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COEFFICIENT CONDITIONS FOR HARMONIC
UNIVALENT MAPPINGS AND

HYPERGEOMETRIC MAPPINGS

S.V. BHARANEDHAR AND S. PONNUSAMY

ABSTRACT. In this paper, we obtain coefficient criteria
for a normalized harmonic function defined in the unit disk
to be close-to-convex and fully starlike, respectively. Using
these coefficient conditions, we present different classes of
harmonic close-to-convex (respectively, fully starlike) func-
tions involving Gaussian hypergeometric functions. In addi-
tion, we present a convolution characterization for a class of
univalent harmonic functions discussed recently by Mocanu,
and later by Bshouty and Lyzzaik in 2010. Our approach
provides examples of harmonic polynomials that are close-to-
convex and starlike, respectively.

1. Introduction and two lemmas. One of the basic coefficient in-
equalities states that if a normalized power series f(z) = z+

∑∞
n=2 anz

n

satisfies the condition

(1)
∞∑
n=2

n|an| ≤ 1,

then f is analytic in the unit disk D = {z : |z| < 1} and Re f ′(z) > 0
in D, and hence the range f(D) is a close-to-convex domain. We
recall that a domain D is close-to-convex if the complement of D can
be written as a union of non-intersecting half-lines. Moreover, it is
also well known that each f satisfying the condition (1) implies that
|zf ′(z)/f(z)− 1| < 1 for z ∈ D and, in particular, f ∈ S∗, the class of
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starlike univalent functions in D. One of the most natural questions is
therefore to discuss its analog coefficient conditions for complex-valued
harmonic functions to be close-to-convex or starlike in D.

A complex-valued harmonic function f = u + iv in D admits the
decomposition f = h + g, where both g and h are analytic in D (see
[7]). Here g and h are referred to as analytic and co-analytic parts

of f . A complex-valued harmonic function z 7→ f(z) = h(z) + g(z) is
locally univalent if and only if the Jacobian Jf is non-vanishing in D,
where Jf (z) = |h′(z)|2 − |g′(z)|2. For convenience, we let f(0) = 0 and
fz(0) = 1 so that every harmonic function f in D can be written as

(2) f(z) = z +
∞∑
n=2

anz
n +

∞∑
n=1

bnzn := h+ g.

We denote by H the class of all normalized harmonic functions f in D
of this form. The class of functions f ∈ H that are sense-preserving
and univalent in D is denoted by SH . Two interesting subsets of SH
are

S0
H = {f ∈ SH : b1 = fz(0) = 0}

and

S = {f ∈ SH : g(z) ≡ 0}.

In recent years, properties of the class SH together with its interesting
geometric subclasses have been the subject of investigations. We refer
to the pioneering works of Clunie and Sheil-Small [7], the book of Duren
[8] and the recent survey articles of Ponnusamy and Rasila [15] and
Bshouty and Hengartner [4]. Let C, CH , and C0

H denote the subclasses
of S, SH , and S0

H , respectively, with close-to-convex images. In [17],
the following result has been proved.

Lemma A. Suppose that f = h+ g, where h(z) = z+
∑∞
n=2 anz

n and
g(z) =

∑∞
n=1 bnz

n in a neighborhood of the origin and |b1| < 1. If

(3)
∞∑
n=2

n|an|+
∞∑
n=1

n|bn| ≤ 1,

then f ∈ C1
H , where C1

H = {f ∈ SH : Re fz(z) > |fz(z)| in D}.
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Condition (3) is easily seen to be sufficient for f ∈ C1
H if an and bn

are non-positive for all n ≥ 1 (a1 = 1). Since the proof is routine as in
the analytic case, we omit the detail.

In [11] (see also [17] for a slightly more general result), Mocanu has
shown that functions in C1

H are univalent in D. On the other hand,
in [17], the authors have shown that each f ∈ C1

H is indeed close-to-
convex in D. In view of the information known for the class of analytic
functions, it is natural to ask whether the coefficient condition (3) is
sufficient for f to belong to S∗

H , where

S∗
H = {f ∈ SH : f(D) is a starlike domain with respect to the origin}.

Functions in S∗
H are called starlike functions. In the sequel, we also

need
S∗0
H = {f ∈ S∗

H : fz(0) = 0}.

Harmonic starlikeness is not a hereditary property because it is possible
that, for f ∈ S∗

H , f(|z| < r) is not necessarily starlike for each r < 1
(see [8]).

Definition 1. A harmonic mapping f ∈ H is said to be fully starlike
(respectively, fully convex) if each |z| < r is mapped onto a starlike
(respectively, convex) domain (see [6]).

