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NONLINEAR ELLIPTICITY ON UNBOUNDED DOMAINS

VICTOR L. SHAPIRO

ABSTRACT. With Ω ⊂ RN an unbounded open connected
set, and

Lu = −
N∑

j=1

DjpjDju+ qu,

new results for the equation

Lu = ρλ1u− αρu− + ρg (x, u) + h

will be obtained where α > 0, λ1 is the principal eigenvalue
associated with the elliptic operator L and Lφ1 = ρλ1φ1. The
results presented will constitute a five-way improvement over
previous results on the subject. In particular, ρ and pj will
not be assumed to be integrable on Ω. Also, it is possible
that q(x) → ∞ as |x| → ∞. Examples will be given using the
Schrödinger operator, the Hermite operator and the Laguerre
operator.

1. Introduction. Let Ω � RN , N ≥ 1, be a domain (i.e., open
connected set) which may be unbounded, and let ρ and q denote
functions in C(Ω) and p1, . . . , pN denote functions in C1(Ω). Assume
that ρ > 0, q ≥ 0 and pj > 0 in Ω, for j = 1, . . . , N .

We deal with the elliptic operator

(1.1) Lu = −
N∑
j=1

Dj [pjDju] + qu+ ρa0u

where a0 ∈ L∞(Ω) and a0 ≥ 0.
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Also, let Γ ⊂ ∂Ω be a fixed closed set. (Γ may be the empty set and
q may be identically zero.) We introduce the real pre-Hilbert space:

(1.2) C1
p,q,ρ(Ω,Γ)

=

{
u ∈ C

(
Ω
) ∩ C1(Ω) : u (x) = 0 for all x ∈ Γ;∫

Ω

[ N∑
j=1

pj(Dju)
2 + (ρ+ q)u2

]
dx <∞

}

where p = (p1, . . . , pN ). In C1
p,q,ρ(Ω,Γ), we have the inner product

(1.3) 〈u, v〉p,q,ρ =
∫
Ω

[ N∑
j=1

pjDjuDjv + (ρ+ q)uv

]
dx.

H1
p,q,ρ(Ω,Γ) will be the real Hilbert space that we obtain by complet-

ing C1
p,q,ρ(Ω,Γ) with respect to the norm

‖u‖p,q,ρ = 〈u, u〉1/2p,q,ρ

by the method of Cauchy sequences. L2
ρ(Ω) will be the real Hilbert

space with the inner product

〈u, v〉ρ =
∫
Ω

uvρ dx where ‖u‖2ρ = 〈u, u〉ρ.

In a similar manner, we have the spaces L2
q(Ω) and L2

pj (Ω), j =
1, . . . , N . Hence, we see from (1.3) that

(1.4) 〈u, v〉p,q,ρ =
N∑
j=1

〈Dju,Djv〉pj + 〈u, v〉q + 〈u, v〉ρ.

Also, in the sequel, sometimes we shall write H1
p,q,ρ for H1

p,q,ρ(Ω,Γ),
C1
p,q,ρ for C1

p,q,ρ(Ω,Γ) and L
2
ρ for L2

ρ(Ω).

Next, we introduce the two-form corresponding to the elliptic opera-
tor Lu defined in (1.1), namely,
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(1.5) L(u, v) =
∫
Ω

[ N∑
j=1

pjDjuDjv + (a0ρ+ q)uv

]
dx

for u, v ∈ H1
p,q,ρ.

We have the possibility of (1.1) being singular because the p′js may
tend to zero on all or part of ∂Ω, or Ω may be unbounded, or both.
These two possibilities give rise to singular differential operators (see
[2, pages 661 662]). The example we provide involving the Laguerre
operator in Section 6 illustrates both possibilities.

We shall assume that Ω, Γ and the operator L satisfy the following
conditions (O1) (O3) which we shall refer to as V�

L (Ω,Γ)-conditions.

(O1) There exists a complete orthonormal system {φn}∞n=1 in L2
ρ(Ω).

Also,

φn ∈ H1
p,q,ρ (Ω,Γ) ∩ C1 (Ω) for all n.

(O2) There exists a sequence of eigenvalues {λn}∞n=1 with

0 ≤ λ1 < λ2 ≤ λ3 ≤ · · · ≤ λn −→ ∞

such that L(φn, v) = λn〈φn, v〉ρ for all v ∈ H1
p,q,ρ(Ω,Γ).

(O3) λ1 is a simple eigenvalue and φ1(x) > 0 for all x ∈ Ω.

We give three examples of V�
L (Ω,Γ)-conditions later on, but, for

starters, using the Hermite functions, the following remark is clear (see
[6, pages 244 and 416]).

Remark 1. It is apparent with Ω = R2, p1 = p2 = 1, ρ = 1,
q = x21 + x22, a0 = 0 and

Lu = −Δu+
(
x21 + x22

)
u,

where Δ is the Laplacian that Ω, with Γ the empty set, and L fit the
definition of satisfying the

V�
L (Ω,Γ)− conditions.
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Remark 2. Because of a well-known result due to Molchanov, [9,
pages 239 245], the x21 + x22 in Remark 1 may be replaced by a q(x)
such that

lim
|x|→∞

q (x) = ∞.

So,
Lu = −Δu+ q (x)u,

and we see the V�
L (Ω,Γ)-conditions cover the familiar Schrödinger

operator.

We have more to say about the Schrödinger operator in Section 4
below.

V�
L -conditions differ from the VL -conditions introduced in [10, page

328] in the following three ways: (i) Ω may be unbounded; (ii) ρ and pj
are not assumed to be integrable on Ω; (iii) φn ∈ L∞(Ω) is not assumed.
Also, there is a q(x) in the definition of L(u) defined here which is not
in the L(u) that is used in [10]. But the example where Ω ⊂ R2 is a
rectangle given in [10, pages 329 330] satisfies the V�

L (Ω,Γ)-conditions
stated here.

We study the following problem:

(1.6)

{
Lu = λ1ρu− αρu− + ρg (x, u) + h,

u ∈ H1
p,q,ρ(Ω,Γ),

where α > 0, h ∈ H1
p,q,ρ(Ω,Γ)

∗ (the dual of H1
p,q,ρ(Ω,Γ)) and u− =

max(0,−u) in Ω.

We shall assume the following three conditions for g:

(g − 1) g(x, s) is a Caratheodory real-valued function, i.e., for each
s ∈ R, the function x 
→ g(x, s) is measurable in Ω, and for almost
every x ∈ Ω, the map s 
→ g(x, s) is continuous on R.

(g − 2) There exists a b ∈ L2
ρ(Ω) with b ≥ 0 almost everywhere in Ω

such that

|g (x, s)| ≤ b (x) for almost every x ∈ Ω and s ≥ 0.

(g − 3) For every ε > 0, there exists a bε ∈ L2
ρ(Ω) with bε ≥ 0 almost

everywhere in Ω such that

|g (x, s)| ≤ ε |s|+ bε (x) for a.e. x ∈ Ω and s < 0.
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By a weak solution to problem (1.6), we shall mean a function
u ∈ H1

p,q,ρ(Ω,Γ) for which

(1.7) L(u, v) = 〈λ1u− αu− + g (·, u) , v〉ρ + h (v)

for all v ∈ H1
p,q,ρ(Ω,Γ).

Also, we shall set G(x, t) =
∫ t
0 g(x, s) ds, and suppose that the

following solvability condition holds.

(1.8) lim
t→∞

{∫
Ω

G (x, tφ1 (x)) ρ (x) dx+ h (tφ1)

}
= +∞.

We now state the main result of this paper.

