⊗ Id)j ] = Φ[(S0 ⊗ Id)∗k(S0 ⊗ Id)∗j ] = 0

for any values of k and j, and that Φ[(S0 ⊗ Id)∗k(S0 ⊗ Id)j ] = 0 unless
k = j. If k = j, then Φ[(S0 ⊗ Id)∗k(S0 ⊗ Id)j ] = (S0 ⊗ Id)∗k(S0 ⊗ Id)k.

Now, let us calculate Φ(T ∗
aTa). When calculating

Φ

[∑
k>0

∑
j>0

a−ka−j(S0 ⊗ Id)k(S0 ⊗ Id)∗j
]
,

we see that the image under ϕ of each of the terms in the sum
equals zero unless k = j. Then the image of the double sum-
mation is just the image of the sum over k > 0, that is, the
image of

∑
k>0 a−ka−k(S0 ⊗ Id)k(S0 ⊗ Id)∗k =

∑
k>0 |a−k|2(S0 ⊗

Id)k(S0 ⊗ Id)∗k. Also, Φ[
∑

k>0

∑
j≥0 a−kaj(S0 ⊗ Id)k(S0 ⊗ Id)j ] = 0

and Φ[
∑

k≥0

∑
j≥0 aka−j(S0 ⊗ Id)∗k(S0 ⊗ Id)∗j ] = 0. Now, consider

Φ[
∑

k≥0

∑
j≥0 akaj(S0 ⊗ Id)∗k(S0 ⊗ Id)j ]. Again, the image under ϕ of

each of the terms is zero unless k = j, giving the image of the double
sum to be the image of

∑
k≥0 |ak|2(S0 ⊗ Id)∗k(S0 ⊗ Id)k. Putting all of

this together, we see that

Φ(T ∗
aTa) =

∑
k>0

|a−k|2(S0 ⊗ Id)k(S0 ⊗ Id)∗k

+
∑
k≥0

|ak|2(S0 ⊗ Id)∗k(S0 ⊗ Id)k. �

Lemma 3.5. Let a = (ak)k∈Z be a bi-sequence of finite support. Then
∥Φ(T ∗

aTa)∥ = ∥fa∥22.

Proof. Using the Cuntz relations and properties of projections, it
can be shown that ∥Φ(T ∗

aTa)∥ ≤ ∥fa∥22.
We show that ∥Φ(T ∗

aTa)∥ ≥ ∥fa∥22. For any j, we know that
(S0 ⊗ Id)j(S0 ⊗ Id)∗j is a projection. Also, if j > k,

[(S0 ⊗ Id)j(S0 ⊗ Id)∗j ][(S0 ⊗ Id)k(S0 ⊗ Id)∗k]

= (S0 ⊗ Id)j(S0 ⊗ Id)∗(j−k)(S0 ⊗ Id)∗k

= (S0 ⊗ Id)j(S0 ⊗ Id)∗j .
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Note also that Id ≥ (S0 ⊗ Id)k(S0 ⊗ Id)∗k for all k > 0.

Since the sequence of constants is of finite support, let N be the
greatest integer such that a−N ̸= 0.

Φ(T ∗
aTa) =

N∑
k=1

|a−k|2(S0 ⊗ Id)k(S0 ⊗ Id)∗k

+
∞∑
k=0

|ak|2(S0 ⊗ Id)∗k(S0 ⊗ Id)k

=
N∑

k=1

|a−k|2(S0 ⊗ Id)k(S0 ⊗ Id)∗k +
∞∑
k=0

|ak|2

≥
N∑

k=1

|a−k|2(S0 ⊗ Id)N (S0 ⊗ Id)∗N

+

[ ∞∑
k=0

|ak|2
]
(S0 ⊗ Id)N (S0 ⊗ Id)∗N

=

[ N∑
k=1

|a−k|2 +
∞∑
k=0

|ak|2
]
(S0 ⊗ Id)N (S0 ⊗ Id)∗N .

Then

∥Φ(T ∗
aTa)∥ ≥

∥∥∥∥[ N∑
k=1

|a−k|2 +
∞∑
k=0

|ak|2
]
(S0 ⊗ Id)N (S0 ⊗ Id)∗N

∥∥∥∥
=

∑
k∈Z

|ak|2.