Fully convex mappings are known to be fully starlike but not the
converse as the function f(z) = z + (1/n)zn (n ≥ 2) shows. It is easy
to see that the harmonic Koebe function K with the dilation ω(z) = z
is not fully starlike, although K = H +G ∈ S∗0

H , where

H(z) =
z − (1/2)z2 + (1/6)z3

(1− z)3
and G(z) =

(1/2)z2 + (1/6)z3

(1− z)3
.

For further details, we refer to [6].

Definition 2. We say that a continuously differentiable function f in
D is starlike in D if it is sense-preserving, f(0) = 0, f(z) ̸= 0 for all
z ∈ D \ {0} and

Re

(
Df(z)

f(z)

)
> 0 for all z ∈ D \ {0},
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where Df = zfz − zfz.

The last condition gives that (z = reiθ)

∂

∂θ

(
arg f(reiθ)

)
= Re

(
Df(z)

f(z)

)
> 0

for all z ∈ D \ {0},

showing that the curve Cr = {f(reiθ) : 0 ≤ θ < 2π} is starlike with
respect to the origin for each r ∈ (0, 1) (see [11, Theorem 1]). In
this case, the last condition implies that f is indeed fully starlike in
D. At this point, it is also important to observe that Dg for C1-
functions behaves much like zg′ for analytic functions, for example
in the sense that for g univalent and analytic in D, g is starlike if
and only if Re (zg′(z)/g(z)) > 0 in D. A similar characterization has
also been obtained by Mocanu [11] for convex (C2) functions. It is
worth pointing out that, in the case of analytic functions, fully starlike
(respectively, fully convex) is the same as starlike (respectively, convex)
in D. Lately, interesting distortion theorems and coefficient estimates
for convex and close-to-convex harmonic mappings were given by Clunie
and Sheil-Small [7].

As a consequence of convolution theorem [2, Theorem 2.6, p. 908]
(see also the proof of Theorem 1 in [9]) these authors obtained a suf-
ficient coefficient condition for harmonic starlike mappings. Unfortu-
nately, there is a minor error in the main theorem, and we would like
to point this out as we use this for our applications.

Lemma 1. Let f = h + g ∈ S0
H . Then f is fully starlike in D if and

only if

(4) h(z) ∗A(z)− g(z) ∗B(z) ̸= 0 for |ζ| = 1, 0 < |z| < 1,

where

A(z) =
z + ((ζ − 1)/2)z2

(1− z)2

and

B(z) =
ζz − ((ζ − 1)/2)z2

(1− z)2
.
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Proof. A necessary and sufficient condition for a function f to be
starlike in |z| < r for each r < 1 is that

∂

∂θ
(arg f(reiθ)) = Re

(
zh′(z)− zg′(z)

h(z) + g(z)

)
> 0(5)

for all z ∈ D \ {0}.

We remind the reader that, if f = h + g ∈ SH with g′(0) = b1 ̸= 0,
then the limit

lim
z→0

zh′(z)− zg′(z)

h(z) + g(z)

does not exist, but the limit does exist which is 1 when b1 = 0. This
observation is crucial in the remaining part of our proof. Thus, by (5),
f is fully starlike in D if and only if

zh′(z)− zg′(z)

h(z) + g(z)
̸= ζ − 1

ζ + 1
, |ζ| = 1, ζ ̸= −1, 0 < |z| < 1

and, as in the proof of Theorem 2.6 [2], a simple computation shows
that the last condition is equivalent to (4). The proof is complete. �

In view of Lemma 1, the hypothesis that f = h + g ∈ SH in [2,
Corollary 2.7, p. 908] can be relaxed as the condition (3) implies that
f ∈ SH . So we may now reformulate [2, Corollary 2.7, p. 908] in the
following improved form (see also [18]).

Lemma 2. Let f = h+ g be a harmonic function of the form (2) with
b1 = g′(0) = 0. If

(6)
∞∑
n=2

n|an|+
∞∑
n=2

n|bn| ≤ 1,

then f ∈ C1
H ∩ S∗0

H . Moreover, f is fully starlike in D.

Proof. By Lemma A, coefficient condition (6) ensures the univalency
of f and, moreover, f ∈ C1

H . Now, in order to show that (6) implies
f ∈ S∗0

H , we apply Lemma 1. As in the proof of [2, Corollary 2.7], it
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suffices to show that condition (4) holds. Indeed, we easily have∣∣∣h(z) ∗A(z)− g(z) ∗B(z)
∣∣∣

=

∣∣∣∣z + ∞∑
n=2

(
n+

(n− 1)(ζ − 1)

2

)
anz

n

−
∞∑
n=2

(
nζ − (n− 1)(ζ − 1)

2

)
bnzn

∣∣∣∣
> |z|

[
1−

∞∑
n=2

n|an| −
∞∑
n=2

n|bn|
]
≥ 0,

and so Lemma 1 gives that f is fully starlike in D and hence, f ∈
S∗0
H . �

For instance, according to Lemma 2, it follows that if α ∈ C is such
that |α| ≤ 1/n for some n ≥ 2, then the function f defined by

f(z) = z + αzn

belongs to C1
H ∩ S∗0

H . Later in Section 4, we present a number of
interesting applications of Lemma 2.