Theorem 1.1. Let Ω ⊂ RN , N ≥ 1, be a domain with Γ ⊂ ∂Ω a
closed set, and let ρ and q denote functions in C(Ω) and p1, . . . , pN
denote functions in C1(Ω). Assume that ρ > 0, q ≥ 0 and pj > 0 in
Ω for j = 1, . . . , N . Also, let the operator L be defined by (1.1), and
assume that Ω, Γ and L satisfy the V�

L (Ω,Γ) -conditions. Suppose also
that (g − 1) (g − 3) holds, that h ∈ H1

p,q,ρ(Ω,Γ)
∗, that α > 0, and that

the solvability condition (1.8) holds. Then problem (1.6) has a weak
solution u ∈ H1

p,q,ρ(Ω,Γ).

We see that Theorem 1.1 is a five-way improvement over the cor-
responding Theorem 1.1 in [10]. First of all, we do not assume that
Ω ⊂ RN is a bounded domain. Secondly, we do not assume that
ρ ∈ L1(Ω) or that pj ∈ L1(Ω) for j = 1, . . . , N . Thirdly, we do not
assume that φn ∈ L∞(Ω) where the φn are the eigenfunctions that
arise in the definition of the V�

L (Ω,Γ)-conditions. Fourthly, we do not
assume that

(1.9) lim
t→∞ g (x, t) = g+ (x) for a.e. x ∈ Ω.

Also, we do not assume that

2G (x, s)− g (x, t) ≥ −b∗∗ (x) |t|
for almost every x ∈ Ω and t ≤ 0 where b∗∗(x) ∈ L2(Ω) and b∗∗(x) ≥ 0
almost everywhere in Ω.
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Fifthly, the solvability condition given in (1.8) above is more general
than the solvability condition given in (13) of [10], i.e., if (1.9) is
assumed, then the solvability condition (13) which is the following∫

Ω

g+ (x)φ1 (x) ρ (x) dx+ h (φ1) > 0,

implies the solvability condition (1.8) (as an easy calculation shows).
So, indeed, Theorem 1.1 above is a five-way improvement on Theo-
rem 1.1 of [10].

In Sections 4, 5 and 6 of this paper, we will give examples of Ω, Γ
and L, which are covered by the V�

L (Ω,Γ)-conditions stated here but
not by the VL(Ω,Γ)-conditions in [10].

If we assume that, in addition, to (g − 1) (g − 3) and (1.9) the
nonlinearity g also satisfies

(g − 4) g (x, s) < g+ (x) for a.e. x ∈ Ω and s ∈ R,

then the solvability condition is also necessary for obtaining a weak
solution u ∈ H1

p,q,ρ(Ω,Γ) of problem (1.6). We state this fact in the
following theorem.

Theorem 1.2. In addition to the assumptions of Theorem 1.1,
suppose also that g satisfies (1.9) and (g − 4). Then the solvability
condition (1.8) is both necessary and sufficient for obtaining a weak
solution u ∈ H1

p,q,ρ(Ω,Γ) to problem (1.6).

We now give a proof of the necessary condition in Theorem 1.2. The
sufficiency part is an immediate corollary of Theorem 1.1.

Proof that (1.8) is a necessary condition. Suppose that u ∈ H1
p,q,ρ(Ω,Γ)

is a weak solution of (1.6). So, in particular, (1.7) holds with v = φ1.
Consequently, ∫

Ω

g (x, u)φ1 (x) ρ (x) dx+ h (φ1) ≥ 0.

But then it follows from (1.9), (g − 2), and (g − 4) that
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(1.10)

∫
Ω

g+ (x)φ1 (x) ρ (x) dx+ h (φ1) = γ,

where γ > 0.

Next, using the Lebesgue dominated convergence in conjunction with
(g − 2) and (1.9), we see that

lim
t→∞

1

t

∫
Ω

G (x, tφ1) ρ (x) dx =

∫
Ω

g+ (x)φ1 (x) ρ (x) dx.

Therefore, it follows from (1.10) that

lim
t→∞

1

t

[∫
Ω

G (x, tφ1) ρ (x) dx+ th (φ1)

]
= γ > 0,

and condition (1.8) is established.

2. Preliminary lemmas. Throughout this section, we will assume
Ω ⊆ RN , N ≥ 1, is a domain (which may be unbounded), that ρ
and q denote functions in C(Ω), that p1, . . . , pN denote functions in
C1(Ω), and that ρ > 0, q ≥ 0 and pj > 0 in Ω, for j = 1, . . . , N .
We will also assume that Lu is given by (1.1) and that the V�

L (Ω,Γ)-
conditions hold. Furthermore, throughout this section and Section 3,
we will assume that

(2.1) a0 (x) ≥ 1 almost everywhere in Ω,

where a0 is given in (1.1). There is no loss in generality in making this
assumption because a weak solution of the problem{

Lu+ ρu = (λ1 + 1)ρu− αρu− + ρg (x, u) + h,

u ∈ H1
p,q,ρ(Ω,Γ),

is also a weak solution of the problem (1.6).

Because of our assumption (2.1), we see from (1.4) and (1.5) that

(2.2) 〈u, u〉p,q,ρ ≤ L(u, u) for all u ∈ H1
p,q,ρ(Ω,Γ).
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As a consequence of this inequality and the fact that a0 ∈ L∞(Ω), we
have the following lemma.

Lemma 2.1. Let L(u, v) be as defined in (1.5) where (2.1) holds,
and let 〈u, v〉p,q,ρ be as defined in (1.4). Then L(u, v) and 〈u, v〉p,q,ρ
are equivalent inner products for H1

p,q,ρ(Ω,Γ).

The following are important consequences of theV�
L (Ω,Γ)-conditions

and Lemma 2.1:

(i) For v ∈ L2
ρ(Ω), let v̂(n) = 〈v, φn〉ρ for all n. Then, for

v, w ∈ L2
ρ(Ω),

(2.3) 〈v, w〉ρ =

∞∑
n=1

v̂ (n) ŵ (n) ;

(ii) λ1 ≥ 1 and {φn/
√
λn}∞n=1 constitutes a complete orthonormal

system for H1
p,q,ρ(Ω,Γ) with respect to the inner product L(·, ·).

Consequently,

(2.4) L(v, w) =
∞∑
n=1

λnv̂ (n) ŵ (n) ,

for all v, w ∈ H1
p,q,ρ(Ω,Γ).

Also, we will need the following lemma.

Lemma 2.2. Let L(u, v) be as defined in (1.5) where (2.1) holds, and
assume the V�

L (Ω,Γ)-conditions hold. Also, assume that v ∈ L2
ρ(Ω).

Put v̂(n) = 〈v, φn〉ρ for all n. Then v ∈ H1
p,q,ρ(Ω,Γ) if and only if

∞∑
n=1

λn |v̂ (n)|2 <∞.

Proof of Lemma 2.2. The proof of the only if part follows from (2.4).
The proof of the if part is essentially the same as the proof given in
[10, page 336], and we leave the details to the reader.
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The proof of the next lemma is exactly the same as that given in [11,
page 38].

Lemma 2.3. Assume the V�
L (Ω,Γ)-conditions hold. Then H

1
p,q,ρ(Ω,Γ)

is compactly imbedded in L2
ρ(Ω).

Next, we set

I (u) =
L(u, u)

2
− λ1〈u, u〉ρ

2
+
α〈u−, u〉ρ

2

−
∫
Ω

ρG (x, u) dx− h (u)

for u ∈ H1
p,q,ρ(Ω,Γ), where G(x, s) is defined above in (1.8) and

h ∈ H1
p,q,ρ(Ω,Γ)

∗.

Lemma 2.4. Assume the conditions in the hypothesis of Theorem 1.1
hold. Then

lim
|t|→∞

I (tφ1) = −∞.

Proof of Lemma 2.4. Suppose first that t > 0. Then, it follows from
the definition of I(u) and the fact that φ1 > 0 that

I (tφ1) = −
∫
Ω

ρG (x, tφ1) dx− h (tφ1) .

