ROCKY MOUNTAIN
JOURNAL OF MATHEMATICS
Volume 44, Number 3, 2014

OPERATOR SYSTEM STRUCTURES ON THE
UNITAL DIRECT SUM OF C*-ALGEBRAS

TOBIAS FRITZ

ABSTRACT. This work is motivated by Réadulescu’s
result [17] on the comparison of C*-tensor norms on
C*(Fn) @ C*(Fy).

For wunital C*-algebras A and B, there are natural
inclusions of A and B into the unital free product A x; B,
the maximal tensor product A ®max B and the minimal
tensor product A ®umin B. These inclusions define three
operator system structures on the internal sum A+ B. Partly
using ideas from quantum entanglement theory, we prove
various interrelations between these three operator systems.
As an application, the present results yield a significant
improvement over Radulescu’s bound. At the same time,
this tight comparison is so general that it cannot be regarded
as evidence for the QWEP conjecture.

1. Introduction. Connes’ embedding problem [2, 5] is one of the
most important open problems in operator algebra theory. It asks
whether any separable von Neumann algebra factor of type Il; can
be embedded into R“, which is the ultrapower (with respect to an
arbitrary free ultrafilter on N) of R, the hyperfinite II; factor.

The importance of Connes’ embedding problem manifests itself in
the large number of equivalent formulations known. Among these
range several reformulations due to Kirchberg [12, 14], for example the
QWEP conjecture, which asks whether every C*-algebra is a Quotient
of one having the Weak Expectation Property. More recently, also
questions in quantum information theory [7, 8, 10] have been found
to be equivalent. In this paper, we are going to consider the QWEP
conjecture in the following formulation also due to Kirchberg: let
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914 TOBIAS FRITZ

C*(F,,) be the full group C*-algebra of F,,, the free group on any finite
number n > 2 of generators. Then the QWEP conjecture asks whether
its C*-tensor product with itself is unique:

(1) QWEP conjecture:  C*(Fy,) @max C* (Fy) < (Fp) @min C* (Fr)

Recall [11] that one way to define the two sides of (1) is as the
completion of the group algebra C[F, x F,] with respect to the two
norms

|2]lmax = sup ||w(z)]],
m:Fo XxFo—U(H)
|2|lmin = sup ||(ma @ m)(@)|], = € ClFn x F],

Ta, b Fo—U(H)

where the supremum ranges over all unitary representations of F,, x F,,
and pairs of unitary representations of IF,,, respectively. With this in
mind, (1) asks whether ||z||max L [|Z||min for every z € C[F,, x F,],
i.e., whether unitary representations of IF,, x F,, can be approximated
by those of tensor product form in the appropriate sense.

If Uy,...,U, stands for the generators of F,, then Pisier [16, page
6] has shown that it is sufficient to consider in C[F,, x F,] the linear
span of all elementary tensors of the form

(2) 101, U;@1, 18U

in the following sense: the question (1) is equivalent to asking whether
the two operator space structures induced from the embeddings into the
two sides of (1) on this (2n + 1)-dimensional subspace coincide com-
pletely isometrically. Radulescu [17] has considered this formulation
and deduced the following. Whenever X is any matrix with entries in
this linear space, then

3) Xl < (N2 = N)" 11X i

with N = 2n 4+ 1. In particular, the two operator space structures
induced on this subspace from the two sides of (1) are completely
isomorphic.

This paper follows this line of attack and establishes tight bounds
on the comparison between ||X||max and || X||min. The recently found
connection [7, 10] between the QWEP conjecture and Tsirelson’s
problem on quantum correlations [18] has allowed us to gain a certain
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physical intuition for (1). We use this intuition to derive, among other
things, a rigorous improvement over (3), which reduces the constant on
the right-hand side to 2, independently of n. For the precise statement,
see Section 6.

In fact, the methods we use are completely general. We work with
arbitrary unital C*-algebras A and B and consider their “unital direct
sum,” by which we mean the linear space

A®]1+]1®BQA®algB

equipped with the operator system structures induced on it by its
natural embeddings into AQunin B, AQmax B and the unital free product
A %1 B. (See Definition 2.1 for the notion of operator system.) These
three operator systems will be denoted by A ®nin B, A ®max B and
A&, B, respectively. Following Pisier’s trick [16], we can conclude that
A Rmin B = A ®muax B if and only if A @iy B = A ®max B completely
positively. We derive general results on the comparison between these
three operator systems.