With inequality in both directions, we have that

∥Φ(T ∗
aTa)∥ =

∑
k∈Z

|ak|2. �

Recall that the Toeplitz algebra is the C∗-algebra generated by
the unilateral shift S on the Hilbert space H = ℓ2(N). Let K(H)
be the algebra of compact operators on H, and consider the Calkin
algebra B(H)/K(H). Let π : B(H) → B(H)/K(H) be the natural
homomorphism that takes each element in B(H) to its corresponding
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coset in B(H)/K(H). Let U = π(S). It can be shown that U is unitary
in B(H)/K(H).

Lemma 3.6. ∥T ∗
aTa∥ ≥ ∥

∑
k∈Z akU

k∥2.

Proof. S0⊗Id is a nonunitary isometry onOd1⊗Od2 , and it generates
a copy of the Toeplitz algebra inside of Od1

⊗Od2
. Inside of this copy

of the Toeplitz algebra, we may identify S0 ⊗ Id with its image S.

∥T ∗
aTa∥ ≥ ∥π(T ∗

aTa)∥ = ∥π(Ta)∗π(Ta)∥ = ∥π(Ta)∥2

=

∥∥∥∥π(∑
k>0

a−kS
∗k +

∑
k≥0

akS
k

)∥∥∥∥2

=

∥∥∥∥∑
k∈Z

akU
k

∥∥∥∥2. �

Lemma 3.7. ∥
∑

k∈Z akU
k∥2 = ∥fa∥2∞.

Proof. From [6], we know that Spectrum (S′) = T and that C∗(S′)
is isomorphic to C(Spectrum (S′)), where S′ is the unilateral shift op-
erator. Since U is the image of S′ under isomorphism, this implies
that C∗(U) is isomorphic to C(Spectrum (U)) = C(T). So, there
exists an isomorphism ψ : C∗(U) → C(T) such that ψ(U)(z) = z.
Then ψ(Uk)(z) = zk and ψ(

∑
k∈Z akU

k)(z) =
∑

k∈Z akψ(U
k)(z) =∑

k∈Z akz
k. Then the element

∑
k∈Z akU

k in C∗(U) is associated with

the element
∑

k∈Z akz
k in C(T) by the isomorphism ψ. Since iso-

morphisms preserve norm, ∥
∑

k∈Z akU
k∥C∗(U) = ∥

∑
k∈Z akz

k∥C(T).
Therefore, ∥∥∥∥∑

k∈Z

akU
k

∥∥∥∥2 =

∥∥∥∥∑
k∈Z

akz
k

∥∥∥∥2 = ∥fa∥2∞. �

Lemma 3.8. [14, Proposition 2.1.5] (We state it here for completeness.)
Let E : A → B be a conditional expectation of index finite-type. Let
x ∈ A. There exists a positive constant k such that E(x∗x) ≥ kx∗x.

Corollary 3.9. Let a and Ta be as defined in the beginning of this
section. For some positive constant k, ∥(Φ(T ∗

aTa)∥ ≥ k∥T ∗
aTa∥.
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Proof. By Lemma 3.8, Φ(T ∗
aTa) ≥ kT ∗

aTa for some positive constant
k. This implies that ∥Φ(T ∗

aTa)∥ ≥ k∥T ∗
aTa∥ since Ta

∗Ta is a positive
operator. �

3.3. Proof that Φ is not of index-finite type.

Theorem 3.10. Let Φ be the conditional expectation from Od1⊗Od2 to
D ∼= Od1d2 defined by Φ(a) =

∫
T
αz(a) dz. Then Φ is not of index-finite

type.

Proof. Suppose that Φ is of index-finite type. From this assumption,
we hope to derive a contradiction. We have the following string of
inequalities:

∥fa∥22 = ∥Φ(T ∗
aTa)∥ by Lemma 3.5

≥ k∥T ∗
aTa∥ by Corollary 3.9

≥ k∥
∑
k∈Z

akU
k∥2 by Lemma 3.6

= k∥fa∥2∞ by Lemma 3.7.