Solvability condition (1.8) then implies that

(2.5) lim
t→∞ I (tφ1) = −∞..

Next, suppose that t < 0. Then,

(2.6)

I (tφ1) = −2−1t2α

∫
Ω

φ21ρ dx−
∫
Ω

ρG (x, tφ1) dx− h (tφ1)

= −2−1t2α−
∫
Ω

ρG (x, tφ1) dx− th (φ1) ,
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for t < 0. Now, for ε > 0 and t < 0, it follows from (g − 3) that

|G (x, tφ1)| ≤ bε (x)φ1 |t|+ εt2φ21

for almost every x ∈ Ω where bε ∈ L2
ρ(Ω). Hence, we obtain from this

last inequality that

lim
t→−∞ t−2

∣∣∣∣ ∫
Ω

ρG (x, tφ1) dx

∣∣∣∣ ≤ ε,

and consequently, since ε is arbitrary that

lim
t→−∞ t−2

∣∣∣∣ ∫
Ω

ρG (x, tφ1) dx

∣∣∣∣ = 0.

This last fact together with (2.6) in turn implies that

lim
t→−∞

I (tφ1)

t2
= −2−1α.

The limit in (2.5) together with this last limit shows that

lim
|t|→∞

I (tφ1) ,= −∞,

and the proof of Lemma 2.4 is complete.

Next, let V designate the closed subspace of H1
p,q,ρ(Ω,Γ) as follows:

(2.7) V =
{
v ∈ H1

p,q,ρ(Ω,Γ) : L(v, φ1) = 0
}
.

For γ > 0, we also introduce the following closed subset Aγ of
H1
p,q,ρ(Ω,Γ):

(2.8) Aγ =
{
u ∈ H1

p,q,ρ(Ω,Γ) : u = γ [L(v, v)]1/2 φ1 + v

where v ∈ V
}
.

J(u) will be the functional defined on H1
p,q,ρ(Ω,Γ) as follows:

(2.9) J (u) =
L(u, u)

2
− λ1〈u, u〉ρ

2
+
α〈u−, u〉ρ

2
.
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We prove the following lemma for J(u).

Lemma 2.5. Assume the conditions in the hypothesis of Theorem 1.1
hold, and that (2.1) is true. Then there exist positive constants γ1 and
β1 such that

(2.10) J (u) ≥ β1L(u, u) for u ∈ Aγ1 .

Proof of Lemma 2.5. Using (O2) of theV
�
L (Ω,Γ)-conditions, we select

n1 ≥ 3 such that

(2.11) λn − λ1 ≥ 6 (α+ 3) for n ≥ n1.

Then, given u ∈ H1
p,q,ρ(Ω,Γ), with

u = w + v

where v ∈ V , with V defined in (2.7) and w = û(1)φ1, we see from
(O3) that

v =
∞∑
n=2

û (n)φn.

We set

(2.12) v1 =

n1∑
n=2

û (n)φn and v2 =

∞∑
n=n1+1

û (n)φn,

and obtain from (2.11) that

(2.13)
L(v2, v2)− λ1〈v2, v2〉ρ =

∞∑
n=n1+1

(λn − λ1) |û (n)|2

≥ 6 (α+ 3) 〈v2, v2〉ρ.

Also, from the first equality in (2.12), we obtain that

(2.14)

|v1 (x)| =
∣∣∣∣ n1∑
n=2

û (n)φn (x)

∣∣∣∣
≤ 〈v1, v1〉1/2ρ

∣∣∣∣ n1∑
n=2

|φn (x)|2
∣∣∣∣1/2.
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Since each φn ∈ L2
ρ(Ω), we can find Ω1 such that Ω1 is compactly

imbedded in Ω and∫
Ω\Ω1

n1∑
n=2

|φn (x)|2 ρdx ≤ (λ2 − λ1) /32α.

So we see from (2.14) that

(2.15)

∫
Ω\Ω1

|v1 (x)|2 ρ dx ≤< v1, v1 >ρ (λ2 − λ1) /32α.

Next, since Ω1 is compactly imbedded in Ω, we see that there are an
ε0 > 0 and an R1 > 0 such that

(2.16) φ1 (x) ≥ ε0 and

n1∑
n=2

|φn (x)|2 ≤ R2
1 for all x ∈ Ω1.

Consequently, we obtain from (2.14) that

|v1 (x)| ≤ L(v1, v1)1/2R1/λ
1/2
2 for all x ∈ Ω1.

We choose
γ1 = R1/(ε0λ

1/2
2 ).

Then, it follows from this last inequality that

(2.17) γ1L(v, v)1/2φ1 (x) + v1 (x) ≥ 0 for all x ∈ Ω1,

because

γ1L(v, v)1/2φ1 (x) ≥ R1L(v1, v1)1/2ε0/(ε0λ1/22 )

≥ L(v1, v1)1/2R1/λ
1/2
2

≥ −v1 (x)

for all x ∈ Ω1.

Next, with γ1 chosen as above, we have that

u (x) = γ1L(v, v)1/2φ1 (x) + v1 (x) + v2 (x)
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for u ∈ Aγ1 . Hence, it follows from (2.17) that

(2.18)
u− (x) ≤ v−2 (x) for all x ∈ Ω1

≤ (v1 + v2)
−
(x) for all x ∈ Ω\Ω1

for u ∈ Aγ1 .

We infer from (2.9) and this last of inequalities that

(2.19)

2J (u) ≥
∞∑
n=2

(λn − λ1) |û (n)|2 − α

∫
Ω1

(
v−2

)2
ρ dx

− α

∫
Ω\Ω1

[(v1 + v2)
−
]2ρ dx

≥
∞∑
n=2

(λn − λ1) |û (n)|2 − α

∫
Ω1

v22ρ dx

− 2α

∫
Ω\Ω1

(v21 + v22)ρ dx

≥
∞∑
n=2

(λn − λ1) |û (n)|2 − 2α

∫
Ω

v22ρ dx

− 2α

∫
Ω\Ω1

v21ρ dx

for u ∈ Aγ1 .

Next, we see that

(2.20) 2−1
∞∑

n=n1+1

(λn − λ1) |û (n)|2 − 2α

∫
Ω

v22ρ dx ≥ 0,

because from (2.11) and (2.12), we obtain that the left-hand side of
this last inequality majorizes

3 (α+ 3)

∞∑
n=n1+1

|û (n)|2 − 2α

∞∑
n=n1+1

|û (n)|2 ≥ 0.

Likewise, we see that

(2.21) 2−1
n1∑
n=2

(λn − λ1) |û (n)|2 − 2α

∫
Ω\Ω1

v21ρ dx ≥ 0,
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because from (2.12) and (2.15), we have that the left-hand side of the
inequality in (2.21) majorizes

2−1
n1∑
n=2

(λn − λ1) |û (n)|2 − λ2 − λ1
16

n1∑
n=2

|û (n)|2 ≥ 0.

We consequently conclude from (2.19), (2.20) and (2.21) that

4J (u) ≥
∞∑
n=2

(λn − λ1) |û (n)|2 .

By (O3) in the V�
L (Ω,Γ)-conditions, λ1 is a simple eigenvalue. Fur-

thermore, λn → ∞. Consequently, there exists a β > 0 such that

(λn − λ1) /4 ≥ βλn for n ≥ 2.

We infer from these last two inequalities and (2.12) that

J (u) ≥ β

∞∑
n=2

λn |û (n)|2 = βL(v, v).

On the other hand, we see from the definition of Aγ1 that

L(u, u) = (
γ21λ1 + 1

)L(v, v).
We conclude from the previous inequality that

J (u) ≥ β1L(u, u)

for u ∈ Aγ1 , where β1 = β/(γ21λ1 + 1).

