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Dedicated to Ljudmila V. Keldysh and the members of her topology seminar on the

occasion of the centenary of her birth [13].

1. Introduction. We give a general treatment of the somewhat
unfamiliar operation on manifolds called connected sum at infinity, or
CSI for short. A driving ambition has been to make the geometry
behind the well-definition and basic properties of CSI as clear and
elementary as possible. CSI then yields a very natural and elementary
proof of a remarkable theorem of Cantrell and Stallings [9, 60]. It
asserts unknotting of cat embeddings of Rm−1 in Rm with m �= 3,
for all three classical manifold categories: topological (top), piecewise
linear (pl), and differentiable (diff) as defined for example in [36].
It is one of the few major theorems whose statement and proof can be
the same for all three categories. We give it the acronym HLT, which
is short for “Hyperplane Linearization theorem” (see Theorem 6.1 plus
7.3).

We pause to set out some common conventions that are explained
in [36] and in many textbooks. By default, spaces will be assumed
to be metrizable and separable (i.e., having a countable basis of open
sets). Simplicial complexes will be unordered. A pl space (often called
a polyhedron) has a maximal family of pl compatible triangulations
by locally finite simplicial complexes. A map is proper provided the
inverse image of each compact set is compact. cat submanifolds will
be assumed properly embedded and cat locally flat.

This Cantrell-Stallings unknotting theorem (hlt) arose as an en-
hancement of the more famous Schoenflies theorem initiated by Mazur
[39] and completed by Brown [3, 4]. The latter asserts top unknotting
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of top codimension 1 spheres in all dimensions: any locally flatly em-
bedded (m−1)-sphere in the m-sphere is the common frontier of a pair
of embedded m-balls whose union is Sm. This statement is cleaner
inasmuch as dimension 3 is not exceptional. On the other hand, its
proof is less satisfactory, since it does not apply to the parallel pl and
diff statements. Indeed, for pl and diff, one requires a vast medley
of techniques to prove the parallel statement, leaving quite undecided
the case m = 4, even today.

The proof of this top Schoenflies theorem immediately commanded
the widest possible attention and opened the classical period of intense
study of top manifolds. There is an extant radio broadcast interview
of Thom in which he states that, in receiving his Fields Medal in 1958
in Edinburgh for his cobordism theories [63] 1954, he felt that they
were already being outshone by Milnor’s exotic spheres [42] 1956 and
the Schoenflies theorem breakthrough of Mazur just then occurring.

At the level of proofs, the Cantrell-Stallings theorem is perhaps the
more satisfactory. The top proof we present is equally self contained
and applies (with some simplifications) to pl and diff. At the same
time, Mazur’s original infinite process algebra is the heart of the proof.
Further, dimension 3 is not really exceptional. Indeed, as Stallings
observed, provided the theorem is suitably stated, it holds good in
all dimensions. Stallings deals with diff only; his proof [60] differs
significantly from ours, but one can adapt it to pl and probably to top.
Finally, its top version immediately implies the stated top Schoenflies
theorem. We can thus claim that the Cantrell-Stallings theorem, as we
present it, is an enhancement of the top Schoenflies theorem that has
exceptional didactic value.

In dimensions > 3, it is tempting to believe that there is a well-
defined notion of CSI for open oriented cat manifolds with just one
end, one that is independent of auxiliary choices in our definition of
CSI notably that of a so-called flange (see Section 2) in each summand,
or equivalently that of a proper homotopy class of maps of [0,∞) to
each summand. It has been known since the 1980s [18] that such
a proper homotopy class is unique whenever the fundamental group
system of connected neighborhoods of infinity is Mittag-Leffler (this
means that the system is in a certain sense equivalent to a sequence
of group surjections). More recently [18, pages 369 371], it has been
established that there are uncountably many such proper homotopy
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classes whenever the Mittag-Leffler condition fails; given one of them,
all others are classified by the non-null elements of the (first) derived
projective limit of the fundamental group system at infinity. This
interesting classification does not readily imply that rechoice of flanges
can alter the underlying manifold isomorphism type of a CSI sum in
the present context; however, we conjecture that it can indeed.

A classification of catmultiple codimension 1 hyperplane embeddings
in Rm, for m �= 3, will be established in Section 9 showing that
they are classified by countable simplicial trees with one edge for each
hyperplane. This result is called the Multiple Hyperplane Linearization
theorem, or MHLT for short (see Theorem 9.2). For top and m > 3,
its proof requires the Slab Theorem of Greathouse [24], for which
we include a proof, that (inevitably) appeals to the famous Annulus
theorem [34]. For dimensionm = 2, we present a bouquet of three quite
different proofs of MHLT. First, we explain in detail a hopefully novel
proof that uses elementary Morse-theoretic methods to directly classify
so-called ‘multirays’ in R2 up to ambient isotopy (see Proposition 8.5,
Theorem 9.13 and Remark 4.7). These methods may not give the
shortest proof. But, on the other hand, we are able to indicate further
applications of them, both in dimension 2 and in dimensions > 3; see
9.19, 9.20 and 9.21. Second, we show that MHLT for dimension 2 can be
reduced to classical results of Schoenflies and Kérékjartó which imply
a classification of all separable contractible surfaces with nonempty
boundary; for this, Section 9 gives an outline, whilst the lecture
notes [56] give details. The third and last proof uses an elementary
classification of the same surfaces using planar hyperbolic geometry.

The high-dimensional MHLT (our Theorem 9.2) is the hitherto un-
proved result that brought this article into being! Indeed, the first
two authors queried the third concerning an asserted classification for
m > 3 in [54, Theorem 10.10, page 117], that is there both unproved
and misstated. This simplicial classification is used in [7] to make cer-
tain noncompact manifolds real algebraic.

As is often the case with a general notion, particular cases of CSI,
sometimes called end sum, have already appeared in the literature.
Notably, Gompf [21] used end sum for diff 4-manifolds homeomor-
phic to R4, Myers [50] and Tinsley and Wright [62] used end sum for
3-manifolds, and F. Ancel observed (unpublished) in the 1980s that
some Davis manifolds [14] appear as end sums (see Remark 2.8 be-
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low). The present paper hopefully provides the first general treatment
of CSI. However, we give at most fleeting mention of CSI for dimen-
sion 2, because, on one hand, its development would be more technical
(non-abelian, see Remark 4.7 and [59]), and on the other, its accom-
plishments are meager.

This paper is organized as follows. Section 2 defines CSI and states
its basic properties. Section 3 is a short discussion of certain cat
regular neighborhoods of noncompact submanifolds. Sections 4 and
5 prove the basic properties of CSI. Section 6 uses CSI to prove the
Cantrell-Stallings hyperplane unknotting theorem (HLT, Theorem 6.1).
Section 7 applies results of Homma and Gluck to top rays to derive
Cantrell’s HLT (Theorem 7.3 for top). Section 8 studies proper maps
and proper embeddings of multiple copies of [0,∞). Section 9 classifies
embeddings of multiple hyperplanes (MHLT, Theorem 9.2). It includes
an exposition of Greathouse’s Slab Theorem, and in conclusion some
possibly novel proofs of the two-dimensional MHLT and related results
classifying contractible 2-manifolds with boundary.

We authors believe the best way to assimilate the coming sections
is to proceed as we did in writing them; namely, at an early stage,
attempt to grasp in outline the proof in Section 6 of the central theorem
HLT (Theorem 6.1), and only then fill in the necessary foundational
material. Later, pursue some of the interesting side-issues lodged in
other sections.

2. CSI: Connected sum at infinity. Connected sum at infinity
CSI will now be defined for suitably equipped, connected cat manifolds
of the same dimension ≥ 3. (Dimensions ≤ 2 seem to lack enough
room to make CSI a fruitful notion.) The most common forms of
connected sum are the usual connected sum CS and connected sum
along boundary CSB; we assume some familiarity with these. All three
are derived from disjoint sum by a suitable geometric procedure that
produces a new connected cat manifold. CSI is roughly what happens
to manifold interiors under CSB.