Organization. Section 2 begins the main text by introducing the
three operator systems A @, B, A ®max B and A @i, B which
will be considered and contains derivations of some of their basic
properties. Section 3 proceeds by generally constructing coproducts
of operator systems and shows that the coproduct of two unital C*-
algebras in the category of operator systems coincides with A®, B. This
yields a characterization of the positive matrix cones of the operator
system A @, B. Section 4 discusses some basic entanglement theory
for states on tensor products of C*-algebras. A quantum marginal
problem is introduced there which is then applied to characterize
the positive matrix cones of A ®nax B and A @iy B in Section 5.
Section 5 also contains the general statements and proofs of our main
results, including a simple but powerful observation applicable to the
comparison of norms on tensor products of Zs-graded C*-algebras.
Finally, Section 6 then briefly states our results for the particular case
A= B=C*F,).

Notation and conventions. Throughout the paper, A and B are
arbitrary unital C*-algebras. No separability assumption is needed. We
always identify A and B with their images under the natural inclusions
into a unital free product or a tensor product. For a unital C*-algebra
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A, we write .7 (A) for its state space, and similarly .(S) for the state
space of an operator system S. The topology used on .7 (A) is always
going to be the weak #-topology. We abbreviate “unital completely
positive” by “ucp” and My (C) by Mj. Often, it is better to think of
a matrix algebra My (A) as My ® A; these two notations will be used
interchangeably. The minimal (“spatial”) and maximal tensor products
of C*-algebras are written as A @iy, B and A ®uax B, respectively. We
take A®B to stand for some arbitrary C*-algebraic tensor product.

While some familiarity with tensor products of C*-algebras, operator
systems and operator spaces is necessary for understanding of the
results and their proofs, we have tried to include as much detail as
possible. The main ideas are sufficiently simple that they should be
understandable without an excessive background in functional analysis.
We refer to [4, 15] for background on operator systems.

2. The unital direct sum of C*-algebras as an operator
system. We begin with some basic observations in order to set the
stage for the upcoming sections. So let A and B be unital C*-algebras.
Then there are natural embeddings of A into

e the unital free product, A — A 1 B, a — «a,
e the maximal tensor product, A = A Quax B, a—~>a® 1,
e the minimal tensor product, A = A Quin B, a — a ® 1,

and likewise for B. The images of these maps are simply isomorphic
copies of A and B, respectively, and we will not distinguish between
A (respectively B) and its isomorphic image. In each case, the linear
hull of A and B together consists of the elements which are sums of the
form a 4+ b; in the tensor product case, such a sum actually stands for

a®1+1®b,

but we will stick to the sloppy notation a 4+ b. The splitting of a + b
into a € A and b € B is not unique, since any scalar can be added to a
and removed from b, while their sum stays the same. However, this is
the only ambiguity which exists; more formally, we claim that all three
sums A + B are isomorphic, as C-vector spaces, to the quotient vector
space

(4) (A® B)/C(1a — 1),



OPERATOR SYSTEM STRUCTURES 917

which we also call a “unital direct sum.” To see this, note that the
units are identified as 14 = 1p in each of the three cases, so that
the sum A + B is (4) or some quotient thereof. But it cannot be a
proper quotient since any pair of states o € S (A), f € ¥(B) can be
extended to a state on A x; B (respectively, A ®max B or A Qmin B),
thereby separating everything else.

We will now consider this unital direct sum equipped with different
structures of operator system:

Definition 2.1 ([4]). Let S be a complex vector space. S is an operator
system if it comes equipped with a distinguished element 1 € S (the
unit), an antilinear involution * : S — S with 1* = 1, and, upon
writing M (S)n, = {s € My(S) | s* = s}, a distinguished convex cone
My (S)+ C My (S), for every k € N such that

(i) the distinguished cones are salient: if s € My(S); and —s €
M (S)4+, then s = 0.

(ii) For every k € N, the matrix 1 = diag(l,...,1) € M(S) is
an order unit: for every s € My(S), there is some A € Ry
with (Al — s) € Mg(95)+.

(iii) For every k € N, the order unit 1y is Archimedean: if
(s 4+ Alg) € Mp(S)4+ for all A € Ry, then s € My (5)4.

(iv) v*Mi(S)+y C M;(S)+ for all k,1 € N and v € My ;(C).

For s € My(S), we also write s > 0 as synonymous to s €
My (S)4. Every self-adjoint subspace of B(#) naturally carries an
operator system structure. It is a fundamental theorem of operator
system theory [4] that every operator system is of this form.

Every C*-algebra is naturally an operator system, and this in partic-
ular applies to the three C'*-algebras mentioned above. Therefore, the
unital direct sum (4) inherits three operator system structures which
we denote by, respectively,

A @* B C A *1 B,
(5) A EBmax BC A ®max B,
A Bnin B C A Qumin B.