Next, we establish the following lemma.

Lemma 2.6. Assume the conditions in the hypothesis of Theorem 1.1
hold and that (2.1) is true. Then, with γ1 as in Lemma 2.5 and

(2.22) I (u) = J (u)−
∫
Ω

G(x, u)ρ dx− h (u) ,
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the following holds:

lim
‖u‖p,q,ρ→∞

I (u) = +∞ for u ∈ Aγ1 .

Proof of Lemma 2.6. With β1 > 0 as in Lemma 2.5, we invoke (g−2)
and (g − 3) and choose ε = β1λ1. Then

|g (x, s)| ≤ ε |s|+ bε (x) + b (x)

for s ∈ R and almost every x ∈ Ω, where bε, b ∈ L2
ρ(Ω). With

G(x, s) =
∫ s
0 g(x, t) dt, we see that

|G (x, s)| ≤ ε |s|2 /2 + (bε (x) + b (x)) |s| .
Consequently,∫

Ω

|G (x, u)| ρ dx ≤ β1λ1 ‖u‖2ρ /2 + ‖bε + b‖ρ ‖u‖ρ .

But then it follows from (2.22) that there is a positive constant c1 such
that

I (u) ≥ J (u)− β1L(u, u)/2− c1L(u, u)1/2,
where we made use of the fact that λ1‖u‖2ρ ≤ L(u, u).
Next, we use Lemma 2.5 in conjunction with this last inequality

involving I(u) and obtain

I (u) ≥ β1L(u, u)/2− c1L(u, u)1/2,
for u ∈ Aγ1 . This last fact implies that

lim
L(u,u)→∞

I (u) = +∞ for u ∈ Aγ1 ,

which completes the proof of the lemma because, according to Lemma 2.1,
L(·, ·) and 〈·, ·〉p,q,ρ are equivalent inner products on H1

p,q,ρ(Ω,Γ).

In order to prove Theorem 1.1, it will be necessary to show that I(u)
satisfies the (PS)-condition, which is that I ∈ C1(H1

p,q,ρ,R) and the
following hold:
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Let {un}∞n=1 ⊂ H1
p,q,ρ(Ω,Γ), and suppose that

(2.23)
(i) {I (un)}∞n=1 is a uniformly bounded sequence,

(ii) I ′ (un) → 0 in norm as n→ ∞.

Then, there exists a subsequence {unk
}∞k=1 and a u ∈ H1

p,q,ρ(Ω,Γ) such
that

(2.24) lim
k→∞

‖unk
− u‖p,q,ρ = 0.

We next prove the following lemma about I(u) satisfying the (PS)-
condition.

Lemma 2.7. Assume the conditions in the hypothesis of Theorem 1.1
hold and that (2.1) is true. Then, with J(u) defined by (2.9) and

I (u) = J (u)−
∫
Ω

G(x, u)ρ dx − h (u) for u ∈ H1
p,q,ρ (Ω,Γ) ,

I(u) satisfies the (PS)-condition.

Proof of Lemma 2.7. Using (2.9), we compute the Gateau derivative
of I(u) and obtain

(2.25) I ′ (u) (z) = L(u, z)− λ1〈u, z〉ρ + α〈u−, z〉ρ
− 〈g (·, u) , z〉ρ − h (z)

for u, z ∈ H1
p,q,ρ(Ω,Γ).

It is easy to see from this last computation that, as an element in
H1
p,q,ρ(Ω,Γ)

∗, I ′(u) is continuous with respect to u for u ∈ H1
p,q,ρ(Ω,Γ).

Hence, I ∈ C1(H1
p,q,ρ,R).

Next, suppose that {un}∞n=1 ⊂ H1
p,q,ρ(Ω,Γ) and that (2.23) (i) and

(ii) hold. To complete the proof of the lemma, it is sufficient to show
that there exists a subsequence such that

(2.26)
{
‖unk

‖p,q,ρ
}∞

k=1
is uniformly bounded.
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To see that this is indeed the case, suppose (where for ease of notation
we use the full sequence)

(2.27) ‖un‖p,q,ρ ≤ c for all n,

and (2.23) (i) and (ii) hold. Then, from Lemma 2.3 and the well-known
Hilbert space theory, it follows that there is a subsequence (which once
again we take to be the full sequence) and a u� ∈ H1

p,q,ρ(Ω,Γ) such that

(2.28)

(i) un ⇀ u� in H1
p,q,ρ,

(ii) un → u� in L2
ρ (Ω) ,

(iii) un → u� a.e. in Ω,

(iv) |un (x)| ≤ f (x) a.e. in Ω for all n,

where f ∈ L2
ρ(Ω).

From (2.23) (ii) and (2.27), we see that

I ′ (un) (un − u�) → 0 as n→ ∞.

Hence, using (g−2) and (g−3) in conjunction with (2.28), we can then
infer from (2.25) that

L(un, un − u�) −→ 0 as n→ ∞.

On the other hand, from (2.28), we have that

L(u�, un − u�) −→ 0 as n→ ∞.

Putting these last two facts together gives

L(un − u�, un − u�) −→ 0 as n→ ∞,

which is our desired result because L(·, ·) and 〈·, ·〉p,q,ρ are equivalent
inner products.

So, to complete the proof of the lemma, it remains to show that
(2.23) (i) and (ii) imply that (2.26) is valid. We now do this.

Suppose then that we are given a sequence {un}∞n=1 ⊂ H1
p,q,ρ(Ω,Γ)

for which (2.23) (i) and (ii) are valid and for which the condition in
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(2.26) does not hold. Then, since I ∈ C1(H1
p,q,ρ,R), without loss of

generality, we can assume

un ∈ C1
p,q,ρ(Ω,Γ) for all n,

and that

(2.29) lim
n→∞ ‖un‖p,q,ρ = ∞.

We will show that this last fact leads to contradiction of the solvability
condition (1.8). In order to do this, we set

(2.30) Un (x) = un (x) / ‖un‖p,q,ρ
and see that ‖Un‖p,q,ρ = 1 for every n. Hence, as before, from
Lemma 2.3 and the well-known Hilbert space theory, it follows that
there is a subsequence (which once again we take to be the full sequence)
and a U ∈ H1

p,q,ρ(Ω,Γ) such that

(2.31)

(i) Un ⇀ U in H1
p,q,ρ,

(ii) Un → U in L2
ρ (Ω) ,

(iii) Un → U a.e. in Ω,

(iv) |Un (x)| ≤ F (x) a.e. in Ω for all n,

where F ∈ L2
ρ(Ω).

Next, we observe from (2.23) (ii) that

lim
n→∞ I ′ (un) (φ1) / ‖un‖p,q,ρ = 0,

and consequently, from (2.25) that

lim
n→∞

[
α〈U−

n , φ1〉ρ −
〈g (·, un) , φ1〉ρ

‖un‖p,q,ρ

]
= 0.

It is easy to see from (g − 2) and (g − 3) that

lim
n→∞

〈g (·, un) , φ1〉ρ
‖un‖p,q,ρ

= 0.
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So we conclude from (2.31) that∫
Ω

U− (x)φ1 (x) ρ (x) dx = 0.

But φ1(x) > 0 everywhere in Ω. Hence, we obtain from this last fact
that

(2.32) U (x) ≥ 0 a.e. in Ω.

Next, from (2.30), we see that

‖Un‖p,q,ρ = 1 for all n.

Therefore, from (2.23) (ii), we obtain that

lim
n→∞ I ′ (un) (Un) / ‖un‖p,q,ρ = 0.

Hence, from (2.25), we get that

(2.33) lim
n→∞{L(Un, Un)− λ1〈Un, Un〉ρ + α〈U−

n , Un〉ρ
− [〈g (·, un) , Un〉ρ + h (Un)]/ ‖un‖p,q,ρ} = 0.