Recall that, to ensure well-definition, CS and CSB both require some
choices and technology, particularly for top. CS requires choice of
an embedded disk and appeals to an ambient isotopy classification
of them; for top, this classification requires the (difficult) stable
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homeomorphism theorem (SHT), which will be discussed in Section 9.
CSB requires distinguished and oriented boundary disks where the
CSB is to take place. Since any CSB operation induces a CS operation
of boundaries, it is clear that the extra boundary data for CSB is
essential for its well-definition as dimension 3 already shows. For
example, let X = S1 × D2 and Y = X − IntD3 where D3 is a small
round disk in IntX . The CSB operation on X and Y can produce two
manifolds with non-homeomorphic boundaries.

The definition of CSI has similar problems, and this imposes the
notion of a flange, which we define next.

In any cat, connected, noncompact m-manifold M , one can choose
a cat, codimension 0, proper, oriented submanifold P ⊂ IntM that
is cat isomorphic to the closed upper half space Rm

+ . For example,
P can be derived from a suitably defined regular neighborhood of a ray
r, where a ray is, by definition, a (proper) cat embedding of [0,∞).
Such a P with its orientation is called a CSI flange, or (for brevity) a
flange. The pair (M,P ) is called a CSI pair or synonymously a flanged
manifold. Often, a single alphabetical symbol like N will stand for a
flanged manifold; then |N | will denote the underlying manifold (flange
forgotten). Thus, when N = (M,P ), one has |N | :=M .

In practice, rays and flanges are usually obvious or somehow given
by the context, even in dimension 3 where rays can be knotted. For
example:

(i) If M is oriented (or even merely oriented near infinity), it is
to be understood that the CSI flange orientation agrees with that of
M unless this requirement is explicitly waived.

(ii) If M is a compact manifold with a connected boundary, then
IntM has a preferred ray up to ambient isotopy; it arises as a fiber
of a collaring of ∂M in M ; this is because of a well-known collaring
uniqueness up to (ambient) isotopy that is valid in all three categories,
cf. [36].

(iii) With the data of (ii), suppose ∂M is oriented. Then the
preferred class of rays from (ii) and the isotopy uniqueness of regular
neighborhoods (see Section 3) provide a preferred (oriented) flange for
IntM that is well-defined up to ambient isotopy of IntM . On the
other hand, if ∂M is non-orientable, then an ambient isotopy of M can
reverse the orientation of a regular neighborhood in M of any point of
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(a) A 2-dimensional gasket. (b) A 3-dimensional gasket.

FIGURE 1. Linear gaskets.

∂M ; hence, in this case also there is an (oriented) flange for IntM that
is well-defined up to ambient isotopy of M .

(iv) If N has dimension ≤ 3 and is isomorphic to the interior of a
compact manifold with connected boundary, then once again N has a
preferred ray up to isotopy; this is because N is irreducible near ∞ and
irreducible h-cobordisms of dimension ≤ 3 are products with [0, 1] (see
[27]).

A second ingredient for a CSI sum of m-manifolds will be a so-called
gasket. The prototypical gasket is a linear gasket; this is, by definition,
a closed subset of a certain model Hm of hyperbolic m-space whose
frontier is a nonempty collection of at most countably many disjoint
codimension 1 hyperplanes (see Figure 1). We adopt Felix Klein’s
projective model of hyperbolic space; in it, Hm is the open unit ball
in Rm, and each codimension 1 hyperbolic hyperplane is by definition
a nonempty intersection with Hm of an affine linear (m − 1)-plane in
Rm. A gasket is, by definition, any oriented cat m-manifold that is
degree +1 cat isomorphic to a linear gasket.

Remark 2.1. A linear gasket is clearly simultaneously an oriented
manifold of all three categories. The hyperbolic structure of Hm will
occasionally be helpful. However, it can be treacherous for pl, since
its isometries are not all pl; they are projective linear but mostly not
affine linear (not even piecewise). Thus, our mainstay will be the cat
structures inherited from Rm.

Consider an indexed set μi = (Mi, Pi) of CSI pairs of dimension m,
where i ranges over a nonempty finite or countable index set S. The CSI
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FIGURE 2. CSI operation.

operation yields a CSI pair ω = (W,Q) by the following construction
(see Figure 2).

Let G∗ be a linear gasket of the same dimension m, with |S| + 1
boundary components. Each closed component of the complement of
G∗ in Hm is a cat flange. We choose one, say Q, and write G for the
gasket G∗ ∪Q. The flange Q will become the flange of ω.

A pair that is cat isomorphic to (G,Q) := (G∗ ∪Q,Q) as above will
be called a flanged gasket. Equivalently, any CSI pair (G′, Q′) where G′

and G′ − IntQ′ are both cat gaskets is by definition a flanged gasket.

W will now be formed by introducing identifications in the disjoint
sum:

(†)
⊔

{Mi | i ∈ S} 	 G.

We index by S the |S| components of ∂G, denoting them by Hi, i ∈ S,
and choose, for each, a cat degree +1 embedding θi : Pi → G∗ onto
an open collar neighborhood of Hi in G∗. Now form W from the
disjoint sum (†) by identifying Pi to its image in G∗ under θi. Finally,
ω := (W,Q) is by definition a CSI sum of the CSI pairs μi, i ∈ S.

We will call G and G∗, respectively, the coarse gasket and the fine
gasket of the CSI sum ω = (W,Q).

Remark 2.2. As a topological space, W is somewhat more simply
expressed as the quotient space of the disjoint sum
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⊔
{Mi − IntPi | i ∈ S} 	G

by the identifications

θi|∂Pi : ∂Pi −→ Hi.

In the pl category, these identifications induce a unique pl manifold
structure on W . But in the diff category, the full collarings θi serve
to provide a well-defined differentiable manifold structure on W .

Theorem 2.3. The CSI of a nonempty but countable (or finite) set
of CSI pairs of dimension m ≥ 3 enjoys the following properties:

(1) From such a set (Mi, Pi), i ∈ S, the CSI construction above
yields a CSI pair (W,Q) that is well-defined up to cat isomorphism.
Given a second such construction whose entries are distinguished by
primes, a bijection ϕ : S → S′, and, for each i ∈ S, an isomorphism of
cat CSI pairs ψi : (Mi, Pi) → (M ′

ϕ(i), P
′
ϕ(i)), a cat isomorphism ψ :

(W,G,Q) → (W ′, G′, Q′) exists that extends ψi restricted to Mi−IntPi

for all i ∈ S. Furthermore, this ψ is degree +1 as a map G → G′ and
induces an isomorphism of CSI pairs (W,Q) → (W ′, Q′). Thus, in
addition to being well-defined, the CSI operation is commutative.

(2) The composite CSI operation is associative.

(3) The CSI operation has an identity element ε = (Rm,Rm
+ ), and

the infinite CSI product εεε · · · of copies of ε is isomorphic to ε.

Precise definitions of composite CSI operations and of their associa-
tivity are given below in Section 5.

Notation 2.4. Theorem 2.3 justifies the following notations for
CSI sums. If M is a nonempty but countable collection of flanged
manifolds, then CSI (M) can denote the flanged manifold resulting
from the CSI operation applied to these manifolds. And, in case M is
an ordered sequence M1,M2, . . . , then CSI (M1,M2, . . . ) and CSI (M)
should be synonymous. An alternative to CSI (M1,M2, . . . ) introduced
by Gompf [21] is M1�M2� · · · .
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Remark 2.5. In Theorem 2.3, it is already striking that every
infinite CSI product yields a well-defined CSI pair (up to isomorphism).
Nothing so strong is true for CS or CSB unless artificial limitations are
imposed on the infinite connected sum operation. For example, in
dimensions m ≥ 2, an infinite CS of any closed, connected, oriented
m-manifold with itself could reasonably be defined so as to have any
conceivable end space to wit, any nonempty compact subset of the
Cantor set.