Since (4) is “almost” a direct sum, the most appropriate symbol for it
seems to be a modified version of @, which is what we chose. Contrary
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to what this notation may suggest, A ®nax B is not a maximal direct
sum in whatever sense, and likewise for A @i, B. More generally,
when A®B is any C*-tensor product of A and B, we obtain an induced
operator system structure on (4) which is denoted by AGB. We will
use this notation mainly for statements which apply to both A &, B
and A ®pax B.

Given operator systems S and T', a ucp map ® : S — T is a linear
map which is unital, i.e., ®(1g) = 1r, and completely positive, i.e.,
O(M(S)+) € M(T)+ for all k and with respect to the entrywise
application of .

There are simple ucp relationships between the above operator
systems. The natural inclusions A =& A ®upax B and B = A Quax B
yield, by the universal property of A %; B, a *-homomorphism

A*IB—>A®maXB-

This is a quotient map which, morally, takes the unital free product
and throws in relations stating that all elements of A commute with
those of B. Similarly, there is a natural projection

A®maxB —>A®minB-
coming from the universal property of A ®y.x B.

Both of these natural projections restrict to ucp maps between the
operator system (5). This can be concisely expressed in terms of the
commutative diagram

A@, B—"> A@uye B——> Ay B
(6)
Ax1 B—— AQuax B——> AQuin B
which should always be kept in mind while reading the paper. Ev-

erything which follows from here on will be concerned with deriving
further properties of these two ucp maps.

The following trick due to Pisier is an essential motivation for
considering these operator systems:

Proposition 2.2 ([16]). A ®max B = A Bmin B if and only if A Qmin
B =A®Qmax B.
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Proof. The “if” part is clear. For the converse, fix an embedding
A ®max B C B(H) and extend the canonical ucp map

A@minB :A@maxB — A®maxB - B(H)

to a ucp map A ®uin B — B(H) by the Arveson extension theorem.
By construction, both A and B lie in the multiplicative domain [3],
[14, subsection 2.7] of this ucp map. Since A and B generate A ®pin B
as a C*-algebra, we conclude that the map A ®uin B — B(H) itself is
multiplicative and therefore is a *-homomorphism A®,in B — AQmaxB
mapping A to A and B to B. O

3. Coproducts of operator systems and C*-algebras. We start
this section with a detour on coproducts of operator systems. Through-
out the following, we let S and T be arbitrary operator systems. Recall
the following basic fact, which follows, e.g., from the representation the-
orem of operator systems:

Remark 3.1. s € M (S5) is positive if and only if ¢(s) > 0 for all
states ¢ € L (My(S5)).

Also for operator systems, it makes sense to consider the unital direct
sum

(7) SorT=(SaeT)/C(lsg —1r)

which comes with natural inclusions of S and T and has as its unit the
image of 1g and 17 under these inclusions. We will see soon that there
is a certain operator system structure on this unital direct sum which
extends those of S and T and is maximal with this property. (Here,
we mean “maximal” in the sense that the positive matrix cones are
as small as possible.) More formally, this unital direct sum will be a
coproduct of S and T in the category of operator systems. But before
getting to this, we need a definition.

Definition 3.2. Let ¢ € (My(S)) and x € 7 (M(T)) be states.
We call (¢, x) a compatible pair whenever ¢|r;, = X, -

In quantum-mechanical jargon [9], ¢ is a bipartite state shared
between a quantum system described by S and an ancilla with state
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space CF. Similarly, x is a bipartite state shared between a quantum
system described by 7" and the same ancilla. The states are compatible
if and only if the reduced state of the ancilla is the same.

Note that, for £ = 1, a pair of states is automatically compatible
since necessarily ¢(1g) =1 = x(17).

Proposition 3.3. On the unital direct sum S @1 T, define an abstract
operator system structure by stipulating that for any* s+t € My (S ®;
T), the involution is given by (s +t)* = s* +t*, and s+t > 0 holds if
and only if

od(s) + x(t) > 0 for all compatible pairs
(¢ € Z(Mi(5)),x € & (My(T)))-

With this definition and the natural inclusions S — S &1 T and
T — S &1 T, the operator system S @1 T is the coproduct of S and
T in the category of operator systems with ucp maps.