2. Conjecture of Mocanu on harmonic mappings. According
to our notation, the conjecture of Mocanu [12] may be reformulated in
the following form.

Conjecture B. If

M=

{
f=h+g∈H :g′=zh′,Re

(
1+z

h′′(z)

h′(z)

)
>−1

2
for z ∈ D

}
,

then f ∈ S0
H .

In [5], Bshouty and Lyzzaik have solved the conjecture of Mocanu
by establishing the following stronger result.

Theorem C. M ⊂ C0
H .

It is worth reformulating this result in a general form.
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Theorem 1. Let f = h+g be a harmonic mapping of D, with h′(0) ̸= 0
that satisfies g′(z) = eiθzh′(z) and

Re

(
1 + z

h′′(z)

h′(z)

)
> −1

2
for all z ∈ D.

Then f is a univalent close-to-convex mapping in D.

Proof. This theorem is proved for θ = 0 by Bshouty and Lyzzaik
[5], i.e., M ⊂ C0

H . However, it can be easily seen from their proof
that the theorem continues to hold if the dilatation ω is chosen to be
ω(z) = eiθz instead of ω(z) = z. So we omit the details. �

Using the method of extreme points, the authors in [1] presented an
elegant and simple proof of Theorem 1.

Since the function f ∈ M satisfies the condition fz(0) = 0, it
is natural to ask whether M is included in S∗0

H or in C1
H . First we

construct a function f ∈ M such that f /∈ C1
H .

Consider f = h+ g, where

h(z) = z − azn and g(z) =
z2

2
− n

n+ 1
azn+1

for n ≥ 2 and 0 < a ≤ 1/n. It follows that g′(z) = zh′(z) and

1 + z
h′′(z)

h′(z)
=

1− n2azn−1

1− nazn−1
.

Also, it is a simple exercise to see that

w =
1− n2azn−1

1− nazn−1

maps the unit disk D onto the disk∣∣∣∣w − 1− n3a2

1− n2a2

∣∣∣∣ < an(n− 1)

1− n2a2

if 0 < a < 1/n, and onto the half-plane Rew < (n + 1)/2 if a = 1/n.
In particular, this disk lies in the half-plane

Rew >
1− n2a

1− na
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and thus, Rew > −1/2 if (1 − n2a)/(1 − na) ≥ −1/2, i.e., if 0 <
a ≤ 3/(n(1 + 2n)). According to Theorem C, f = h + g is univalent
close-to-convex mapping in D whenever a satisfies the condition

0 < a ≤ 3

n(1 + 2n)
.

On the other hand, this function does not satisfy the coefficient condi-
tion (6). Moreover, it can be easily seen that f /∈ C1

H . Indeed, if a = 0.3
and n = 2, then the corresponding function

f0(z) = z − 3

10
z2 +

z2

2
− 1

5
z3

does not belong to C1
H . The graph of f0(z) is shown in Figure 1. This

example shows that there are functions in M that do not necessarily
belong to C1

H . Indeed, the above discussion gives

Theorem 2. M ̸⊂ C1
H .

Moreover, the graph of

f(z) = z − 3

n(2n+ 1)
zn +

z2

2
− 3

(n+ 1)(2n+ 1)
zn+1,

for various values of n ≥ 2, shows that f(z) is starlike in D. This
motivates us to state

Conjecture 1. M ⊂ S∗0
H .

Our next result gives a convolution characterization for functions
f ∈ M to be starlike in D.

Theorem 3. Let f = h+ g ∈ S0
H such that g′(z) = zh′(z). Then f is

fully starlike in D if and only if

(7) h(z) ∗A(z)− z
(
h(z) ∗B(z)

)
̸= 0 for |ζ| = 1, 0 < |z| < 1,

where

A(z) =
2z + (ζ − 1)z2

(1− z)2
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Figure 1. The graph of the function f0(z) = z − 3
10z

2 + z2

2 − 1
5z

3.
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and

B(z) =
2z2 + z(ζ − 1) + (1− z)2(ζ − 1) log(1− z)

z(1− z)2
.

Proof. As in the proof of Lemma 1, f is fully starlike if and only if

(8) Re

(
zh′(z)− zg′(z)

h(z) + g(z)

)
> 0 for all z ∈ D \ {0}.