Remark 2.6. For cat = diff and pl, as observed in remarks at the
beginning of this section, the interior of a cat compactm-manifold with
nonempty connected boundary, has a privileged choice of flange (up to
ambient isotopy and orientation reversal). This lets us perceive some
near overlap of CSI with the ordinary connected sum CS as follows.
Let us suppose that M is the connected sum M1 	 M2 	 · · · 	 Mk

of a finite collection M1, . . . ,Mk of oriented connected closed m-
manifolds, then M−(point) is cat isomorphic, preserving orientation,
to the flanged and oriented manifold M ′

1�M
′
2� · · · �M ′

k where M ′
i is the

manifold Mi−(point) with a flange chosen whose orientation agrees
with that of Mi. The reader is left to further explore such relations
between CSI and CS.

Remark 2.7. The last remark above leads us to simple examples
where reversal of a flange orientation changes the underlying proper
homotopy type of the CSI of two flanged manifolds.

It is a familiar fact that, ifM is the complex projective plane (of real
dimension 4), the ordinary connected sum M 	 (−M) has a signature
zero cup product bilinear form on the cohomology group

H2(M 	 (−M) ; Z) = Z2,

whilst M 	 M has form of signature +2 (the sign + becoming − if we
replace M by −M). It follows that M 	 M and M 	 − M are not
homotopy equivalent.

Let N be M−(point), the complement of a point in M , and forget
the orientation of N , but then consider two flanges P+ and P− for N
whose orientations agree with those of M and −M , respectively. By
Remark 2.6, the CSI of (N,P+) and (N,P−) is (M 	 −M)−(point)
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whose Alexandroff one-point compactification is (M 	 −M). On the
other hand, the CSI of (N,P+) and (N,P+) is (M 	 M)−(point) whose
one-point compactification is (M 	 M). There cannot be a proper
homotopy equivalence between

(M 	 −M)− (point) and (M 	 M)− (point)

because its one-point compactification would clearly be a homotopy
equivalence between M 	 −M and M 	 M , which does not exist.

Remark 2.8. Overlap of CSI and certain CSB sums was observed by
Ancel in the 1980s (unpublished). Namely, suppose a noncompact n-
manifoldW is built inductively from a sequenceM1,M2, . . . of compact
n-manifolds with nonempty connected boundaries by letting N1 =M1,
and letting Nk+1 be the CSB of Nk and Mk+1 in such a way that, for
each k ≥ 1, a j > k exists such that Nk ⊂ IntNj. Then W = ∪kNk is
homeomorphic to CSI (IntM1, IntM2, . . . ).

The proof of Theorem 2.3 will mostly be elementary. There is one
important exception: the top version as presently stated requires the
difficult stable homeomorphism theorem (SHT) of [15, 17, 34] to show
that any homeomorphism of Rm−1 is isotopic to a linear map. In
contrast, for cat=pl or cat=diff, it is elementary that every cat
automorphism of Euclidean space is cat isotopic to a linear map (for
pl see [51], and for diff see [47, page 34]).

Happily, this dependence on a difficult result can and will be removed.
Our tactic is to refine the definition of CSI for top requiring henceforth
(unless the contrary is indicated) that:

• The CSI flange P in each CSI pair (M,P ) shall carry a preferred
diff structure making P diff isomorphic to Rm

+ , and, with respect
to such structures, every CSI pair isomorphism shall be diff on the
flanges.

• Every gasket shall be equipped with a diff structure making it
diff isomorphic to a linear gasket, and all of the identifications made
in CSI constructions shall be diff identifications with respect to these
preferred diff structures.

The magical effect of this refined definition is that the proof for diff
of the basic properties of CSI applies without essential changes to the
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top category. This is rather obvious if one thinks of top CSI as being
diff where all of the relevant action takes place. Consequently, for
many cases of Theorem 2.3, we give little or no proof for the top
category leaving the reader to do his own soul searching. Note that
the above refinement could equally use pl in place of diff.

3. Regular neighborhoods. Regular neighborhoods will play a
central technical role throughout this article. A short discussion of
such cat neighborhoods, just sufficient for our uses, is given below.

PL regular neighborhoods. pl regular neighborhood theory is a
major feature of pl topology that is entirely elementary but not always
simple. Such a theory was first formulated by Whitehead [64], and
then simplified and improved by Zeeman [31, 66] (see also [51]). We
need the version of this theory that applies to possibly noncompact pl
spaces; it is developed in [53]. We now review some key facts.

Let X be a closed pl subspace of the pl spaceM . Neither is assumed
to be compact, connected, nor even a pl manifold. Recall that X is a
subcomplex of some pl triangulation ofM by a locally finite simplicial
complex. A regular neighborhood N of X can be defined to be a closed
ε-neighborhood (ε < 0.5) of X in M for the barycentric metric of some
such triangulation of M . The frontier of N in M is thus pl bicollared
in M .

We quickly recite some familiar facts. Any two regular neighborhoods
N and N ′ of X in M are ambient isotopic fixing X . If N0 is a regular
neighborhood that lies in the (topological) interior intN of N in M ,
then the triad (N − intN0; δN0, δN) is pl isomorphic to the product
triad δN × ([0, 1]; 0, 1) where δ indicates the frontier in M . Thus, if N0

is contained in intN ∩ intN ′, and U is a neighborhood of N ∪ N ′ in
M , then the ambient isotopy carrying N to N ′ can be the identity on
N0 and on the complement of U .

We will also use (in some special cases) two less familiar facts, namely
Propositions 3.1 and 3.2.

Proposition 3.1. If Ni is a regular neighborhood of Xi in Mi for
i = 1 and i = 2, then N1 ×N2 is a regular neighborhood of X1 ×X2 in
M1 ×M2.
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Proposition 3.2. Let N be a properly embedded m-submanifold of
a pl m-manifold M such that N ⊂ IntM , and let X be a properly
embedded pl subspace of M with X ⊂ N . Then, a sufficient condition
for N to be a regular neighborhood of X in M is that (N,X) be pl
isomorphic to a pair (N ′, X ′) where N ′ is a regular neighborhood of X ′

in a pl manifold M ′.

Proposition 3.3. If ρ : [0,∞) → Rm
+ is a proper linear ray

embedding with image r in IntRm
+ , then Rm

+ is pl isomorphic fixing r
to a regular neighborhood of r in Rm

+ .

Proof of Proposition 3.3 from Propositions 3.1 and 3.2. Adjusting r
by an affine linear automorphism of Rm

+ , we may assume, without loss
of generality, that r = 0 × [2,∞), where the 0 here denotes the origin
of Rm−1 = ∂Rm

+ .

For any real λ > 0 and integer k > 0, let Bk
λ := [−λ, λ]k, and let

Bk
<λ := (−λ, λ)k. Since each Bm−1

λ is a regular neighborhood of the
origin, a pl isomorphism exists for any ε ∈ (0, 1):

ϕ : Rm−1 −Bm−1
<ε −→ [ε,∞)× ∂Bm−1

ε

extending the canonical identification ∂Bm−1
ε

∼= ε× ∂Bm−1
ε . Although

ϕ itself is not canonical, we regard it as an identification.

By Proposition 3.1, the product Bm−1
1 × [1,∞) is a regular neighbor-

hood of r in Rm
+ . Thus, by Proposition 3.2, it certainly will suffice to

show that, for some ε ∈ (0, 1), a pl isomorphism

(†) h : Rm−1 × [1,∞) −→ Bm−1
1 × [1,∞)

exists, fixing Bm−1
ε × [2,∞).

For ε ∈ (0, 1), it is an elementary fact about pl 2-manifolds that
there is a pl isomorphism:

θ : [ε,∞)× [1,∞) −→ [ε, 1]× [1,∞)

fixing ε× [1,∞). Producing with the identity map of ∂Bm−1
ε , and then

extending by the identity over Bm−1
ε × [1,∞), we get the required pl

isomorphism h for (†).
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DIFF regular neighborhoods. There is a quite general elementary
theory of smooth regular neighborhoods in diff manifolds. Unfortu-
nately, it involves pl, is fastidious to develop, and currently occupies
half of the monograph [29] (see also [6]). We therefore cobble together
an ad hoc, but bootstrapping, notion of diff regular neighborhood for
a diff ray r in a diff m-manifold M (r is a proper diff embedded
copy of [0,∞) in M). This notion will be derived from the well-known
notion of a tube about a submanifold and can be extended to most
sorts of diff submanifolds.