Proof. 1t is clear that the thereby defined set of positive elements
on My(S &1 T) is a cone contained in the subspace of hermitian
elements. Also, the cone is salient: any element s+t which is contained
in both the cone and its reflection at the origin necessarily satisfies
@(s) + x(t) = 0 for each pair of compatible matricial states. But since
matricial states separate the elements of My (S) and My (T), it follows
that s = 0 and ¢t = 0. It can also be directly verified by the definition
of positivity that 1 is an Archimedean order unit of M (S @1 T). The
final but crucial operator system axiom concerns the compatibility of
the different matricial cones with multiplication by scalar matrices. To
this end, let € My, be a scalar matrix, s+t € M (S ©1 T) be any
positive element and ¢ € . (M,,(S5)) and x € .¥(M,,(T)) any pair of
compatible states. Then it has to be shown that

d(z*sz) + x(z"tx) >0

To see this, note that ¢(z*x) = x(a*z) by compatibility of the pair
(¢, x), so that

o) A )

p(x*x) x(z*z)
are compatible states on My (S) and My (T), respectively. Hence, the
assertion follows from the assumption s +¢ > 0.
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Now that it is clear that the operator system axioms are satisfied, it
is time to check the coproduct property. By Remark 3.1, the natural
inclusions S — S @ T and T'— S @1 T are completely positive, while
their unitality is also clear by definition. Now let f : S — U and
g : T — U be any ucp maps to any other operator system U. By
linearity, the only possible extension of f and g to S &1 T is given by

Seor T — U, s+t~ f(s)+g(t),

so that it has to be verified that this is well-defined and ucp. By
unitality of f and g and the definition (7), it is clearly well defined
and also unital. For complete positivity, consider any element s 4+t €
M (S®1T). Then again, by Remark 3.1, it is enough to take any state
p € S (Mi(U)) and show that

p(f(s) +g(t)) = 0.

But this in turn is clear since po f is a state on M (.S) compatible with
the state po g € (Mg (T)). This ends the proof. O

Proposition 3.4. The positive matriz cones on the coproduct S &1 T
can also be characterized as follows: an element s+t € My(S®1T) is
positive if and only if there exists A\ € My, such that

s—A>0 S, t+A>0inT.

Proof. Again one can directly verify that this defines an abstract
operator system structure together with ucp embeddings from S and
T. The universal property is clear. It coincides with the S &1 T from
the previous proposition by uniqueness of the (isomorphism class of
the) coproduct. O

Our next goal is to now take S and T to be C*-algebras A and B
(which carry a natural operator system structure), and then relate the
coproduct A @; B to the operator systems (5), in particular to A ®. B.

As a preliminary note, recall that a representation of My (C) on
some Hilbert space H is the same thing as a decomposition of H into
k orthogonal subspaces

Hl = 6117{7 s aHk = ek’kHv
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together with specified partial isometries which interpolate unitarily
between any pair of these subspaces. Also, it will frequently be used
that an element of a C*-algebra is positive if and only if its image
under a representation of that C*-algebra on a Hilbert space is always
positive.

Lemma 3.5. Let &1, ...,& be a linearly independent set of vectors in
some Hilbert space. Given another linearly independent set 11, ..., M
such that

then there is a unitary operator U such that n; = U¢;.

Proof. Tt can be assumed without loss of generality that the Hilbert
space has dimension k.

An application of Gram-Schmidt orthogonalization yields an invert-
ible matrix V;; such that the vectors

= Z Vii&;
J
form an orthonormal basis. But then also the vectors

0= Z Viinj
J

form an orthonormal basis, and hence there is a unitary operator U
connecting the &’-basis to the r’-basis, and therefore also mapping the
&-basis to the n-basis. a

Proposition 3.6. Fora+b € My(A®.B), the following are equivalent:

(i) a+b> 0 in Mi(Ax* B).

(ii) If ma : A — B(H) and w7 : B — B(H) are any two unital
representations on the same Hilbert space, then 74 (a) +7p(b)
acts as a positive operator on HF = H @ CF.

(iii) For every compatible pair of states (a € #(My(A)),B €
S (My(B))), it holds that a(a) + B(b) > 0.

(iv) There is some A € My, such thata — A >0 and b+ A > 0.
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Proof. The implication from (i) to (ii) is clear by the universal
property of A %3 B. Both (iii) and (iv) characterize the coproduct
of A and B in the category of operator systems by Propositions 3.3
and 3.4; hence, these two are equivalent. Also (iv) clearly implies (i)
since a sum of positive elements is positive.

It remains to prove the implication from (ii) to (iii). To this end,
consider the GNS representations of some given a and [3; we will use
these to construct a Hilbert space H on which both Mj,(A) and My (B)
act. By the above remark on representations of matrix algebras, the
Hilbert spaces of the two GNS representations are of the form H, ® C*
and Hp ® CF, where A, respectively B, only acts on the first factor,
while M}, acts on the second factor in the obvious way. The given GNS
vectors are of the form

k k
(9) d&weaeHa®CE ) piwe €My CF
i=1 i=1

respectively, where (8) holds by compatibility of the pair («, 8). After
possibly tensoring both by a third Hilbert space of big enough dimen-
sion, we find that H, and Hg are of the same dimension and therefore
can be identified. This identification can be chosen to map the two
GNS vectors (9) to each other by Lemma 3.5. Now we have accom-
plished the situation that both states are induced from representations
on the same Hilbert space H ® C* by the same vector, and assumption
(i) can now be applied to yield assertion (iii). O

In particular, we have therefore arrived at:

Corollary 3.7. Let A and B be unital C*-algebras. Their coproduct
in the category of operator systems with ucp maps is given by

A, B=A+ B C A% B.