From (g − 2), (g − 3) and (2.31) (iv), we obtain once again that

lim
n→∞

〈g (·, un) , Un〉ρ
‖un‖p,q,ρ

= 0.

Likewise, we see that

lim
n→∞

h (Un)

‖un‖p,q,ρ
= 0.

Also, from (2.31) (iii), (iv) and (2.32), we see that

lim
n→∞〈U−

n , Un〉ρ = 0.
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We conclude from these last three facts and (2.33) that

(2.34) lim
n→∞[L(Un, Un)− λ1〈Un, Un〉ρ] = 0.

Next, we write

(2.35) Un =Wn + Vn and U =W + V

where 〈φ1, Vn〉ρ = 0, 〈φ1, V 〉ρ = 0, and

(2.36) Wn = cnφ1 and W = c�φ1

with cn, c
� real constants.

It follows from (2.1) that

L(Un, Un) ≥ 1

and from (2.34) that
lim
n→∞L(Vn, Vn) = 0.

Also, from (2.31) (ii), we see that

lim
n→∞ cn = c�.

Hence, we infer from (2.30), (2.31) and (2.32) that V = 0 and

(2.37) U = c�φ1 with c� > 0.

Also, from (2.31) (i) and (2.34), we obtain that

(2.38) lim
n→∞L(Un − U,Un − U) = 0.

Next, we set

(2.39) un = wn + vn where 〈wn, vn〉ρ = 0

and wn = ûn(1)φ1 with ûn(1) = 〈un, φ1〉ρ.
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Also, we set

(2.40) ũn = γ1 [L(vn, vn)]1/2 φ1 + vn

where γ1 is defined in Lemma 2.5.

From (2.39) and (2.40), we infer that

(2.41) un = c̃nφ1 + ũn.

where

(2.42) c̃n =
{
ûn (1)− γ1 [L(vn, vn)]1/2

}
.

We claim

(2.43)
{
c̃n/ ‖un‖p,q,ρ

}∞

n=1
is a uniformly bounded sequence.

Suppose the claim is false. Then, without loss in generality, we can
assume that

lim
n→∞ ‖un‖p,q,ρ / |c̃n| = 0 and lim

n→∞ |c̃n| = ∞.

But then it follows from (2.41) that

(2.44) lim
n→∞

∥∥∥∥ c̃n
|c̃n|φ1 +

ũn
|c̃n|

∥∥∥∥
p,q,ρ

= 0.

We see from (2.40)
ũn
|c̃n| ∈ Aγ1 for all n,

where Aγ1 is defined in (2.08). However, Aγ1 is a closed set in H1
p,q,ρ.

Also, at least one of the following two cases prevail:

(i) c̃n > 0 for a countable number of n;

(ii) c̃n < 0 for a countable number of n.

If case (i) holds, we conclude from (2.44) that −φ1 ∈ Aγ1 . But, from
the very definition of Aγ1 this cannot be true. Likewise, if case (ii)
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holds, we arrive at a contradiction. Hence, the claim in (2.43) is indeed
valid.

From (2.43), we see that there is a subsequence (which for ease of
notation, we take to be the full sequence) such that

(2.45) lim
n→∞ c̃n/ ‖un‖p,q,ρ = c#.

Next, we obtain from (2.37) and (2.38) that

lim
n→∞

∥∥∥un/ ‖un‖p,q,ρ − c�φ1
∥∥∥
p,q,ρ

= 0.

Hence, we infer from (2.41) that

lim
n→∞

∥∥∥∥∥ c̃nφ1
‖un‖p,q,ρ

+
ũn.

‖un‖p,q,ρ
− c�φ1

∥∥∥∥∥
p,q,ρ

= 0.

But then, from (2.45), we have that

lim
n→∞

∥∥∥∥∥(c# − c�
)
φ1 +

ũn.

‖un‖p,q,ρ

∥∥∥∥∥
p,q,ρ

= 0.

However, once again we see that ũn./‖un‖p,q,ρ ∈ Aγ1 . Since Aγ1 is a

closed set in H1
p,q,ρ, it follows that

− (
c# − c�

)
φ1 ∈ Aγ1 .

But, from the very definition of Aγ1 , this last fact implies that

c# = c�.

Consequently, we obtain the following from (2.29), (2.37) and (2.45):

(2.46)
(i) there is an n0 > 0, such that c̃n > 0 for n > n0;

(ii) lim
n→∞ c̃n = ∞.

From this last inequality, we see from (2.41) that

(2.47) u−n (x) ≤ ũ−n (x) for all x ∈ Ω and n > n0.
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Also, we obtain that

(2.48) 〈u−n , ũn〉ρ ≥ −〈ũ−n , ũ−n 〉ρ for n > n0.

Next, we claim that

(2.49)
{
‖ũn‖p,q,ρ

}∞

n=1
is a uniformly bounded sequence.

Suppose the above claim is false. Then, without loss of generality, we
can assume that

(2.50) lim
n→∞ ‖ũn‖p,q,ρ = ∞.

Also, from (2.25) and (2.41), we have that

I ′ (un) (ũn) = L(ũn, ũn)− λ1〈ũn, ũn〉ρ + α < u−n , ũn〉ρ
− 〈g (·, un) , ũn〉ρ − h (ũn) ,

and consequently from (2.48) that

I ′ (un) (ũn) ≥ L(ũn, ũn)− λ1〈ũn, ũn〉
+ α〈ũ−n , ũn〉ρ − 〈g (·, un) , ũn〉ρ − h (ũn)

for n > n0. But then it follows from this last inequality, (2.9) and
Lemma 2.5 that

(2.51) I ′ (un) (ũn) ≥ 2β1L(ũn, ũn)− 〈g (·, un) , ũn〈ρ−h (ũn)

for n > n0 where β1 > 0.

Next, with

Fn = {x ∈ Ω : un (x) ≤ 0} ,
we see from (g − 2) that

|〈g (·, un) , ũn〉ρ| ≤ ‖b‖ρ ‖ũn‖ρ +
∫
Fn

|g (x, un)| |ũn| ρ dx.
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However, it follows from (g − 3) and (2.47) that, given ε > 0,∫
Fn

|g (x, un)| |ũn| ρ dx ≤ ε

∫
Fn

∣∣ũ−n ∣∣2 ρ dx+ ‖bε‖ρ ‖ũn‖ρ

for n > n0.

We conclude from these last two inequalities and (2.50) that

lim
n→∞ |〈g (·, un) , ũn〉ρ| / ‖ũn‖2p,q,ρ ≤ ε.

Since ε is an arbitrary positive number, we have that

lim
n→∞ |〈g (·, un) , ũn〉ρ| / ‖ũn‖2p,q,ρ = 0.

Observing that L(ũn, ũn) ≥ ‖ũn‖2p,q,ρ, this last fact together with
(2.51) gives

lim inf
n→∞ I ′ (un) (ũn) / ‖ũn‖2p,q,ρ ≥ 2β1,

where β1 > 0.

On the other hand, it follows from (2.23) (ii) that

lim
n→∞ I ′ (un) (ũn) / ‖ũn‖2p,q,ρ = 0.

We have arrived at a contradiction. Hence, the claim (2.49) is indeed
true.

Next, we observe that (2.46) and (2.49) along with (g−2) and (g−3)
imply that
(2.52){∫

Ω

[G(x, un)−G(x, c̃nφ1)]ρ dx

}∞

n=1

is a uniformly bounded sequence.