Let p : V (r) → r be the projection of a diff tube about the ray r.
V (r) is a diff submanifold of M lying in IntM . It is a trivial diff
bundle with projection p, fiber the unit (m−1)-disk, orthogonal group,
and zero section the inclusion of r. It is not, however, a neighborhood
of ∂r = b, nor a neighborhood of r itself. Also, V (r) has undesirable
corners. To obtain an acceptable regular neighborhood of r, we trim
V (r) and add a cap along the butt end p−1(b) as follows (see Figure 3).
Let V ′(r) ⊂ V (r) be the subbundle of disks of radius 1/2. In the diff
manifold with boundary (and corners) M0 = M − IntV (r), the point
b = ∂r is a boundary point and the disk fiber Em−1 of V ′ at b is a tube
about b in ∂M0. A tubular neighborhood U(b) of b exists in M0. By
diff tube uniqueness, we can arrange that U(b) ∩ ∂M0 coincides with
Em−1. Further, applying diff collaring existence and uniqueness to
∂M0 in M , we can arrange that T (r) = V ′(r) ∪ U(b) is smooth along
∂Em−1, and hence is a diff submanifold of M without corners. This
T (r) is, by definition, a diff regular neighborhood of r in M .

For a (proper) diff submanifold L, each component of which is
a diff ray, we further define a diff regular neighborhood to be a
diff codimension 0 submanifold that is a disjoint union of regular
neighborhoods of the component rays of L.

Ambient diff isotopy uniqueness of tubes and collars readily estab-
lishes ambient diff isotopy uniqueness of such diff regular neighbor-
hoods. With some care, the isotopy can be kept fixed outside any open
neighborhood of the union of two such regular neighborhoods.

Observe that this definition makes it easy to see that Rm
+ is a diff

regular neighborhood of any affine linear ray in Rm that lies in the
interior of Rm

+ . Indeed, the corresponding tube about r can have
spherical caps as fibers as shown in Figure 4.
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b

r

FIGURE 3. A diff regular neighborhood of a ray. The light gray (in center figure)
indicates a tube about the ray r, and the dark gray (center and right) indicates the
regular neighborhood of r.

FIGURE 4. Rm
+ is a diff regular neighborhood of an affine linear ray.

Note. Proposition 3.3 above is the pl analogue of the previous fact.

TOP open regular neighborhoods. There is no simple elemen-
tary theory of closed top regular neighborhoods. This deficiency will
be overcome using a simple elementary notion of an open regular neigh-
borhood that is adequate for proving the Cantrell-Stallings hyperplane
unknotting theorem for top using CSI. Incidentally, such open regular
neighborhoods could serve in proving the pl and diff versions of the
hyperplane unknotting theorem, in lieu of the more precise closed cat
regular neighborhood theory.

LetW , X , Y and Z be locally compact (but not necessarily compact!)
metrizable spaces, where Z is a closed subset of W . Consider a proper
continuous surjection f : X → Z, and define the infinite radius mapping
cylinder Map (f) to be the quotient of the disjoint union X× [0,∞)	Z
by the relation that identifies (x, 0) to f(x) ∈ Z for all x ∈ X .
Clearly, Z is closed in Map (f), and the open subset X × (0,∞) is
its complement. For ρ > 0, we define the radius ρ mapping cylinder
Mapρ(f) to be the quotient of X × [0, ρ] 	 Z in Map (f) and also the
open one Map<ρ(f) to be the quotient of X × [0, ρ) 	 Z in Map (f).
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Z Z

Map1(f ){Map(f ) {Map(g)
FIGURE 5. Example where Map (f) ⊂ Map (g), but Map1(f) is not closed
in Map (g) and hence is not closed in any space W containing Map (g). Here,
Map (g) = (0, 1)× [0,∞), Z = (0, 1)× 0 and X = (0, 1).

Let g : Y → Z be another such map (same target, but different
source). Suppose that Map (f) and Map (g) are embedded, fixing Z,
as open neighborhoods of Z in W . Then, we have the following well-
known result, where A � B for sets in a spaceW means that the closure
of A in W is contained in the interior of B in W .

Theorem 3.4 (Open mapping cylinder neighborhood uniqueness). If
Map1(f) � Map (g), then a homeomorphism of Map (f) onto Map (g)
exists that fixes pointwise Map1(f). Consequently

Map (g)−Map<1(f)

is homeomorphic to X × [1,∞) fixing X × 1.

Remarks 3.5. (1) Although Map1(f) is clearly closed in Map (f), the
conclusion of the theorem is false if Map1(f) is not closed in Map (g),
and this may occur even when Map (f) ⊂ Map (g) as shown in Figure 5.
On the other hand, if Map (f) ⊂ Map (g), then a self-homeomorphism
h of Map (f) exists such that h(Map1(f)) is closed in W .

(2) Even when X and Y are both top manifolds, the conclusion of
this theorem does not imply that X is homeomorphic to Y . Further,
if they happen to be homeomorphic, X × 1 is not in general ambient
isotopic to Y × 1 (see [43] and the top invariance of simple homotopy
type in [35], along with Essay III of [36]).

(3) Theorem 3.4 remains true if X , Y and Z are merely Hausdorff
and paracompact [57, page 260], but we do not need this generality.
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Proof. The most appropriate proof to recall here is one using an
infinite composition trick that is often called the ‘Eilenberg-Mazur
swindle’ (see also [59, 60]). Without loss of generality, we may assume
that W = Map (g). After reembedding Map (f) and Map (g) into
W by suitable topological automorphisms of Map (f) and Map (g),
respectively, with their supports disjoint from Map1(f), we can assume
that radius 1 and radius 2 mapping cylinders are shuffled as follows

(∗) Map1(f) � Map1(g) � Map2(f) � Map2(g).

Here one uses the local compactness and metrizability hypotheses (see
[37]).

The triad γ = (V ;X × 1, Y × 1), where V is Map1(g) minus the
topological interior of Map1(f), can be regarded as a cobordism from
X to Y (see [46]). In this context, cobordism means that the two
subspaces of each triad are identified in the obvious way to X or to Y .
Cobordism isomorphism (indicated by ∼=) means triad homeomorphism
respecting these identifications.

The relations (∗) show that γ has an inverse γ′ = (V ′;Y × 1, X × 2)
viewed as a cobordism from Y to X , where V ′ is Map2(f) minus the
topological interior of Map1(g) (see Figure 6). In other words, the
end to end cobordism composition γ · γ′ is topologically the product
cobordism εX on X , written γ · γ′ ∼= εX . Similarly, γ′ has an inverse
γ′′ = (V ′′;X × 2, Y × 2), where V ′′ is Map2(g) minus the topological
interior of Map2(f), written γ

′·γ′′ ∼= εY . Using an obvious associativity,
we see that γ and γ′′ are isomorphic cobordisms

γ ∼= γ · εY ∼= γ · (γ′ · γ′′) ∼= (γ · γ′) · γ′′ ∼= εX · γ′′ ∼= γ′′.

In particular, γ′ · γ ∼= εY .

Map (f) minus the interior of Map1(f) is (the body of) the infinite
cobordism composition εX ·εX ·εX · · · , while Map (g) minus the interior
of Map1(f) is the infinite composition γ · εY · εY · εY · · · . But, these
are the same by the infinite product swindle, again using associativity

γ · εY · εY · εY · · · ∼= γ · (γ′ · γ) · (γ′ · γ) · (γ′ · γ) · · ·
∼= (γ · γ′) · (γ · γ′) · (γ · γ′) · · · ∼= εX · εX · εX · · · .