Since g′(0) = 0 and g′(z) = zh′(z), we obtain that

lim
z→0

zh′(z)− zg′(z)

h(z) + g(z)
= 1,

and therefore condition (8) holds if and only if

zh′(z)− z2h′(z)

h(z) +
∫ z
0
th′(t) dt

̸= ζ − 1

ζ + 1

for |ζ| = 1, ζ ̸= −1, 0 < |z| < 1.

The last condition is equivalent to

0 ̸= (ζ + 1)
[
zh′(z)− z2h′(z)

]
− (ζ − 1)

[
h(z) +

∫ z

0

th′(t) dt

]
,

which is the same as

(9) 0 ̸= h(z) ∗A(z)−
[
(ζ + 1)z2h′(z) + (ζ − 1)

∫ z

0

th′(t) dt

]
.

Finally, as

z2h′(z) = z

[
h(z) ∗ z

(1− z)2

]
and

g(z) =

∫ z

0

th′(t) dt =
z

2

[
h(z) ∗

(
2

1− z
+

2

z
log(1− z)

)]
,

condition (9) is easily seen to be equivalent to the required convolution
condition (7). The proof is complete. �
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Now, we consider the harmonic function f = h+ g, where

h(z) = z − z2

2
and g(z) =

z2

2
− z3

3

so that g′(z) = zh′(z). It follows that

1 + z
h′′(z)

h′(z)
=

1− 2z

1− z
,

and we see that

(10) Re

(
1 + z

h′′(z)

h′(z)

)
<

3

2
for z ∈ D.

The function h satisfying condition (10) is known to satisfy the condi-
tion (see, e.g., [14, 16])∣∣∣∣zh′(z)

h(z)
− 2

3

∣∣∣∣ < 2

3
, z ∈ D,

and hence, h is starlike in D. The graph of f(z) = h(z) + g(z) shown
in Figure 2 shows that f = h+ g is not univalent in D. This example
motivates raising the following:

Problem 1. For α ∈ (2/3, 1), define

P(α) =

{
f = h+ g ∈ H : g′ = zh′,

Re

(
1 + z

h′′(z)

h′(z)

)
<

3α

2
for z ∈ D

}
.

Determine inf {α ∈ (2/3, 1) : P(α) ⊂ S0
H}.

3. Harmonic polynomials. One of the interesting problems in the
class of harmonic mappings is to find a method of constructing sense-
preserving harmonic polynomials that have some interesting geometric
properties. In [10, 19], the authors discussed such polynomials with
many interesting special cases. Prior to the work of Suffridge [19], few
examples of such polynomials were known. In this section, we shall see
that some of the results of [10, 19] have a closer link with our results
in Section 1. Following the ideas from [10, 19], let Q(z) =

∑n
k=1 ckz

k
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Figure 2. Graph of the function f(z) = z − (1/2)z2 +

(1/2)z2 − (1/3)z3.

be a polynomial of degree n. Define

Q̂(z) = znQ(1/z).

Thus, if Q(z) = c
∏n
j=1(z − zj), then Q̂(z) = c

∏n
j=1(1 − zzj), and it

follows that the zeros of Q and Q̂ on the unit circle |z| = 1 are the
same. In [19], Suffridge proved the following theorem.
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Theorem D ([19, Theorem 1]). Let Q(z) be a polynomial of degree
q ≤ n− 2 with Q(0) = 1, and assume that Q(z) ̸= 0 when z ∈ D. Let
g and h be defined by h(0) = g(0) = 0, and

g′(z) = eiβtzQ̂(z), h′(z) = Q(z) + eiϕ(1− t)zQ̂(z),

where ϕ, β and t are real, 0 ≤ t ≤ 1. Then the harmonic polynomial
f = h+ g has degree n and is sense-preserving in D.

With an additional condition on Q, we can improve this result
by showing that the harmonic polynomial f = h + g described in
Theorem D is indeed close-to-convex in D. More precisely, we prove
the following theorem.

Theorem 4. Let Q, g, h, ϕ, β and t be defined as in Theorem D.

If Q satisfies the condition Re {Q(z)} > |zQ̂(z)| for all z ∈ D, then
f = h+ g belongs to C1

H , and hence, f is close-to-convex in D.

Proof. It follows from the hypotheses that

Re (h′(z)) = Re (Q(z) + eiϕ(1− t)zQ̂(z))

= Re (Q(z)) + Re (eiϕ(1− t)zQ̂(z))

≥ Re (Q(z))− |eiϕ(1− t)zQ̂(z)|

> |zQ̂(z)| − (1− t)|zQ̂(z)| = |g′(z)|.