Furthermore, we can now also show that ucp maps on C*-algebras
can be extended to free products:

Corollary 3.8. Let A and B be unital C*-algebras and
d:A— B(H), U:B— B(H)
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ucp maps for some Hilbert space H. Then there is a ucp map € : A *;
B — B(H) extending these, i.e., such that the diagram

As B ~ B(H)
| —"
B

commutes.

Proof. This follows immediately from the present results by applying
the Arveson extension theorem to the inclusion A @, B C A%y B. O

Corollary 3.8 can be regarded as a weakened version of Boca’s free
products of ucp maps [1].

4. Basic entanglement theory for C'*-algebras. This section is
a digression with little relation to the rest of this work. The goal is to
introduce the concepts and results necessary to prove Proposition 4.8,
which will then later be relevant for the proof of Proposition 5.2. The
definitions in this section are generalizations of the standard ones from
quantum information theory [9].

Since a C*-algebra like My (A ®max B) is actually a tensor product of
three C*-algebras, the next few definitions and facts will be formulated
generally for an arbitrary finite number of tensor product factors. So
let Aq,..., A, be unital C*-algebras and

(10) A1®...QA,

stand for any fixed C*-algebraic tensor product. We now extend some
basic concepts of quantum entanglement theory [9] to this setting.

Definition 4.1 (Product state). Given states ¢; € .7(A4;), we obtain
astate ¢1 @ ... ® ¢, in S (A1®...®A,) by setting

(11) (1 ®...Qd,) (A1 ®...®a,) = H(bi(ai), for all a; € A,
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and extending by linearity and continuity. A state on . (4;®...®A4,)
of this form is called a product state.

Definition 4.2 (Reduced state). Given a state ¢ € .S (A1®...®A4,),
it restricts to a state in .#(A4;) denoted by ¢4, as
da,(@)=¢(1®...0a®...01),

where the a stands at the ith position in the product. We call ¢ 4, the
reduced state of ¢ at A;.

Similarly, one obtains a reduced state in .% (®ieﬂAi) for each subset
Q C {1,...,n}. Obviously, taking reduced states of product states
recovers the given states:

For the following, we remind the reader that we only consider the
weak *-topology on state spaces, so this is what continuity refers to.

Lemma 4.3. (i) Taking the reduced state is a continuous map
S (A1®- - ®A,) — L (4).
(ii) The formation of product states as a map
F(A) X x L(Ay) — S (A1@ - ©A,)

18 continuous.

Proof. (i) Clear by definition of the weak *-topology.

(ii) Since the weak x-topology in .7(A1®---®A,) is the initial
topology generated by the evaluation maps

Y(A1®~-~®An)—>R, d—=dla1 ® - Rap), a; €A,
it is sufficient to check that all the compositions
S (A1) x - x L (Ap) — S (A1@ - ®A,) — R,
(Gi)i — P1® - ® Py —> H¢i(ai)
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for fixed a; € A; are continuous. But since this composition
factors into two other continuous maps as

S(A) x - x F(A,) — R" — R,
(¢i)i — (di(ai)); — H@'(ai),

is itself also continuous. O

Definition 4.4 (Separable and entangled states). A state ¢ € .7 (A;®
- ®A,) is called separable if it lies in the closed convex hull of product
states, i.e., if it can be approximated by states of the form

(12) S (0 0))
j=1

with coefficients A1,..., Ay, > 0 and 37, A; =1, and ¢l e S(4). Ifa
state is not separable, it is called entangled.

For the case of matrix algebras, this reduces to the pioneering
definitions of Werner [20]. However, for A; = B(H) with an infinite-
dimensional Hilbert space H, it differs from the standard one [6], where
the closure is taken with respect to the topology induced by the trace
norm on density matrices.

It follows from the definition that the set of separable states does not
depend on the choice of tensor product, in the sense that all separable
states factor over the minimal tensor product. In other words, a state
which does not factor over the minimal tensor product is automatically
entangled.