To see that this last assertion actually is true, we obtain from the
definition of G(x, s) and (2.41) that

(2.53) G(x, un)−G(x, c̃nφ1) =

∫ c̃nφ1(x)+ũn(x)

c̃nφ1(x)

g(x, s) ds.
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From (2.46) and (O3), we see that c̃nφ1(x) > 0 for n > n0. So one of
the following three cases arise:

(i) ũn (x) ≥ 0;

(ii) ũn (x) < 0 and |ũn (x)| ≤ c̃nφ1 (x) ;

(iii) ũn (x) < 0 and c̃nφ1 (x) < −ũn (x) .

If case (i) or (ii) holds, then it is clear from (g − 2) and (2.53) that

|G(x, un)−G(x, c̃nφ1)| ≤ |b (x)| |ũn (x)| .

If case (iii) holds, then choosing ε = 1 in (g − 3) shows that

|G(x, un)−G(x, c̃nφ1)| ≤ |b (x)| |ũn (x)|+ |ũn (x)|2 + |b1 (x)| |ũn (x)| ,

where both b and b1 are in L2
ρ(Ω).

The assertion in (2.52) follows immediately from these last two
inequalities and (2.49).

We will now complete the proof that (2.29) is false by showing that
(2.29) leads to a contradiction.

From the condition in hypothesis (2.23) (i), we see that

(2.54) {I (un)}∞n=1 is a uniformly bounded sequence.

where, using (2.41),

(2.55)

I (un) = J (un)−
[ ∫

Ω

[G (x, un)−G (x, c̃nφ1)] ρ dx+ h (ũn)

]
−
[∫

Ω

G (x, c̃nφ1) ρdx+ h (c̃nφ1)

]
,

where
2J (un) = L(un, un)− λ1〈un, un〉ρ + α〈u−n , un〉ρ.

Using (2.41), a computation shows

L(un, un)− λ1〈un, un〉ρ = L(ũn, ũn)− λ1〈ũn, ũn〉ρ.
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Likewise, using (2.47), we see that∣∣〈u−n , un〉ρ∣∣ ≤ ∣∣〈ũ−n , ũn〉ρ∣∣ ,
for n > n0.

We conclude from these last two facts along with (2.49) that

(2.56) {J (un)}∞n=1 is a uniformly bounded sequence.

Next, since h is a bounded linear functional on H1
p,q,ρ, we obtain from

(2.49) along with (2.52) that{∫
Ω

[G (x, un)−G (x, c̃nφ1)] ρ dx+ h (ũn)

}∞

n=1

is a uniformly bounded sequence.

This last fact in conjunction with (2.54), (2.55) and (2.56) gives that{∫
Ω

G (x, c̃nφ1) ρ dx+ h (c̃nφ1)

}∞

n=1

is a uniformly bounded sequence.

On the other hand, we are assuming the solvability condition (1.8). So
we obtain from (2.46) (ii),

lim
n→∞

[ ∫
Ω

G (x, c̃nφ1) ρ dx+ h (c̃nφ1)

]
= ∞.

We have arrived at a contradiction. Hence, (2.29) is not valid, and
(2.26) is indeed true. This fact completes the proof of the lemma.

3. Proof of Theorem 1.1. Throughout this section, we will assume
that

(3.1) a0 (x) ≥ 1 almost everywhere in Ω,

where a0(x) is given in (1.1). As shown in the first paragraph of
Section 2, there is no loss in generality in making this assumption.
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Because of assumption (3.1), we see from (1.4) and (1.5) that

〈u, v〉p,q,ρ and L(u, v) for all u, v ∈ H1
p,q,ρ

are equivalent inner products on H1
p,q,ρ.

We will prove Theorem 1.1 by showing that I(u), defined in Lemma 2.7,
has a critical point, i.e., a function u0 ∈ H1

p,q,ρ such that

(3.2) I ′ (u0) (u) = 0 for all u ∈ H1
p,q,ρ,

where I ′(u) is defined in (2.25).

If u0 satisfies (3.2), then I(u0) is called a critical value of I. To be
explicit, we will establish Theorem 1.1 by showing that I has at least
one critical value η. We accomplish this by means of linking theory.

Given a Banach space X , let Y be a finite-dimensional subspace of
X , and let E ⊂ X be a closed set. For r > 0, set

(3.3) Yr = {y ∈ Y : ‖y‖ ≤ r} and ∂Yr = {y ∈ Y : ‖y‖ = r} .

Suppose that there exists an r1 > 0 such that

∂Yr1 ∩ E = ∅.

Let

(3.4) Ψ = {ψ ∈ C (X,X) : ψ (y) = y for all y ∈ ∂Yr1} .

Then we say ∂Yr1 and E link, provided

ψ (Yr1) ∩ E �= ∅ for all ψ ∈ Ψ.

The following theorem prevails (see [11, page 127]) about sets ∂Yr1
and E which link.

Theorem A. Suppose X is a Banach space, Y ⊂ X is a finite-
dimensional subspace and E ⊂ X is a closed set. With Yr and ∂Yr as
in (3.3), suppose also that there exists an r1 > 0 such that ∂Yr1∩E = ∅
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and that ∂Yr1 and E link. Furthermore, suppose that I ∈ C1(X,R),
that I satisfies the (PS)-condition, and that

(3.5) inf
u∈E

I (u) > sup
u∈∂Yr1

I (u) .

Then with Ψ designated by (3.4), the number

(3.6) η = inf
ψ∈Ψ

sup
u∈Yr1

I (ψ (u))

defines a critical value of I.

We prove Theorem 1.1 by showing that the conditions in the hypothe-
ses of Theorem A are met for I(u) where

I (u) = J (u)−
∫
Ω

G(x, u)ρ dx− h (u) ,

when we take X = H1
p,q,ρ, E = Aγ1 and

(3.7) Y = {tφ1 : −∞ < t <∞} .

We recall J(u) is defined in (2.9) and Aγ1 is defined in Lemma 2.5.
Also, we let

(3.8) V =
{
v ∈ H1

p,q,ρ : L(v, φ1) = 0
}
.

First of all, we observe, with I ′(u) as given in (2.25), that I(u) is
indeed in C1(H1

p,q,ρ,R). Also, it follows from Lemma 2.7 that I(u)
does satisfy the (PS)-condition.

Next, we see from Lemma 2.6 that there exists and r0 > 0 such that

I (u) ≥ 1 for all u ∈ Aγ1 and ‖u‖p,q,ρ ≥ r0.

Also, it is easy to obtain from (2.9) and from (g − 2) and (g − 3) that
there is a K > 0 such that

|I (u)| ≤ K for all u ∈ Aγ1 and ‖u‖p,q,ρ ≤ r0.
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Hence,

(3.9) I (u) ≥ −K for all u ∈ Aγ1 .

From Lemma 2.4, we see that there is an r1 > 0 such that both

(3.10) I (r1φ1) ≤ −K − 1 and I (−r1φ1) ≤ −K − 1.

We set

Yr1 = {tφ1 : − r1 ≤ t ≤ r1} and ∂Yr1 = {r1φ1,−r1φ1}

and observe from (3.9) and (3.10) that

inf
u∈Aγ1

I (u) > sup
u∈∂Yr1

I (u) .

So condition (3.5) of Theorem A is met where Aγ1 = E.

Consequently, to prove Theorem 1.1 by means of Theorem A, it only
remains to show that ∂Yr1 and Aγ1 link. It is clear that

∂Yr1 ∩ Aγ1 = ∅.

So, to show the linkage property, we need only show that, given ψ ∈ Ψ
there exists a

(3.11) t0 such that ψ (t0φ1) ∈ Aγ1 where − r1 < t0 < r1,

and where

(3.12) Ψ =
{
ψ ∈ C

(
H1
p,q,ρ, H

1
p,q,ρ

)
: ψ (r1φ1) = r1φ1

and ψ (−r1φ1) = −r1φ1} .

To show that (3.11) is true, we proceed as follows.

We set
σ (t) = ψ (tφ1) for − r1 ≤ t ≤ r1.