This completes the proof of the theorem.
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Z X×1 X×2Y×1 Y×2

V V' V"

FIGURE 6. Shuffled mapping cylinders.

4. Radial ray and linear gasket uniqueness. In this section,
cat will mean either pl or diff. We begin with a ray unknotting
lemma for radial rays in Hm. Let L ∼= Z+ × [0,∞) be a proper cat
embedded submanifold of Hm so that all rays ri = i× [0,∞) are radial,
i.e., each ray is contained in a line through the origin in Rm ⊃ Hm,
and is disjoint from the origin. In what follows, lengths come from the
standard Euclidean metric on Rm. For each i ∈ Z+, let di denote the
distance from the origin in Rm to the initial point of ri parameterized
by i× 0, and let pi denote the limit point of ri in S

m−1 = ∂H
m
, where

H
m

is the unit ball Bm that is the closure of Hm in Rm.

Let L′ be another such submanifold, and define r′i, d
′
i and p

′
i in the

same way. Also, let f : L → L′ be a cat isomorphism. Notice that
both sequences di and d′i converge to 1 as i → ∞ since L and L′ are
properly embedded.

S(t1, t2), with 0 < t1 < t2 ≤ 1, will denote the thickened sphere of
points x ∈ Hm such that t1 ≤ ‖x‖ ≤ t2.

Lemma 4.1 (Radial ray uniqueness). With the above data, suppose
m ≥ 3. Then there is a cat ambient isotopy ht of H

m, 0 ≤ t ≤ 1, such
that h0 is the identity and h1|L = f .

Remark 4.2. This ambient isotopy of Hm cannot in general extend
to an ambient isotopy of the ball H

m
since the accumulation points in

∂H
m

of L would then be homeomorphic to those of L′. On the other
hand, pi can be an arbitrary sequence of distinct points in ∂H

m
; thus,

its set of accumulation points in ∂H
m

may be any nonempty compact
subset.

Proof of Lemma 4.1 for diff. Reindex the rays ri so that f(ri) = r′i.
Since any diff automorphism of [0,∞) is isotopic to the identity, it
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will suffice to construct ht as above so that h1(ri) = r′i. Reindexing
rays, we can assume that di ≤ di+1 for i ∈ Z+. It is elementary that
di → 1 as i→ ∞.

A preliminary ambient isotopy sets the stage. Shrink the rays ri
radially towards their limit points pi so that di ≥ d′i (while maintaining
di ≤ di+1). This is straightforward using a regular neighborhood of L
in Hm.

Now, choose a diff simple path α1 in Sm−1 from p1 to p′1. This path
obviously permits construction of an isotopy of Sm−1 supported near
the path and taking p1 to p′1. Extending this isotopy radially gives an
ambient isotopy of S(d1, 1) taking the ray r1 to a subset of r′1 (recall,
we arranged that di ≥ d′i). This ambient isotopy of S(d1, 1) extends

naturally to one of H
m

fixing the ball of radius d1 − ε1 for any small
ε1 > 0. At the end of this isotopy, any ray ri, i ≥ 2, that moved has
image another radial ray of the same length which (abusing language)
we still refer to as ri with endpoint pi.

Next, similarly form an isotopy of Sm−1 moving p2 to p′2 and having
support missing p′1. Extending radially to S(d2, 1) we get an ambient
isotopy (fixing r′1 ⊃ r1) taking r2 to a subset of r′2.

Inductively form an isotopy of Sm−1 moving pi to p
′
i and with support

disjoint from p′j, for 1 ≤ j ≤ i− 1. Extend as before to get an ambient

isotopy of H
m

with support in S(di − εi, 1) taking ri to a subset of
r′i while fixing r′j ⊃ rj , for 1 ≤ j ≤ i − 1. Here, εi lies in (0, di) and
εi → 0 as i → ∞. Also, since di → 1 as i → ∞, the points in any
compact set in Hm are moved at most finitely many times. Hence, the
time interval composition of all of these ambient isotopies provides a
well-defined ambient isotopy of Hm (but usually not one of H

m
). We

now have ri ⊂ r′i for all i ∈ Z+. A final ambient isotopy stretches each
ri so that di = d′i, finishing the proof for diff.

Proof of Lemma 4.1 for pl. Make a preliminary pl identification
Θ of the thickened standard pl (m − 1)-sphere Σm−1 × (0, 1) to the
complement of the origin Hm − 0 in such a way that each component
of L and of L′ lies in a modified ray

Θ ((point)× (0, 1)) ⊂ Θ
(
Σm−1 × (0, 1)

)
= Hm − 0.

Now, imitate the diff proof.
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Remark 4.3. There is no such pl identification Θ that sends every ray
of the form ((point)× (0, 1)) ⊂ Σm−1× (0, 1) to a radial ray in Hm−0,
not even when m = 2. This is a corollary of the observation that the
point preimages under any linear surjection Rm → Rm−1 are the set
of all lines in Rm parallel to the kernel line. Thus, the construction of
Θ must be adapted to L and L′, for example, by using a well-chosen
triangulation in which L and L′ are 1-subcomplexes.

Combined with pl and diff regular neighborhood theory (see Sec-
tion 3), the above radial ray uniqueness lemma (Lemma 4.1) will let
us prove a linear gasket uniqueness lemma that we now formulate.
Adopting the context and terminology established for Lemma 4.1, fix
a category cat to be pl or diff. Let G be a linear gasket of dimension
m ≥ 3, i.e., a submanifold of Hm bounded by countably many disjoint
hyperbolic hyperplanes Hi, i ∈ Z+. Let G′ be another such gasket of
dimension m and distinguish corresponding subsets by primes.

Lemma 4.4 (Linear gasket uniqueness). Given the data above, there
is a cat ambient isotopy gt of Hm, 0 ≤ t ≤ 1, so that g0 = id|Hm ,
g1(G) = G′, and g1(Hi) = H ′

i for all i ∈ Z+.

Corollary 4.5. If G and G′ are gaskets and f : ∂G → ∂G′ is a
degree +1 cat isomorphism of their boundaries, then f extends to a
cat isomorphism F : G→ G′.

Proof of Lemma 4.4. Without loss of generality, we assume that G
and G′ are linear gaskets in Hm. The gasket G determines a canonical
cat submanifold L ∼= Z+ × [0,∞) of Hm as follows: each hyperplane
boundary component Hi, i ∈ Z+, of the gasket G defines a proper
radial ray ri in Hm, namely, the one orthogonal to Hi, having endpoint
the point of Hi closest to the origin in Rm, and extending outwards
from G. The union of these rays is defined to be L. For each Hi, let
Vi denote the closed complementary component of Hm − IntG with
boundary Hi. If r is any radial ray in Hm, then let s denote the radial
ray obtained from r by shrinking it outwards radially to be half as long
(for the Euclidean metric). Each Vi is isomorphic to the closed upper
half space Rm

+ and is a cat regular neighborhood of si as we have
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observed in Section 3. Similarly, the gasket G′ canonically determines
closed complementary components V ′

i , rays r
′
i, and shortened rays s′i.

After a preliminary isotopy provided by Lemma 4.1 (radial ray
uniqueness), we may assume ri = r′i for all i ∈ Z+, and hence si = s′i for
all i ∈ Z+. By cat regular neighborhood ambient uniqueness, we may
now ambiently isotop Vi to V ′

i for all i (simultaneously), completing
the proof.

Remark 4.6. Lemmas 4.1 and 4.4 also hold for a finite index set in
place of Z+. One can deduce this from the case of Z+. Or, one can
note that the same proofs apply.

Remark 4.7. As it is stated, Lemma 4.1 (radial ray uniqueness) fails
in dimension 2, even for three rays. Any set of distinct radial rays inH2

obviously inherits a natural cyclic order from that of their limit points
on the circle S1. The proof of Lemma 4.1 actually shows that such
a collection of rays is determined up to ambient isotopy of H2 by the
isomorphism class of its cyclic ordering. There are many such classes
when the number of rays is infinite. For example, the number of rays
with no immediate successor (or predecessor) is then an invariant. In
fact, there are uncountably many such classes. We are confident that,
taking account of this natural ray order, one can nevertheless define
an associative CSI operation for 2-manifolds. It is non-commutative in
general for 2-manifolds with boundary.