Thus, the desired conclusion follows (see [17]). �

Example 1. Consider

f(z) = z + eiϕ
(1− t)

n
zn + eiβ

t

m
zm,

where n ≥ 2, m ≥ 1, ϕ ∈ R, β ∈ R and 0 ≤ t ≤ 1. Then, according to
Lemma 1, we have

n|an|+m|bm| = n

∣∣∣∣eiϕ (1− t)

n

∣∣∣∣+m

∣∣∣∣eiβ t

m

∣∣∣∣
= (1− t) + t = 1,

showing that f is not only close-to-convex, but also in C1
H . On the

other hand, by Lemma 2, f is also fully starlike in D whenever m ≥ 2.
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In particular, the function

f(z) = z + eiϕ(1− t)(z2/2) + eiβt(z2/2)

is close-to-convex and fully starlike in D. By a direct method, Suffridge
[19, Example 1] showed that this function is univalent in D.

Using Theorem 1, it is possible to give a new proof of the limit
mapping theorem of Suffridge et al. [10, Theorem 3.1]. To do this, we
assume that all the zeros of Q(z) lie on the unit circle |z| = 1. Then,
for q = n− 2 and t = 1 in Theorem D, we have

h′
n(z) = Q(z) =

n−2∏
j=1

(1− e−iψjz) =
1− zn+1∏3

j=1(1− zeiψj )

and

g′n(z) = z
n−2∏
j=1

(z − eiψj ).

It is clear that h′
n(z) converges uniformly on the compact subsets of

the unit disk to

(11) h′(z) =
1∏3

j=1(1− zeiψj )
.

Similarly, g′n(z) converges uniformly on the compact subsets of the unit
disk to

g′(z) = zeiθh′(z).

If we take the logarithmic derivative of (11), we see that

1 + z
h′′(z)

h′(z)
=

3∑
j=1

zeiψj

1− zeiψj
+ 1, z ∈ D.

Since w(z) = z/(1− z) maps D onto the half plane Rew > −1/2, the
last formula clearly implies that

Re

(
1 + z

h′′(z)

h′(z)

)
> −1

2
, z ∈ D.

According to Theorem 1, f is univalent close-to-convex in D. This
provides an alternate proof of [10, Theorem 3.1].
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4. Applications of Lemmas 1 and 2. Consider the Gaussian
hypergeometric function

(12) 2F1(a, b; c; z) := F (a, b; c; z) =

∞∑
n=0

Anz
n,

where

An =
(a, n)(b, n)

(c, n)(1, n)
.

Here a, b, c are complex numbers such that c ̸= −m, m = 0, 1, 2, 3, . . .,
(a, 0) = 1 for a ̸= 0 and, for each positive integer n, (a, n) :=
a(a + 1) · · · (a + n − 1), see for instance the recent book of Temme
[20] and Anderson et al. [3]. We see that (a, n) = Γ(a + n)/Γ(a).
Often the Pochhammer notation (a)n is used instead of (a, n). In the
exceptional case c = −m, m = 0, 1, 2, 3, . . ., the function F (a, b; c; z)
is clearly defined even if a = −j or b = −j, where j = 0, 1, 2, . . . and
j ≤ m. The following well-known Gauss formula [20] is crucial in the
proof of our results of this section:

F (a, b; c; 1) =
Γ(c)Γ(c− a− b)

Γ(c− a)Γ(c− b)
< ∞(13)

for Re c > Re (a+ b).

In order to generate nice examples of (fully) starlike and close-to-
convex harmonic mappings, we consider mappings whose co-analytic
part involves the Gaussian hypergeometric function.

Theorem 5. Let either a, b ∈ (−1,∞) with ab > 0, or a, b ∈ C \ {0}
with b = a. Assume that c is a positive real number such that
c > Re (a+ b) + 1, α ∈ C, and let

fk(z) = z + αzkF (a, b; c; z) for k = 1, 2.

(a) If

(14)
Γ(c)Γ(c− a− b− 1)

Γ(c− a)Γ(c− b)
[ab+ 2(c− a− b− 1)] ≤ 1

|α|
,

where 0 < |α| < 1/2, then f2 ∈ S∗0
H ∩ C1

H .



768 S.V. BHARANEDHAR AND S. PONNUSAMY

(b) If

(15)
Γ(c)Γ(c− a− b− 1)

Γ(c− a)Γ(c− b)
[ab+ c− a− b− 1] ≤ 1 + |α|

|α|
,

where 2|α|ab ≤ c, then f(z) = z + αz(F (a, b; c; z)− 1) ∈
S∗0
H ∩ C1

H .

(c) If

Γ(c)Γ(c− a− b− 1)

Γ(c− a)Γ(c− b)
[ab+ c− a− b− 1] ≤ 1

|α|
,

where 0 < |α| < 1, then f1 ∈ C1
H .

Proof. We present a proof of (a) and, since the proofs of the other
two cases follow in a similar fashion, we only include a key step for (b).