Remark 4.5. It may well be the case that one or several of the A;
above are themselves defined as tensor products of C*-algebras. In
order to keep the notation from becoming ambiguous in such a case,
we will indicate the A; by square brackets. For example, in

[A&B] &C,
the tensor product A®B is to be considered as a single C*-algebra,

so that the above concepts are to be applied with respect to the
decomposition of [A®B]®C' into A®B and C.
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Lemma 4.6. Suppose that ¢ € S (ARB®C) is such that Plapp 18
entangled. Then ¢ is entangled on A®[B®C).

Proof. Tt follows directly from the definitions and Lemma 4.3 that
the separability of ¢ on A®[B&C] implies the separability of ¢| 45 5. O

The first part of the following lemma is a simple criterion for
entanglement which allows us to produce many entangled states. Any
state which is not pure is also called mized.

Lemma 4.7. Let ¢ € .7 (A®B) be any state.

(i) If ¢ is pure and ¢|4 is mized, then ¢ is entangled.
(ii) If the reduced state ¢4 is pure, then ¢ = ¢4 ® ¢p. In
particular, ¢ is separable.

Proof. (i) It will be shown that, when ¢ is separable and pure, then
¢4 is pure. To this end note that, by definition, the set of separable
states is the closed convex hull of the pure product states and is compact
in the weak *-topology. Hence, by Milman’s converse to the Krein-
Milman theorem, any pure separable state lies in the closure of the set
of pure product states. But, by Lemma 4.3 and compactness, the set of
product states is itself closed; hence, ¢ = ¢4 ® ¢p. But, then again,
by purity of ¢, the reduced state ¢4 itself is pure.

(ii) This proof is an adapted version of an argument made by
Wilce [21, subsection 3.3].

Let b € B be some fixed element with 0 < b < 1 such that
0 < ¢;5(b) < 1. The decomposition

Plala) = dpla®1) = p(a®@b)+ ¢ (a®(1-b))
_ Pla®b) _p2le®1-b)

writes the state ¢4 as a convex combination of the two states

_dasb) o dae@-b)

#1(b) ¢ (1 —0)

¢(a @ b)
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However, since ¢4 is assumed to be pure, we know that both of these
states coincide with ¢4 itself. From the equality of the first of these
two states with ¢| 4, we therefore obtain in particular

(13) ¢(a @ b) = ¢1a(a)¢ (D).

While this equation has been derived under the assumption that
0 < ¢p(b) < 1, it holds automatically when ¢ p(b) = 0: for
then, considering without loss of generality 0 < ¢ < 1 means that
0<a®b<1®0b, and therefore 0 < ¢(a ® b) = ¢;5(b) = 0. The case
#5(b) = 1, on the other hand, can be reduced to the case ¢|g(b) =0
by considering 1 — b instead of b. Hence, the validity of (13) has been
established for any a and any b with 0 < b < 1. But, since the linear
hull of elementary tensors a ® b for such a and b is dense in A®B, we
conclude that ¢ = ¢|4¢|p. O

Proposition 4.8. (i) If A or B is commutative, then all states on
A®B are separable.?

(ii) If neither A nor B is commutative, then there are entangled
states on any C*-tensor product AQB.

(iii) Let A be noncommutative. Then there is an entangled state on
a € S (My® A) such that oy, = tra, the normalized trace.

Proof. (i) It is enough to show that every pure state on AQB =
A @umin B is a product state. But this is well-known [19, IV.4.14].

(ii) It is enough to show this for the minimal tensor product A®min B.

Every noncommutative C*-algebra has an irreducible representation
of dimension at least 2. Let m4 : A — B(H4) and 7 : B — B(Hg) be
such representations of A and B, respectively. Then the tensor product
representation

TARTE : A®min B—> B(Ha®Hp)

is also irreducible [19, IV.4.13]. Choose a pair of orthogonal unit
vectors &1,&s € Ha, and a pair of orthogonal unit vectors (1,(s € Hp.
Now consider the pure state ¢ € (A Qmin B) associated to the unit

vector
§1 00+ &R

V2




OPERATOR SYSTEM STRUCTURES 929

FIGURE 1. Illustration of a pair (a, 3) of ®-compatible states. We think
of A and B as observable algebras of physical quantum systems. M}, is the
observable algebra of a quantum-mechanical k-state system. .7 (My(ARB))
is the set of states of the total system.

A direct calculation shows that the reduced state ¢ 4 is given by

Bial0) = 3 (61, ma () + 5 (€2, AW,

Now the assertion follows from Lemma 4.7 (i).

(iii) In the proof of part (ii), take B = My, let mp be the standard
representation on C2, and set (; = e; to be the standard basis. O

5. Main results.

Definition 5.1. We say that a pair of states a € (My(A))
and 8 € (My(B)) is ®-compatible whenever there is a state
v € .7 (M (A®B)) such that

VM (A) = O, VM (B) = B-

Clearly, for a pair of states to be ®-compatible, it needs to be
compatible. Similarly, the diagram (6) yields the basic implications
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®min-compatible = ®p,ax-compatible = compatible .