5. Proof of Theorem 2.3: Basic properties of CSI.

Proof of property (1). Well-definition and commutativity of
CSI. Let cat be pl or diff. Recall that, with the data introduced for
the statement of property (1) of Theorem 2.3 above, we are seeking a
certain sort of cat isomorphism of triples ψ : (W,G,Q) → (W ′, G′, Q′).
On the closed complements of the gasket interiors, this ψ is rigidly
prescribed by the data; call this ψ0 : W − IntG → W ′ − IntG′. This
ψ0 has degree +1 as a map ∂G → ∂G′. Further, the ψ we seek is
prescribed up to isotopy on Q as a degree +1 isomorphism Q → Q′.
Thus, denoting by H and H ′ the fine gaskets G− IntQ and G′− IntQ′,
it suffices to extend ψ| : ∂H → ∂H ′ to a cat degree +1 isomorphism
H → H ′ of the fine gaskets. This extension exists by Corollary 4.5.
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We explain the notion of a countable indexed set M of flanged
manifolds. It consists of a set I that is finite or countably infinite, and
a map of I into the class of flangedm-manifolds. The set I is called the
index set and, in what follows, will always be a subset of N or of N2.
If we write M = {Mi | i ∈ I}, then the flanged manifold corresponding
to i ∈ I is Mi. It is not always required that Mi and Mj be disjoint or
even distinct when i �= j in I. Thus, one can also similarly define an
indexed set in any class in place of the class of flanged manifolds for
example, in the class of cat isomorphism classes of flanged manifolds.

Composite CSI operations and associativity. To elucidate
associativity, we must make its meaning more precise. Our proof of the
Cantrell-Stallings hyperplane unknotting theorem uses only a simple
(but infinite) associativity which is expressible in traditional algebraic
notation. But, the CSI operation enjoys a natural associativity that is
at once more general and equally straightforward to establish. Some
tree combinatorics will be involved. More specifically, we introduce
what we call a tree of flanged gaskets. The category cat in which we
work here is again pl or diff, and the manifold dimension m will be
≥ 3.

A rooted tree will mean a countable simplicial tree (not necessarily
locally finite) that has a distinguished vertex v0 called the root. In such
a tree, there is a natural orientation of the edges. Indeed, from each
vertex v �= v0 there is a unique oriented edge vv′ joining v to a vertex v′

strictly nearer to the root vertex in the obvious simplicial path metric.

A tree of m-dimensional flanged gaskets is a rooted abstract tree G
whose vertices and edges are given as follows:

(1) The vertex set of G is a finite or countable indexed set {Gi | i ∈ I}
of disjoint m-dimensional flanged gaskets. The flange of Gi is denoted
Fi and the root vertex of G is denoted G0. Furthermore, the boundary
components of Gi are indexed as Hi,j , j ∈ Ji.

(2) There is a unique oriented edge of G joining any vertex Gi �= G0

to the unique adjacent vertex (flanged gasket) Gi′ that is nearer to
G0. This edge is presented as an ordered pair (Gi, Hi′,j) where, as the
notation indicates, Hi′,j is one of the indexed boundary components
of Gi′ . Each boundary component of the disjoint sum |G| = 	i|Gi| is
required to occur in at most one edge of G.
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By the following gluing process, G determines a cat composite flanged
gasket denoted by ‖G‖. In the disjoint sum |G| = 	i|Gi|, make these

identifications: for each edge (Gi, Hi′,j) of G, identify the flange Fi ofGi

to a small open collar of Hi′,j in |Gi′ | by an orientation preserving cat
isomorphism θi,i′ . Here ‘small’ should mean inside a prescribed open
collar neighborhood of the boundary ∂(Gi′ − Fi′) of the fine gasket of
Gi′ , so that the flanges identified into Gi′ obviously do not intersect.
Since degree determines θi,i′ up to isotopy, ‖G‖ is determined up to
cat isomorphism that is the identity outside of an arbitrarily small
bicollar neighborhood in ‖G‖ of the identified boundary components
∂Fi = Hi′,j .

Lemma 5.1. With the above definitions, the pair (‖G‖, F0) is a
flanged gasket.

The proof of Lemma 5.1 will come after we complete the definition
of a composite CSI operation based on G.
For each i ∈ I, consider the set J+

i ⊂ Ji of those j ∈ Ji (if any) such
that, for no k ∈ I, an edge (Gk, Hi,j) exists. By the construction of
‖G‖, its boundary ∂‖G‖ is a disjoint sum

⊔{
Hi,j | i ∈ I and j ∈ J+

i

}
.

By definition, a composite CSI operation according to the rooted tree
G of flanged gaskets as above involves an indexed set of flanged m-
manifolds to be ‘summed’

{
Mi,j | i ∈ I and j ∈ J+

i

}
.

The corresponding ‘sum’ is the flanged manifold (flanged by F0) ob-
tained by gluing the flange of each such Mi,j by a degree +1 isomor-
phism to a small open collar of Hi,j in ‖G‖ (clearly this open collar
may be chosen in |Gi|).
Proof of Lemma 5.1. With the notations established above, it suffices

to prove that the flanged manifold ‖G‖ is a flanged gasket. This is
immediate from the following more primitive lemma (which will be
reused in Section 9 in our proof of the MHLT (Theorem 9.2)).

Lemma 5.2. For cat=diff or pl, suppose that an oriented cat
m-manifold X is a finite or countable union of cat gaskets Gi, i ∈ I,
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any two of which are either disjoint or intersect in a single boundary
component of each. Suppose also that the nerve of the closed cover
{Gi | i ∈ I} of X is a simplicial tree T . Then X is a cat gasket.

Proof of Lemma 5.2. Without loss of generality, we assume I is N or
a finite initial segment of N. Reindexing the Gi, we can arrange that,
for all i ≥ 0, the gasket Gi+1 is adjacent in X to the connected block

Xi := G0 ∪G1 ∪ · · · ∪Gi.

By definition, G0 = X0 can be degree +1 embedded inHm with frontier
made up of hyperbolic hyperplanes.

Suppose inductively that φi : Xi → Hm is such an embedding
for some i ≥ 0. Write X ′

i for φi(Xi), write Hi for the boundary
component of Xi that is shared with Gi+1 and write H ′

i for the
hyperbolic hyperplane φi(Hi). We will extend this embedding φi to
one of Xi+1 = Xi ∪Gi+1.

Let Y +
i be the closed halfspace in Hm bounded by H ′

i that does not
intersect IntX ′

i. In IntY +
i choose as many disjoint halfspaces (each

bounded by a hyperbolic hyperplane) as Gi+1 has boundary compo-
nents disjoint from Xi; then delete the interiors of those halfspaces
from Y +

i . With the intent to assure that the ultimate embedding of X
will be proper, we can and do

(∗) choose these halfspaces within the 1/(i+ 1) neighborhood of the
frontier sphere Sm−1 of Hm in Rm (for the Euclidean distance of Rm).

The result is a linear gasket G′
i+1 in Hm adjacent to X ′

i, more precisely
X ′

i ∩G′
i+1 = H ′

i. By Corollary 4.5 concerning cat uniqueness of linear
gaskets, there is a cat isomorphism Gi+1 → G′

i+1 agreeing with φi on
Hi and thus extending φi|Hi to a cat embedding ψi+1 of Gi+1 onto
a linear gasket in Hm. Then φi and ψi+1 together define an injective
cat mapXi+1 → Hm that is clearly proper. For cat=pl, this injective
map induces a pl isomorphism with its image. For cat=diff, this is
likewise true after modification of ψi+1 on a small collar neighborhood
of Hi in Gi+1 (see [46]).