Then

(3.13)
σ ∈ C

(
[−r1, r1] , H1

p,q,ρ

)
with σ (−r1) = −r1φ1

and σ (r1) = r1φ1.
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If there exists a t1 ∈ (−r1, r1) such that

σ (t1) = 0,

we are done because 0 ∈ Aγ1 and (3.11) is true with t0 = t1.

So we can assume for the rest of the proof that

(3.14) L(σ (t) , σ (t)) �= 0 for t ∈ (−r1, r1) .

Next, we set

(3.15) f (t) = L(σ (t) , φ1)/λ1.

Then f ∈ C([−r1, r1],R) with f(−r1) = −r1 and f(r1) = r1.

Let t2 be the last value in the interval (−r1, r1) such that f(t) = 0.
Therefore,

(3.16) f (t2) = 0 and f (t) > 0 for t2 < t ≤ r1.

Set
μ (t) = [L(σ (t)− f (t)φ1, σ (t)− f (t)φ1)]

1/2
/f (t)

for t2 < t ≤ r1. Then μ ∈ C((t2, r1],R) with μ(r1) = 0.

Also, it follows from (3.14) and (3.16) that

lim
t→t2+

μ (t) = +∞.

Now, γ1, given by Lemma 2.5, is a positive number. Consequently,
there is a t3 with t2 < t3 < r1 such that

μ (t3) = 1/γ1.

Hence,

(3.17) f (t3) = γ1 [L(σ (t3)− f (t3)φ1, σ (t3)− f (t3)φ1)]
1/2

.

Also, we see from (3.8) and (3.15) that

(3.18) σ (t3) = f (t3)φ1 + v.
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where v ∈ V . We conclude from (3.17) that

f (t3) = γ1 [L(v, v)]1/2 .

But then it follows from (3.18) and the fact that σ(t) = ψ(tφ1) that

ψ (t3φ1) = γ1 [L(v, v)]1/2 φ1 + v.

This establishes (3.11) with t0 = t3. Consequently, ∂Yr1 and Aγ1 link,
and the proof of Theorem 1.1 is complete.

4. The Schrödinger operator. We elucidate on Remark 2
concerning the Schrödinger operator

(4.1) Lu = −Δu+ q (x) u

where q ∈ C(RN ), N ≥ 1, q ≥ 0, and

lim
|x|→∞

q (x) = ∞.

In this case, referring to Lu in (1.1), we have that pj = 1 for
j = 1, . . . , N , a0 = 0 and ρ = 1.

To show that Theorem 1.1 holds for the Schrödinger operator in
(4.1), we have to establish that the V�

L (Ω,Γ)-conditions are valid with
Ω = RN and Γ = ∅. To do this, we have to show that (O1), (O2) and
(O3) hold.

Using the ideas of Molchanov, as set forth in the book of Naimark
[9, pages 239 245], it is an easy matter to demonstrate that

H1
p,q,ρ ⊂⊂ L2

(
RN

)
,

i.e., H1
p,q,ρ is compactly imbedded in L2(RN ). Then, using the theory of

compact, symmetric, strictly positive operators on L2(RN ), we obtain
the existence of {φn}∞n=1 and {λn}∞n=1 such that (O1) and (O2) hold.

To see that λ1 is a simple eigenvalue and strictly positive and that

φ1 (x) > 0 for all x ∈ RN ,
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we use the well-established techniques from the Calculus of Variations
as set forth in [7, pages 150 151]. We also need Harnack’s inequality
as stated in [5, page 199].

Also, using the Calderon-Zygmund theory as given in [5, page 230],
it is an easy matter to show that

φn ∈ C1
(
RN

)
for all n ≥ 1.

Consequently, (O1), (O2) and (O3) hold and Theorem 1.1 is valid for
the Schrödinger operator L given in (4.1) above.

Also, Theorem 1.2, giving a necessary and sufficient condition for
the existence of a weak solution to (1.6) when L is the Schrödinger
operator, is valid.

It turns out that the study of nonlinear equations of the form

(4.2) Lu = f (x, u)

where L is the Schrödinger operator is a topic of great current interest.
Four current articles are by Yin and Zhang [13], Ding and Szulkin [4],
Kryszewski and Sulkin [8] and Ambrosetti [1]. L is now of the form

(4.3) L (u) = −Δu+ V (x)u

In our result,

f (x, u) = λ1u− αρu− + g (x, u) + h.

In [13], in a paper entitled, Bound states of nonlinear Schrödinger
equations with potentials tending to zero at infinity,

f (x, u) = K (x) up,

with 1 < p < (N + 2)/(N − 2). Also, the authors put an ε2 before the
Δ in (4.3), and they assume K(x) and V (x) are nonnegative functions
which are positive in a smooth bounded domain A ⊂ RN with the
decay rate of V (x) at infinity also being important. For N ≥ 3, they
obtain positive solutions of (4.2) when ε is small. For N ≥ 5, they need
less restrictions on the V (x).
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In [4], in a paper entitled, Existence and number of solutions for a
class of semilinear Schrödinger equations,

f (x, u) = |u|p−2
u

with 2 < p < 2∗ where 2∗ = 2N/N − 2 if N ≥ 3 and 2∗ = +∞ if
N = 2 or 1. Also, the authors put λ before the V (x) in (4.3) and
assume V ≥ 0. In addition, they assume V −1(0) is nonempty and
{x ∈ RN : V (x) < b} has finite measure for at least one b > 0. They
then show that the number of solutions to (4.2) increase as λ→ ∞.

In [8] in a paper entitled, Generalized linking theorem with an ap-
plication to a semilinear Schrödinger equation, the authors assume
f(x, u) ∈ C(RN × R) and periodic of period one with respect to
each xj-variable. Also, they assume f(x, u) = o(|u|) as |u| → 0 uni-
formly with respect to x and that V (x) ∈ C(RN ) and is periodic of
period one with respect to each xj-variable. Furthermore, they assume
|f(x, u)| ≤ c(1 + |u|p−1) where 2 < p < 2∗ and that there is a γ > 2
such that, for all x ∈ RN and u ∈ R\{0},

0 < γF (x, u) ≤ uf (x, u) ,

where F (x, u) =
∫ u
0 f(x, ξ) dξ. Also, they assume that 0 lies in the spec-

tral gap of L. Then the authors show that, under these assumptions,
that (4.2) has an infinitely many distinct nontrivial solutions.

In [1], in a survey article entitled, Mathematical analysis systems of
nonlinear Schrödinger equations, A survey, the author surveys results
on Bound and Ground State solutions in W 1,2(RN ) × W 1,2(RN ) to
nonlinear Schrödinger systems of the form{−Δu+ u = u3 + λFu (u, v) ,

−Δv + v = v3 + λFv (u, v) .

Also surveyed are solutions in W 1,2(RN )×W 1,2(RN ) to the nonlinear
coupled non-autonomous system

(∗)
{−Δu+ u = (1 + a (x))u3 + λu,

−Δv + v = (1 + b (x)) v3 + λv,

where a, b ∈ L∞(RN ) and lim|x|→∞ a(x) = 0, lim|x|→∞ b(x) = 0. Also,

inf
RN

(1 + a (x)) > 0, inf
RN

(1 + b (x)) > 0.
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The author then states the following result:

If a (x) + b (x) ≥ 0, then for all 0 < λ < 1, (∗) has a positive Ground State.

Each of the above manuscripts has an extensive bibliography of
papers devoted to solutions of the nonlinear Schrödinger equation

Lu = f (x, u)

where L is the Schrödinger operator (4.3).

5. The Hermite operator. In this section, for simplicity, we will
work in dimension N = 2, but everything that is established is also
valid for N = 1 and N ≥ 3.