But we also know that |fa(z)| ≤ supz′∈T |fa(z′)| = ∥fa∥∞. Then,
|fa(z)| ≤ ∥fa∥∞ ⇒ |fa(z)|2 ≤ ∥fa∥2∞ ⇒

∫
T
|fa(z)|2 dz ≤

∫
T
∥fa∥2∞ dz.

But, ∥fa∥22 =
∫
T
|fa(z)|2 dz and

∫
T
∥fa∥2∞ dz = ∥fa∥2∞. Then, ∥fa∥22 ≤

∥fa∥2∞, and we have that ∥fa∥22 ≥ k∥fa∥2∞ and ∥fa∥22 ≤ ∥fa∥2∞. Thus,

∥fa∥2 ≥
√
k∥fa∥∞ and ∥fa∥2 ≤ ∥fa∥∞. By the definition of equivalent

norms, this implies that ∥ · ∥∞ and ∥ · ∥2 are equivalent norms on
C(T), which we know is not true. We have arrived at our desired
contradiction, and therefore our conditional expectation Φ is not of
index-finite type. �

4. Expressing Od1⊗Od2 as the crossed product of Od1d2 by an
endomorphism. In this section, we illustrate how Od1 ⊗Od2 can be
shown to be the faithful image of two different types of crossed product
C∗-algebras: once as a very concrete Paschke crossed product and then
as the image of a faithful representation of the more abstract Stacey
crossed product by an endomorphism.
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4.1. Key definitions of crossed products by endomorphisms.

Definition 4.1. Let A be a C∗-subalgebra of B(H) where H is a
separable Hilbert space, and let ω be a non-unitary isometry in B(H)
such that ωAω∗ ⊂ A and ω∗Aω ⊂ A. The map ρ : A → A defined
by ρ(a) = ωaω∗ is an endomorphism of A into itself, and we call the
C∗-subalgebra of B(H) generated by A and ω the spatial or Paschke
crossed product of A by the endomorphism ρ ([7]).

Definition 4.2. Let A be a C∗-algebra with an identity element, and
let α be an endomorphism of A. A covariant representation of (A, α)
is a pair (π, S) where π is a unital representation of A on a Hilbert
space H, and S is an isometry on H satisfying π(α(a)) = Sπ(a)S∗ for
a ∈ A ([1]).

Remark 4.3. In the context of the Hilbert space representation, this
definition looks very similar to Definition 4.1, the Paschke definition of
a crossed product by an endomorphism. In this case, if π is a Hilbert
space representation of A, then C∗(π(A), S) is the Paschke crossed
product of π(A) by the endomorphism defined by π(a) → Sπ(a)S∗.
Note that, given a covariant representation, π(A) and S would generate
the Paschke crossed product of π(A) by an endomorphism.

Definition 4.4. The (Stacey) crossed product of A by α is a triple
(B, iA, t) in which B is a C∗-algebra with identity, iA : A → B is a
unital homomorphism, and t is an isometry in B satisfying

(a) iA(α(a)) = tiA(a)t
∗ for a ∈ A;

(b) for every covariant representation (π, S) of (A, α) on H, there is a
unital representation π × S of B on H such that (π × S) ◦ iA = π
and π × S(t) = S;

(c) t and {iA(a) : a ∈ A} generate B.

The notation for the Stacey crossed product of A by the endomorphism
α is A×α N ([1]).

4.2. Expressing Od1 ⊗Od2 as a Paschke crossed product. Recall
that, in this particular example,

Od1d2
∼= D = span {SµS

∗
ν ⊗ S̃αS̃β

∗
: |µ| − |ν| = |α| − |β|}.
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Let π1 be a Hilbert space representation of Od1 on H1, and let π2
be a Hilbert space representation of Od2

on H2. Then we have a
Hilbert space representation π1⊗π2 of Od1 ⊗Od2 on H1⊗H2. Writing
π1 ⊗ π2(Od1

⊗ Od2
) simply as Od1

⊗ Od2
and π1 ⊗ π2(D) as Od1d2

, it
can be shown that Od1 ⊗ Od2 is the crossed product of Od1d2 by the
endomorphism ρ where ρ(a) = ωaω∗, with ω being the simple tensor
S0⊗Id, one of the generators ofOd1⊗Od2 . To show this, it can be shown
directly that C∗(Od1d2 , S0 ⊗ Id) = Od1 ⊗ Od2 . Therefore, Od1 ⊗ Od2

is the Paschke crossed product of Od1d2 by the endomorphism ρ. A
complete proof of this can be found in [2].