This completes the induction defining φi for i ∈ I. The inductively
imposed condition (∗) assures that:
(∗∗) For each i > 0, the frontier ∂G′

i lies in the 1/i neighborhood of
Sm−1.
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Hence G′
i either contains the ball about the origin of Euclidean radius

1 − (1/i) or else it lies outside that ball. Since the sets IntG′
i are

disjoint, it follows that, for all large i, G′
i lies outside the ball of radius

1 − (1/i). Since Hm is the open ball of radius 1 in Rm, we conclude
that:

(∗∗∗) The sets G′
i converge toward Alexandroff’s infinity in Hm.

Together, the φi clearly define an injective cat map φ : X → Hm. The
condition (∗∗∗) proves that φ is proper and thus a cat embedding onto
a linear gasket X ′.

Remark 5.3. In the proof of Lemma 5.2, if the conditions (∗) and (∗∗)
are not imposed and the tree T contains an infinitely long embedded
path, then the map φ : X → Hm may not be proper. But the closure
of φ(X) always seems to be a linear gasket.

Proof of property (2): Associativity of CSI operations. Here
we state explicitly, and prove, the associativity properties of CSI as
promised in property (2) of Theorem 2.3. We then deduce two basic
corollaries.

By Lemma 5.1 and the above definition of composite CSI operation,
we immediately get:

Theorem 5.4 (First associativity theorem). Any fixed composite
CSI operation on a finite or countably infinite set of disjoint flanged
cat m-manifold summands, m ≥ 3, is isomorphic to a (normal) CSI
sum of the same flanged manifolds. Thus the flanged manifold resulting
from this composite CSI operation depends (up to cat isomorphism of
flanged manifolds) only on the disjoint sum of the flanged manifold
summands.

This quickly implies the

Theorem 5.5 (Second associativity theorem). Consider a nonempty
sequence Mi (finite or infinite) of disjoint flanged m-manifolds, m ≥ 3,
where each Mi is itself a CSI sum of a sequence (finite or infinite) of
disjoint flanged manifolds Mi,j. Then, writing M for the set {Mi} and
M′ for the set {Mi,j}, there is a cat isomorphism of flanged CSI sums:

CSI (M) ∼= CSI (M′).
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Proof. Examine the defining construction for CSI (M), which uses
a flanged gasket with |M| boundary components. In it, replace each
summand Mi by a copy of CSI (Mi) where Mi := 	j{Mi,j}. This
reveals that CSI (M) is isomorphic to a composite CSI sum with
summands M′. Hence, the first associativity theorem tells us that
CSI (M) ∼= CSI (M′).

Corollary 5.6. Let α, β and γ be flanged m-manifolds, m ≥ 3.
Then one has a cat isomorphism of flanged manifolds (αβ)γ ∼= α(βγ).

This is the usual formulation of associativity for any binary operation.
The parentheses in this example and the next serve to indicate order
of CSI summation. The expression (αβ) indicates the flanged manifold
for which we have mentioned the alternative notations CSI (α, β) and
(α�β).

Proof. Two applications of the second associativity theorem above
give the two isomorphisms:

(αβ)γ ∼= αβγ ∼= α(βγ).

The next corollary will be used in proving the HLT (Theorem 6.1).

Corollary 5.7. Let the symbols a, b, c, . . . of an infinite alphabet
stand for cat flanged m-manifolds, m ≥ 3. Then one has a cat
isomorphism of infinite CSI sums of flanged manifolds:

(†) (ab)(cd)(ef)(gh) · · · ∼= a(bc)(de)(fg) · · · .

Proof. Applying the second associativity theorem to the left hand
side of (†), one gets the isomorphism of CSI sums:

(ab)(cd)(ef)(gh) · · · ∼= abcdefgh · · · .

Similarly,
a(bc)(de)(fg) · · · ∼= abcdefgh · · · .
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Proof of property (3): Identity element. The easy verifications
that the CSI identity is ε = (Rm,Rm

+ ) and ε ∼= εεε · · · are left to the
reader.

The proof of the three basic properties of CSI (Theorem 2.3) is
complete.

6. CSI proves the Cantrell-Stallings hyperplane unknotting
theorem. The machinery developed thus far suffices to prove the
following important hyperplane unknotting theorem [9, 60]. Given a
manifoldM cat isomorphic to some Rk, we say a cat ray r embedded
in M is unknotted in M if there is a cat isomorphism f : Rk → M
such that f−1(r) is linear in Rk.

Theorem 6.1 (Hyperplane linearization theorem, HLT). Consider a
codimension 1 and cat proper submanifold N of Rm, m ≥ 2, that is
cat isomorphic to Rm−1. Assume that there is a ray r in N that is
unknotted both in N and in Rm. Then, N is itself unknotted in the
sense that g(N) is linear for some cat automorphism g of Rm.

Remark 6.2. The ray unknotting hypothesis facilitates our CSI based
proof for m ≥ 3. The next section shows it is superfluous if m > 3.

Remark 6.3. Dimension 2 is special in that, not only is the ray
unknotting hypothesis unnecessary, but in the case of top the abiding
assumption of local flatness is redundant by the classical Schoenflies
theorem (see [48, 55]).

Proof of the HLT (Theorem 6.1) for m = 2. This is known by classical
methods that are explained in [55]. Some details follow.

Case cat=top. One-point (Alexandroff) compactify the pair (R2, N)

to produce a pair (S2, N̂). The (difficult) classical Schoenflies theorem

tells us (S2, N̂) is homeomorphic to the standard pair (S2, S1). From
this, it follows that, upon deleting the added point ∞, the pair (R2, N)
is homeomorphic to (R2,R1 × 0).

Case cat=pl. Proceed similarly but use the “almost pl Schoenflies
theorem” (APLST) of Sections 5 and 7 of [55] (see also Remark 6.4

below) to conclude that (S2, N̂) is homeomorphic to (S2, S1) by a
homeomorphism that is pl except at ∞. Upon deleting ∞ we get
the desired pl isomorphism between (R2, N) and (R2,R1 × 0).



CSI AND HYPERPLANE UNKNOTTING 1829

Case cat=diff. It is possible to imitate the above proof for pl.
Alternatively, embedded Morse theory offers an interesting proof that
is described in Remarks 9.19 and 9.20 following the proof of the two-
dimensional multiray radialization theorem (MRT, Theorem 9.13) in
Section 9.

Remark 6.4 (On overlapping two-dimensional results and techniques).
Fortunately, one overlap simplifies: in dimension 2, one can usually
shift results, at the statement level, between any two of the three
categories diff, pl and top by appealing to what can be called “2-
Hauptvermutung” theorems, for which good references are [48], or [55,
Section 9].

Another simplification comes from the coincidence of these three
seemingly different properties for connected noncompact surfaces with
all boundary components noncompact: irreducibility, planarity, and
contractibility. A proof will be given as Proposition 9.24.

On the other hand, in dimension 2, there is a somewhat confusing
wealth of techniques and names for them. We now illustrate for the
present article.

What is called the “Irreducible pl Surface Classification Theorem”
(PLCT) in [55, Section 7] is a direct pl classification, using the very
simple pl Schoenflies theorem, for all pl connected noncompact planar
surfaces with finitely many boundary components all noncompact. This
PLCT was used in [55] to prove the classical Schoenflies theorems that
are used in the proofs of 2-HLT just given. Also, PLCT clearly directly
implies the pl case of 2-HLT.

Serious overlap of techniques is going to appear when we attack the
two-dimensional multiple hyperplane linearization theorem (2-MHLT)
in Section 9. The PLCT just mentioned will turn out to be synonymous
with the case for finitely many boundary components of the two-
dimensional “Gasket Recognition Theorem” (2-GRT), see Corollary 9.3
below; this 2-GRT generalizes PLCT in that it allows an infinite number
of boundary components. Towards the end of Section 9, we will
observe that 2-GRT is equivalent to a classification of all contractible 2-
manifolds, and we will ultimately give three amazingly different proofs
of it, which respectively focus on embedded Morse theory, end theory
and hyperbolic geometry.
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FIGURE 7. Gaskets G, G∗ and flange T (r) for a hyperplane unknotting problem.