We take Ω = R2, pj = e−(x2
1+x

2
2) for j = 1, 2, and ρ = e−(x2

1+x
2
2).

Also, we take q = 0 and a0 = 0. Then Lu in (1.1) becomes

(5.1) Lu = −D1(e
−(x2

1+x
2
2)D1u)−D2(e

−(x2
1+x

2
2)D2u).

To show that Theorem 1.1 holds for the Hermite operator in (5.1), we
have to establish that the V�

L (Ω,Γ)-conditions are valid with Ω = R2

and Γ = ∅. To do this, we have to show that (O1), (O2) and (O3) hold.

As is well known, the Hermite polynomials are given by

Hn (t) = (−1)n et
2

dne−t
2

/dtn

for n = 0, 1, 2 . . . , and satisfy the differential equation

(5.2)
[
e−t

2

H ′
n (t)

]′
= −2ne−t

2

Hn (t) .

Also, it is well known that{
Hn (t)

/(
2nn!π1/2

)1/2
}∞

n=0

forms a complete orthonormal system over R1 with respect to the
weight e−t

2

, i.e.,
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(
2nn!π1/2

)−1/2 (
2mm!π1/2

)−1/2
∫ ∞

−∞
Hn (t)Hm (t) e−t

2

dt = δnm,

where δnm is the Kronecker-δ.

For all this, see either [3, pages 91 93] or [6, pages 244, 416].

We set

(5.3) Φmn (x) = Hm (x1)Hn (x2)
(
2mm!π1/2

)−1/2 (
2mn!π1/2

)−1/2

,

for m,n = 0, 1, . . . , and observe that∫
R2

Φm1n1 (x) Φm2n2 (x) e
−|x|2dx =

{
0 (m1,n1) �= (m2,n2)

1 (m1,n1) = (m2,n2).

Hence, with φ1 = Φ00, φ2 = Φ10, φ3 = Φ01, φ4 = Φ20, etc., we
see that {φk}∞k=1 is a complete orthonormal system in L2

ρ(R
2) where

ρ = e−|x|2. Likewise, we see from (5.3) that

φk ∈ H1
p,q,ρ

(
R2,∅

) ∩C1
(
R2

)
for all k.

Therefore, (O1) holds.

With Lu defined in (5.1), an easy computation using (5.2) and (5.3)
shows that

L (Φmn (x)) = (2m+ 2n) e−|x|2Φmn (x)

form,n = 0, 1, . . . . Consequently, after integrating by parts, we obtain
from this last equality that

(5.4)

∫
R2

[D1uD1Φmn +D2uD2Φmn] e
−|x|2dx

= (2m+ 2n)

∫
R2

uΦmne
−|x|2dx,

where u ∈ H1
p,q,ρ.

So, with λ1 = 0, λ2 = 2, λ3 = 2, λ4 = 4, etc., it follows from (5.4)
that
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L(φk, u) = λk

∫
R2

uφke
−|x|2dx for all k,

where u ∈ H1
p,q,ρ. Consequently, (O2) holds.

With λ1 = 0 and φ1 = (π)−1/2, it is clear that λ1 is a simple
eigenvalue and that φ1(x) > 0 for all x ∈ R2. So (O3) is valid, and the
V�
L (R

2,∅)-condition is completely established.

Consequently, this example, using the Hermite operator in R2, is
covered by Theorem 1.1 above. However, this example is not covered
by Theorem 1.1 in [10] for several reasons. One is because R2 is not a
bounded domain. Another reason is that the Φmn given in (5.3) above
are such that Φmn /∈ L∞(R2).

6. The Laguerre operator. As is well known, the Laguerre
polynomials are given by

(6.1) Pn (t) = etdntne−t/dtn,

and are polynomials of degree n.

We will call

(6.2) L1u = −D1[x1e
−x1D1u (x1)],

the one-dimensional Laguerre operator and use it in conjunction with
the usual second differential operator to present another example of
an elliptic operator on an unbounded domain which is covered by
Theorem 1.1.

It is well known that

(6.3) L1Pn (x1) = ne−x1Pn (x1) for all n.

It is also well known that {Pn(t)/n!}∞n=o forms a complete orthonor-
mal system over (0,∞) with respect to the weight e−t, i.e.,

(6.4) (n!)−2
∫ ∞

0

e−tPm (t)Pn (t) dt = δmn,

where δnm is the Kronecker-δ.
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For all these matters about the Laguerre polynomials, see [3, pages
93 97].

We will present our example in R2, but similar examples can be
produced in RN , N ≥ 3.

We take Ω to be the half-infinite strip

(6.5) Ω = {x : 0 < x1 <∞, 0 < x2 < π} ,

and

(6.6) Γ = {(x1, 0) : 0 ≤ x1 <∞} ∪ {(x1, π) : 0 ≤ x1 <∞} .

Also, we take p1 = x1e
−x1 , p2 = e−x1, ρ = e−x1 , q = 0 and a0 = 0.

So, L defined in (1.1) becomes

(6.7) Lu = −D1[x1e
−x1D1u (x)]−D2[e

−x1D2u (x)].

With Pn(x1), the nth Laguerre polynomial given by (6.1), we set

Φmn (x) = (2)
1/2

Pm (x1) sinnx2/π
1/2m!

for m = 0, 1, 2, . . . and n = 1, 2, . . . . Then it follows from (6.4) that

(6.8)

∫ ∞

0

∫ π

0

e−x1Φm1n1 (x) Φm2n2 (x) dx1 dx2

=

{
0 (m1,n1) �= (m2,n2)

1 (m1,n1) = (m2,n2).

As we will show, the eigenvalues are of the form (m + n2). Conse-
quently, upon setting φ1 = Φ01, φ2 = Φ11, φ3 = Φ21, φ4 = Φ02, φ5 =
Φ31, φ6 = Φ12, etc., we see from (6.5) and (6.6) that φk ∈ H1

p,q,ρ(Ω,Γ)
and that

{φk}∞k=1 is a complete orthonormal system in L2
ρ (Ω) .

Hence, (O1) holds for this example.
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With Lu defined in (6.7), an easy computation using (6.2) and (6.3)
shows that

L (Φmn (x)) =
(
m+ n2

)
e−x1Φmn (x)

for m = 0, 1, . . . and n = 1, 2, . . . . Consequently, after integrating by
parts, we obtain from this last equality that
(6.9)∫
Ω

[x1D1uD1Φmn +D2uD2Φmn] e
−x1 dx =

(
m+ n2

) ∫
Ω

uΦmne
−x1 dx

for u ∈ H1
p,q,ρ(Ω,Γ).

So, on setting

(6.10) L(u, v) =
∫
Ω

[x1D1uD1v +D2uD2v] e
−x1 dx,

for u, v ∈ H1
p,q,ρ(Ω,Γ) and λ1 = 1, λ2 = 2, λ3 = 3, λ4 = 4, λ5 = 4,

λ6 = 5, etc., we see from (6.9) that

L(u, φk) = λk〈u, φk〉ρ for all k and u ∈ H1
p,q,ρ (Ω,Γ) .

Hence, (O2) holds for this example. Observing that λ1 = 1, λ2 = 2
and φ1(x) = (2/π)1/2 sinx2, we see that λ1 is a simple eigenvalue and
φ1(x) is positive for x ∈ Ω. Therefore, (O3) also holds.

We conclude that the V�
L (Ω,Γ)-conditions are valid for this example.

So, Theorem 1.1 holds for the elliptic operator L(u) defined in (6.7)
above with Ω the half-open strip given in (6.5) and Γ the two half-
closed lines defined in (6.6).

Once again, we see that this example involving the Laguerre operator
is not covered by [10, Theorem 1.1] for two reasons. The first is because
Ω is not a bounded domain, and the second is because φk /∈ L∞(Ω).
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this paper.
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