Proposition 5.2. If both A and B are noncommutative and ARQB is
any C*-tensor product, then there is a pair of states which is compatible,
but not @-compatible.

Proof. By Proposition 4.8 (iii), there is some entangled state o on
My(A) = My ® A with a)p;, = tra; and likewise, there is some pure
state 8 on My ® B also reducing to tro on Ms. Hence, these two states
are compatible. However by Lemma 4.6, any state v reducing to «
has to be entangled with respect to the decomposition AR[M} ® BJ.
However, this contradicts the purity of S by Lemma 4.7 (ii). |

This proof is a manifestation of the monogamy of entanglement
known from quantum entanglement theory: qualitatively, if one sys-
tem is highly entangled with a second system, then it cannot be highly
correlated with a third system. In the case of matrix algebras, quan-
titative versions of this statement have been derived in [13]. Such
considerations should in principle also facilitate a quantitative compar-
ison of the set of ®-compatible pairs with the set of compatible pairs, at
least when both A and B are matrix algebras. However at the present
stage, all results remain at a purely qualitative level.

Proposition 5.3. For any a + b € My(ADB), the following are
equivalent:

(i) a+b>0in My(A®B).
(if) For every pair of states o € /(M (A)), p € &/ (My(B)) which
are ®-compatible, it holds that a(a) + B(b) > 0.

Proof. Assume (i). Then, given any ®-compatible pair («, 3), there
is a state v € .7 (M (A®B)) which extends these two. Hence,
0 <~(a+0b) =ala) + B(b),
and therefore (ii).

Given (ii), it is clear that (e + b) > 0 for any state v €
S (Mi(A®B)), and therefore (i). O
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Corollary 5.4. A ®unin B = A Qmax B if and only if

Qmin-compatible <= Qmax-compatible.

Proof. This follows from the previous proposition in combination
with Proposition 2.2. O

A non-complete positive isomorphism.

Proposition 5.5. The natural maps
A®. B — A®pax B— A®nin B

are isomorphisms of ordered vector spaces. However, when A and B are
both noncommutative, the first map is not an isomorphism of operator
system: there are elements in Ma(A ®max B) which are not positive in
My(A @, B).

Proof. Tt has already been noted that both maps are ucp by (6).
Hence, for the second assertion, we have to check that the positive
cone on A @nin B is not bigger than the one on A &, B.

So suppose that a+b > 0 in A ®in B. It has to be shown that also
a+b>0in A @, B. To this end, it is sufficient by Proposition 3.6 to
check that a(a) + S(b) > 0 for any states a € .S (A) and 8 € ./ (B).
But this is clear by assumption, since on A ®i, B, we have that

a(a) +B(0) = (@@ pB)la®1+1®b) > 0.

For the second assertion, we assume to the contrary that it would
indeed be a complete isomorphism. This would mean that

S (M3(A@, B)) = (Mz(A Bmax B)) ,

implying that a compatible pair of states is automatically ®max-
compatible. However by Proposition 5.2, we know that this is not
the case when both A and B are noncommutative. O

Drawing on symmetries. In this subsection, we consider the opera-
tor systems A®, B, A®max B and AP, B as operator spaces. Recall
that any operator system inherits an operator space structure, for ex-
ample by embedding it into some B(H) and noting that the matricial
norms do not depend on the choice of embedding. Since our operator
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systems have been defined as subspaces of C*-algebras, they directly
come equipped with their natural operator space structures.

In cases where the C'*-algebras under examination have a high degree
of symmetry, there is a tight comparison that can be done between the
norm ||- ||« on A®, B induced from the unital free product Ax; B and
the norm ||||min induced from the C*-algebra tensor product A®yin B.

We start by outlining the general idea with normed spaces. Given
normed spaces E and F', there are several natural ways to equip the
direct sum E & F with a norm, with the most common ones being the
following:

lle + fll = max{[le], If|l}, or e+ fl[= Vel +[If]]*, or
e+ fII = llell + [1£1]-

All of these satisfy the important property that switching the sign of
either component e or f does not change the value of the norm. The
following simple proposition highlights the importance and utility of
this property for the comparison of norms.

Proposition 5.6. Let E and F' be normed spaces and || - ||sym @ norm
on E & F which restricts to the given norms on E and F. If || - ||sym
satisfies the symmetry condition

(14) lle = fllsym = lle + fllsym for alle € E, f € F,

and || - ||any is any other norm on E & F which also extends the given
norms on E and F, then

lle+ Fllany < 2[le + fllsym-

In particular, all direct sum norms with the symmetry property are
equivalent and differ by a factor of at most 2.