(a) Set h(z) = z and g(z) =
∑∞
n=2 bnz

n = αz2F (a, b; c; z) so that

f2(z) = z + αz2F (a, b; c; z).

By (12), we have

(16) bn = αAn−2 = α
(a, n− 2)(b, n− 2)

(c, n− 2)(1, n− 2)
for n ≥ 2.

By Lemma 2, it suffices to show that K :=
∑∞
n=2 n|bn| ≤ 1.

Using (16), it follows that

K = |α|
∞∑
n=2

n(a, n− 2)(b, n− 2)

(c, n− 2)(1, n− 2)

= |α|
(
2 +

∞∑
n=1

(n+ 2)(a, n)(b, n)

(c, n)(1, n)

)

= |α|
(
ab

c

∞∑
n=1

(a+ 1, n− 1)(b+ 1, n− 1)

(c+ 1, n− 1)(1, n− 1)
+ 2

∞∑
n=0

(a, n)(b, n)

(c, n)(1, n)

)
.

By the hypothesis we have c > a + b + 1, and both the series
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in the last expression converge so using formula (13), we get

K = |α|
(
ab

c

[
Γ(c+ 1)Γ(c− a− b− 1)

Γ(c− a)Γ(c− b)

]
+ 2

Γ(c)Γ(c− a− b)

Γ(c− a)Γ(c− b)

)
= |α|

(
Γ(c)Γ(c− a− b− 1)

Γ(c− a)Γ(c− b)
[ab+ 2(c− a− b− 1)]

)
.

Clearly, (14) is equivalent to K ≤ 1. Thus, f2 ∈ C1
H and is also

fully starlike in D. We have completed the proof of (a).
(b) For the proof of (b), we consider g defined by

g(z) = αz(F (a, b; c; z)− 1) = α
∞∑
n=2

An−1z
n,

and it suffices to observe that

α
∞∑
n=2

n|An−1|= |α|
(
ab

c

[
Γ(c+1)Γ(c−a−b−1)

Γ(c−a)Γ(c−b)

]
+

Γ(c)Γ(c−a−b)

Γ(c−a)Γ(c−b)
−1!

)
.

�

The case a = 1 of Theorem 5 (a) and (b) gives

Corollary 1. Let b and c be positive real numbers and α a complex
number.

(a) If 0 < |α| < 1/2 and

c ≥ β+ =
3− 6|α|+ (2− |α|)b

2(1− 2|α|)
(17)

+

√
|α|2(b2 + 4b+ 4) + 1 + |α|(4b2 − 2b− 4)

2(1− 2|α|)
,

then

f2(z) = z + αz2F (1, b; c; z) ∈ S∗0
H ∩ C1

H .

(b) If 2|α|b ≤ c and

(18) c ≥ r+ =
3 + 2b(1 + |α|) +

√
b2(4|α|2 + 4|α|) + 1

2
,
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then

f(z) = z + αz(F (1, b; c; z)− 1) ∈ S∗0
H ∩ C1

H .

Proof. (a) Let f2(z) = z + αz2F (1, b; c; z). It suffices to prove that,
if c ≥ β+, then the inequality (14) is satisfied with a = 1.

It can be easily seen that β+ > b + 2, and so the condition c ≥ β+

implies that c > b+ 2. Next, the condition (14) for a = 1 reduces to

Γ(c)Γ(c− b− 2)

Γ(c− 1)Γ(c− b)
[b+ 2(c− b− 2)] ≤ 1

|α|
,

which is equivalent to

(1− 2|α|)c2 + c[b(|α| − 2)− 3 + 6α] + b2 + (3− |α|)b+ 2− 4|α| ≥ 0.

Simplifying this inequality gives

(1− 2|α|)(c− β−)(c− β+) ≥ 0,

where β+ is given by (17) and

β− =
3− 6|α|+ (2− |α|)b

2(1− 2|α|)

−
√
|α|2(b2 + 4b+ 4) + 1 + |α|(4b2 − 2b− 4)

2(1− 2|α|)
.

Since β+ ≥ β− and, by hypothesis c ≥ β+, the inequality (14) holds.
It follows from Theorem 5 (a) that f2 ∈ C1

H and f2 is fully starlike.

The proof for case (b) follows if one adopts a similar approach. In
fact, if we set a = 1 in Theorem 5 (b), then it is easy to see that the
inequality (15) is equivalent to

c2 + c(−2b(1+ |α|)− 3)+ (b2 +3b)(1+ |α|) + 2 = (c− r−)(c− r+) ≥ 0,

where r+ is given by (18) and

r− =
3 + 2b(1 + |α|)−

√
b2(4|α|2 + 4|α|) + 1

2
.