4.3. Expressing Od1 ⊗Od2 by means of a Stacey crossed prod-
uct. Motivated by a question posed by Iain Raeburn, we investigate
here whether or not this same example can be viewed in the context of
a universally defined notion of a crossed product by an endomorphism.
In [1], Boyd, Keswani and Raeburn summarize such a universal defi-
nition, first defined by Stacey in [12] and provide an example to show
the advantage of this universal definition. We establish here the fact
that Od1 ⊗Od2 can be viewed as the image of a faithful representation
of the Stacey crossed product of Od1d2

by an endomorphism.

4.3.1. The basic method. As stated in Remark 4.3, {π(A), S} gen-
erates a Paschke crossed product, where (π, S) is a covariant repre-
sentation of (A,α). Using the notation from Definition 4.4, {iA(A), t}
generates the universal crossed product, called B. Stacey shows in [12]
that (A,α) has exactly one crossed product, up to isomorphism. Then
there is a unital representation π×S of B on the Hilbert space H such
that

(π × S) ◦ iA = π and π × S(t) = S.

So, we have that (π × S)(iA(A)) = π(A). If π × S is faithful, these
spaces are isomorphic. Then C∗(iA(A), t) ∼= C∗(π(A), S) so that we
have a faithful representation of the Stacey crossed product onto the
Paschke crossed product.

4.3.2. Proof that π × S is faithful. In this case, the pair (π1 ⊗
π2, π1⊗π2(S0⊗ Id)) is a covariant representation of (D, ρ). For ease of
notation, denote this covariant representation by (π, S). Let B be the
Stacey crossed product. Then there is a unital representation π × S
of B on H1 ⊗ H2. Using the following proposition from [8], we can
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show that this representation is faithful. Then we know that there is
a faithful representation of the Stacey crossed product of Od1d2

onto
Od1 ⊗Od2 . Many thanks to Astrid an Huef and Iain Raeburn for giving
me early notice of this forthcoming proposition, which applies to this
example very nicely.

Proposition 4.5. Suppose that α is an endomorphism of a unital C∗-
algebra A, and (π, V ) is a covariant representation of (A, α) in a C∗-
algebra D such that π is faithful. If there is a strongly continuous action
γ : T → AutD such that γz(π(a)) = π(a) and γz(V ) = zV , then π× V
is faithful on A×α N ([8]).

Lemma 4.6. Let (π, S) be a covariant representation of (D, ρ) in B(H)
such that π is faithful. There exists an action of T on D satisfying the
hypotheses of Proposition 4.5.

Proof. The action α defined in Section 3, when restricted to acting
on D, satisfies the hypotheses of Proposition 4.5. The set of generators
of D ∼= Od1d2 is the set

{SµSν
∗ ⊗ S̃αS̃

∗
β : |µ| − |ν| = |α| − |β|}.

In this case:

αz(SµSν
∗ ⊗ S̃αS̃β

∗
) = z|µ|−|ν|−(|α|−|β|)SµSν

∗ ⊗ S̃αS̃β

∗

= SµSν
∗ ⊗ S̃αS̃β

∗
.

So for every a ∈ D ∼= Od1d2 , we have αz(a) = a.

In addition, αz(S0⊗ Id) = z1−0−(0−0)S0⊗ Id = zS0⊗ Id. Therefore,
the action α satisfies the hypotheses of Proposition 4.5. �

Proposition 4.7. There is a faithful representation of the Stacey
crossed product of Od1d2 onto Od1 ⊗Od2 .

Proof. With the action defined in Lemma 4.6, from Proposition 4.5,
we can now conclude that the action π x S is faithful on the Stacey
crossed product, D×αN. Therefore, we have a faithful representation of
D×αN onto the Paschke crossed product. As shown in subsection 4.1,
the Paschke crossed product is isomorphic to Od1 ⊗Od2 . �
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