Proof.
e+ fllay < lellz + 11l
N 1 1 1
~[zern+ze-n| +|5ern+zeern|

<|le+ Fllsym + [le = fllsym = 2l = fllsym- U
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Definition 5.7 (Zs-graded C*-algebra). A is called a unital C*-
algebra, Zo-graded if it comes equipped with a direct sum decomposition

A:Ao@Al, ASZA(), AT:Al,
1€ Ag, Ai - Aj € A1) modz-

Every such decomposition defines an automorphism o : A — A by
setting 04, = id4, and 0|4, = —id4,. This automorphism has order 2.
Conversely, every automorphism of order 2 yields a splitting of A into
corresponding subspaces A and A;, thereby defining a Zs-grading,.

Example 5.8. Let G = (I' | R) be a discrete group with generators
I" and relations R such that every generator occurs in each relation
an even number of times. (0 is even.) Then C*(G) (or CX(G)) is Za-
graded by splitting it into the closed linear span of reduced words of
even length and the closed linear span of reduced words of odd length.
In particular, this applies to G = F,, for any finite or infinite cardinal n.

If we do not consider all elements of A for taking the unital direct
sum, but restrict to the subspace of odd ones, then the simple consid-
eration of Proposition 5.6 gives a strong bound:

Proposition 5.9. Let A be a unital Zs-graded C*-algebras and B any
unital C*-algebra. Then, for a+b € My(A &1 B) with a € Mi(A1) an
odd element, we have

||a'+b||min S ||a:+b||max < Ha+ bH* S 2||CL+ b||min~

In particular, all three operator space structures on Ay ® B C A®1 B
are completely isomorphic.

Proof. Since the first two inequalities are clear by (6), it remains to
prove that ||a + b|« < 2|la + b||min for a € Mi(A;) and b € My(B).
To this end, note first that the sum A; + B C A @, B is actually a
direct sum, so that we have a direct sum splitting

(15) Mi(A1 @ B) = My (A1) & My(B).

We have induced norms on this vector space coming from its embed-
dings into My (A *; B) and My (A Qmin B). Since functoriality shows
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these norms to be invariant under the grading automorphism on A,
it follows that both induced norms on (15) have the symmetry prop-
erty (14). Hence, the assertion follows from Proposition 5.6. O

6. Implications for C*(F,,) ® C*(F,). The main motivation for
obtaining the previous results was to study properties of C*-tensor
norms on C*(F,,) ® C*(F,,). We use similar notation as [17] by setting

X=C"F,)®1+1C*(F,)
and

X =C"F,)1 @1+ 1 C*F,),

where C*(F,,); C C*(F,,) is the closed subspace spanned by the reduced
words of odd length. Then our Propositions 5.5 and 5.9 readily yield
the following:

Theorem 6.1. Let n > 2 be any cardinal. We consider X and Xy as
operator subspaces of

cr (]FQTL)ﬂ c* (Fn) Omax c* (Fn)> and C* (Fn) Omin c* (Fn)
Then, we have
(i) for X € X, all three norms coincide:
HXHC*(JFQ") = ||X||max = ||X||min‘
(ii) There are X € My(X) for which
Xl @) > [ X max-

(i) For X € My(X1), all three norms are equivalent:

||X||min < ||X|‘max < ||X‘ C*(Fan) < 2|‘X||rnin-

In particular, the last inequality is a significant improvement over
R&dulescu’s result [17], since both the subspace considered is bigger
and the bound is tighter.

However, in order to obtain this result, we have essentially made
no use of the geometry of the free group, or properties of partially
commuting sets of unitaries, or anything else specific to C*(F,,). Hence,
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it seems unlikely that the QWEP conjecture could be proven along
similar lines. In fact, the same arguments also show the following, in
the analogous notation: for any

X € My (CH(Fp)1 ® 1+ 1®Cx(F,)),
the estimate
(16) [ X [min < [[ X |lmax < [ X|lcx@sn) < 2/[X]|min

is valid; however, for the reduced group C*-algebra C(F,,), it is well
known (see, e.g., [11, 11.3.14] for n = 2) that

C: (Fn) Omin C: (]Fn) 7£ C: (Fn) ®max C: (Fn)7

despite the tight comparison (16).
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ENDNOTES

1. In a notation like “s + t,” it is understood that s lies in
S (respectively M (S)) while ¢ is assumed to lie in T (respectively
M (T)).

2. Here it is irrelevant for which tensor product ® exactly stands for,
since the C*-tensor product is unique when A or B is commutative [19,
Iv.4.18], [11].
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