Since r+ ≥ r−, the hypothesis that c ≥ r+ gives the desired conclusion.
�
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As pointed out in Section 3, except for the work of [10, 19], a good
technique does not seem to exist for generating univalent harmonic
polynomials. In view of Theorem 5, we can obtain harmonic univalent
polynomials that are close-to-convex and fully starlike in D.

Corollary 2. Let m be a positive integer, c a positive real number,
α ∈ C, and let

fk(z) = z + αzk
m∑
n=0

(
m

n

)
(m− n+ 1, n)

(c, n)
zn for k = 1, 2.

(a) If 0 < |α| < 1/2 and

Γ(c)Γ(c+ 2m− 1)

(Γ(c+m))2
[m2 + 2(c+ 2m− 1)] ≤ 1

|α|
,

then f2 ∈ S∗0
H ∩ C1

H , and f2 is indeed fully starlike in D.

(b) If 0 < |α| < 1 and

Γ(c)Γ(c+ 2m− 1)

(Γ(c+m))2
[m2 + c+ 2m− 1] ≤ 1

|α|
,

then f1 ∈ C1
H .

Proof. The results follow if we set a = b = −m in Theorem 5 (a)
and (c), respectively. �

On the other hand, Theorem 5 (b) for a = b = −m shows that, if m
is a positive integer, c is a positive real number and α ∈ C is such that
2|α|m2 ≤ c and

Γ(c)Γ(c+ 2m− 1)

(Γ(c+m))2
[m2 + c+ 2m− 1] ≤ 1 + |α|

|α|
,

then

f(z) = z + αz
m∑
n=1

(
m

n

)
(m− n+ 1, n)

(c, n)
zn

belongs to S∗0
H ∩ C1

H , and f is indeed fully starlike in D.

Example 2. If we let m = 3 in Corollary 2 (a), then we have the
following: if c is a positive real number such that |α|g(c) ≤ 1, where α
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is a complex number with 0 < |α| < 1/2 and

g(c) = 2 +
27

c
+

72

c(c+ 1)
+

30

c(c+ 1)(c+ 2)
,

then the harmonic function

f(z) = z + α

(
z2 +

9

c
z3 +

18

c(c+ 1)
z4 +

6

c(c+ 1)(c+ 2)
z5
)

is fully starlike in D.

Similarly, we see that if

c ≥
14|α| − 1 +

√
36|α|2 + 52|α|+ 1

2(1− 2|α|)
,

where α is a complex number with 0 < |α| < 1/2, then the harmonic
function

f(z) = z + α

(
z2 +

4

c
z3 +

2

c(c+ 1)
z4
)

belongs to S∗0
H ∩ C1

H and is indeed fully starlike in D.

Example 3. The choice m = 2 in Corollary 2 (b) easily gives the
following: if c is a positive real number such that

c ≥
9|α| − 1 +

√
25|α|2 + 38|α|+ 1

2(1− |α|)
,

where α is a complex number with 0 < |α| < 1, then

f(z) = z + α

(
z +

4

c
z2 +

2

c(c+ 1)
z3
)

∈ C1
H .

Theorem 6. Let a, b ∈ (−1,∞). Assume that c is a positive real
number, α ∈ C and, for k = 0, 1, define

fk(z) = z + αzk
∫ z

0

F (a, b; c; t) dt.

(a) Let ab > 0 or a, b ∈ C \ {0} with b = a, where c > Re (a + b)
and 0 < |α| < 1 such that

Γ(c)Γ(c− a− b)

Γ(c− a)Γ(c− b)
≤ 1

|α|
.
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Then f0 ∈ C1
H .

(b) Let (a − 1)(b − 1) > 0, or a, b ∈ C \ {0, 1} with b = a, where
c > max{1,Re (a+ b)} and 0 < |α| < 1/2 such that

|α|Γ(c)Γ(c− a− b)

Γ(c− a)Γ(c− b)

(
1 +

c− a− b

(a− 1)(b− 1)

)
≤ 1 + |α| (c− 1)

(a− 1)(b− 1)
.

Then f1 ∈ C1
H ∩ S∗0

H . Moreover, f1 is fully starlike in D.

Proof. We give the proof of (a) and, since the proof of (b) follows in
a similar fashion, we omit the details.

(a) Set f0(z) := z + g(z), where

g(z) = α

∫ z

0

F (a, b; c; t) dt =
∞∑
n=1

bnz
n,

bn = α
(a, n− 1)(b, n− 1)

(c, n− 1)(1, n− 1)n
for n ≥ 1.

Therefore,

∞∑
n=1

n|bn| = |α|
∞∑
n=1

(a, n− 1)(b, n− 1)

(c, n− 1)(1, n− 1)
= |α|Γ(c)Γ(c− a− b)

Γ(c− a)Γ(c− b)
,

as c > Re (a+ b). The conclusion now follows from Lemma 2. �

For instance, the case a = 1 in Theorem 6 (a) shows that if b and c
are positive real numbers such that

c ≥ b+ 1− |α|
1− |α|

,

where α is a complex number satisfying 0 < |α| < 1, then

f(z) = z + α

∫ z

0

F (1, b; c; t) dt ∈ C1
H .

Corollary 3. Assume that c is a positive real number and α is a
complex number.
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(a) Suppose that either a, b ∈ (−1,∞) with ab > 0, or a, b ∈ C\{0}
with b = a. If c > Re (a+ b) + 1 and 0 < |α| < 1 such that

(19)
Γ(c+ 1)Γ(c− a− b− 1)

Γ(c− a)Γ(c− b)
≤ 1

|α|
,

then

f(z) = z + (αc/(ab))[F (a, b; c; z)− 1] ∈ C1
H .

(b) Suppose that either a, b ∈ (−1,∞) with ab > 0, or a, b ∈
C \ {0, 1} with b = a. If c > max{1,Re (a + b) + 1} and
0 < |α| < 1/2 such that

|α|Γ(c+ 1)Γ(c− a− b− 1)

Γ(c− a)Γ(c− b)

(
1 +

c− a− b− 1

ab

)
≤ 1 + |α| c

ab
,

then

f(z) = z + [αc/(ab)]z(F (a, b; c; z)− 1) ∈ C1
H ∩ S∗0

H .

Moreover, f is fully starlike in D.

Proof. (a) The proof follows as a consequence of the following simple
identity for the first derivative of the hypergeometric function

abF (a+ 1, b+ 1; c+ 1; z) = cF ′(a, b; c; z).

Since ∫ z

0

F (a+ 1, b+ 1; c+ 1; t) dt =
c

ab
(F (a, b; c; z)− 1),

the conclusion follows if we apply Theorem 6 (a) and replace a, b, c by
a+ 1, b+ 1, c+ 1, respectively.

The proof of case (b) follows if we apply Theorem 6 (b) with a+ 1,
b+ 1, and c+ 1 instead of a, b and c, respectively. �

Corollary 4. Let α be a complex number such that 0 < |α| < 1, b and
c positive real numbers such that

(20) c ≥ r1 =
3 + 2b− |α|+

√
|α|2(4b+ 1) + |α|(8b+ 2) + 1

2(1− |α|)
.

Then f(z) = z + (αc/b)[F (1, b; c; z)− 1] ∈ C1
H .
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Proof. Let f(z) = z + (αc/b)[F (1, b; c; z)− 1]. It suffices to prove
that, if c ≥ r1, then inequality (19) is satisfied with a = 1. It is easily
seen that r1 > b + 2 and, hence, c > b + 2 holds. Now the inequality
(19), with a = 1 and a simplification, is equivalent to

(21) (1− |α|)(c− r1)(c− r2) ≥ 0,

where r1 is given by (20) and

r2 =
3 + 2b− |α| −

√
|α|2(4b+ 1) + |α|(8b+ 2) + 1

2(1− |α|)
.

Since r1 ≥ r2 and, by hypothesis c ≥ r1, the inequality (21) holds and
thus, by Corollary 3 (a), f belongs to C1

H , and hence f is close-to-convex
in D. �

Corollary 5. Let m be a positive integer, c a positive real number and
α ∈ C. For k ∈ {0, 1}, let

fk(z) = z + αzk
m∑
n=0

(
m

n

)
(m− n+ 1, n)

(c, n)

zn+1

n+ 1

(a) If 0 < |α| < 1 and

Γ(c)Γ(c+ 2m)

(Γ(c+m))2
≤ 1

|α|
,

then f0 ∈ C1
H .

(b) If 0 < |α| < 1/2 and

|α|Γ(c)Γ(c+ 2m)

(Γ(c+m))2

(
1 +

c+ 2m

(m+ 1)2

)
≤ 1 + |α| (c− 1)

(m+ 1)2
,

then f1 ∈ C1
H ∩ S∗0

H .

Proof. Set a = b = −m in Theorem 6 (a) and (b), respectively. �

Example 4. Corollary 5 (b) for m = 2 gives the following: if c is a
positive real number such that

c ≥
24|α| − 3 +

√
−48|α|2 + 168|α|+ 9

6(1− 2|α|)
,
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where α is a complex number with 0 < |α| < 1/2, then

f(z) = z + α

(
z2 +

2

c
z3 +

2

c(c+ 1)

z4

3

)
∈ C1

H ∩ S∗0
H .

Remark 1. After the manuscript was accepted, the authors in [13]
disproved Conjecture 1.
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