Proof of the HLT (Theorem 6.1) for m ≥ 3 and cat=pl or diff.
It suffices to prove that A and A′, the closures of the two components
of Rm −N in Rm, are cat isomorphic to the closed upper half space
Rm

+ ⊂ Rm. From A construct a CSI pair α = (A ∪ P, P ) where P is
an open collar neighborhood in A′ of ∂A′ = N = ∂A, the orientation
of P being inherited from Rm. Similarly, construct α′ = (A′ ∪ P ′, P ′).

Assertion 6.5. The CSI composition αα′ of α and α′ is cat
isomorphic to the trivial CSI pair ε = (Rm,Rm

+ ) that is the identity
for the CSI operation.

Proof of Assertion 6.5. The key idea is to perceive, embedded in Rm,
the coarse and fine gaskets for the CSI operation αα′ as suggested by
Figure 7. Its coarse gasket can clearly be a bicollar neighborhood G of
N in Rm. We shall prove that a fine gasket is

G∗ = G− IntT (r)

where T (r) is a regular neighborhood of r in G.

Since r is, by hypothesis, unknotted in N , this G∗ is easily seen to
be a gasket; it has three boundary components. Note that the three
closed complementary components of IntG∗ in Rm are respectively
isomorphic to A, A′ and T (r).
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Since T (r) is cat degree +1 isomorphic to Rm
+ , it is a CSI flange, and

we conclude from the definition of CSI that the CSI pair (Rm, T (r))
is (up to CSI pair isomorphism) a CSI product αα′, whose coarse and
fine gaskets are G and G∗.

Since r is, by hypothesis, unknotted in Rm, it follows, by pl and
diff ambient regular neighborhood uniqueness (see Section 3), that the
complement of IntT (r) in Rm is cat isomorphic to Rm

+ . Therefore,

(†) (Rm, T (r)) ∼= (Rm,Rm
+ ) = ε,

where ∼= denotes CSI pair isomorphism.

Taken together, the last two paragraphs prove the assertion that
αα′ ∼= ε.

The assertion quickly implies the theorem using the Eilenberg-Mazur
swindle. First, ε ∼= αα′ ∼= α′α using commutativity, so α and α′

are mutually inverse. Whence, the infinite product swindle using
associativity

α ∼= αεεε · · · ∼= α(α′α)(α′α) · · · ∼= (αα′)(αα′)(αα′) · · · ∼= εεε · · · ∼= ε.

Also, α′ ∼= α′ε ∼= α′α ∼= ε. Thus, A and A′ are cat isomorphic to Rm
+

as required. This establishes the HLT (Theorem 6.1) for m ≥ 3 and
cat=pl or cat=diff.

Proof of the HLT (Theorem 6.1) for m ≥ 3 and cat=top. Like
Cantrell, we will only use elementary arguments. In particular, recall
that, by using our refined version of the definition of CSI for top
pairs given at the end of Section 2, we have avoided use of the stable
homeomorphism theorem (SHT) in establishing the basic properties of
CSI.

We now proceed to adapt to top the above proof of the diff version.
It adapts routinely except for the two short paragraphs that apply,
to the ray r in Rm, the uniqueness of diff regular neighborhoods to
deduce the diff CSI pair isomorphism (†). For top, we now establish
(†) using the top open regular neighborhood uniqueness of Section 3.

We can and do choose a linear structure on N such that r is a
linear ray in N . The top bicollar neighborhood G of N was first
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FIGURE 8. Quotient map F : Rm−1 × [0,∞) → Rm.

established by Brown in [4]; a pleasant alternative construction is due
to R. Connelly, see [36, Essay I, page 40]. This G can then be viewed as
a diff gasket of which r and N are smooth submanifolds. However, the
inclusion of G into Rm is in general not a diff embedding. Let T (r)
be a diff regular neighborhood of r in G, and let G∗ = G − IntT (r)
be the resulting fine gasket.

Assertion 6.6. The closed complement of IntT (r) in Rm is top
isomorphic to Rm

+ . Hence, (†) holds for top CSI pair isomorphism.

Proof of Assertion 6.6. By hypothesis, r is unknotted in Rm. Thus,
we can now observe that:

(1) Rm is an open topological mapping cylinder neighborhood of r
in Rm.

(2) The diff regular neighborhood T (r) in G is a closed mapping
cylinder neighborhood of r in Rm with topological frontier ∂T (r)
bicollared in Rm.

For (1), define f : Rm−1 → r = [0,∞) by f(x) = ‖x‖ which is a
proper surjection. The mapping cylinder Map (f) embeds homeomor-
phically onto Rm by the quotient map F : Rm−1 × [0,∞) → Rm that
extends (0, x) �→ (0, f(x)) and maps each hemisphere with center the
origin onto the full sphere containing it, crushing (only) the hemisphere
boundary onto a single point of r (see Figure 8). Fact (2) follows simi-
larly from our peculiar definition of diff regular neighborhood of a ray
(see Section 3).

By open mapping cylinder uniqueness (Theorem 3.4), these two facts
imply that the closed complement in Rm of IntT (r) is top isomorphic
to ∂T (r)× [1,∞). This completes the proof of the assertion.
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The proof of the HLT (Theorem 6.1) for top now concludes as in the
diff case.

Remark 6.7. In the above elementary proof of the top version of the
HLT (Theorem 6.1), it is not proved that the self homeomorphism g of
Rm sending N to a linear hyperplane can be chosen ambient isotopic
to a linear map. It is always ambient isotopic; but, to prove this, one
needs the SHT of [17, 34].

We close this section with some historical remarks on the Cantrell-
Stallings theorem.

(1) Progress towards the top theorem from Mazur [39] 1959 to
Cantrell’s full top unknotting theorem in [9] 1963 was incremental.
In 1960, Morse [49] extended [39] to prove the top version under the
extra hypothesis that N∪∞ is a top bicollared (m−1)-sphere in them-
sphere Rm ∪∞. Brown’s parallel but amazingly novel article [3] 1960
achieved this, too. Then Brown [4] 1962 proved a collaring theorem
that replaced the above bicollaring hypothesis by local flatness in the
m-sphereRm∪∞. From 1962 onwards, Cantrell’s goal (already reached
in 1963) has been viewed as the problem of proving that a codimension 1
sphere in a sphere of dimension> 3 cannot have a single ‘singular’ point
where local flatness fails.

(2) Huebsch and Morse [32] 1962 established the diff version under
the much stronger unknotting hypothesis that N be linear outside a
bounded set in Rm.

(3) Our proof (for any cat) can be viewed as a radical reorganization
using CSI of Cantrell’s proof for top [9]. On the other hand, it was
Stallings [60] who first pointed out the diff version, and formulated a
version valid in all dimensions. The proof of the top version requires
extra precautions (for us, diff gaskets) and extra argumentation (for
us, open mapping cylinder neighborhood uniqueness), but, in compen-
sation, it clearly reproves, ab initio, the Schoenflies theorem of Mazur
[39] and Brown [3, 4].

(4) The apparent novelty, which made us write down the above proof,
was our reformulation (circa 2002) of much of the geometry of Cantrell’s
proof as standard facts about CSI. This explicit use of some sort of
connected sum was, of course, suggested by Mazur’s pioneering article
[39]; compare the ‘almost pl’ version of the Schoenflies theorem in [51].
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(5) CSI itself was not a novelty. Gompf [21] had shown that an
infinite CSI of smooth 4-manifolds, each homeomorphic to R4, is well
defined. He achieved this by proving a multiple ray unknotting result
using finger moves; his proof readily extends to all dimensions ≥ 4 (in
fact, it is simpler in dimensions > 4). Gompf used this observation and
the infinite product swindle to show that an exotic R4 cannot have an
inverse under CSI. The reader can now check this as an exercise.

(6) Stallings [60] deals explicitly only with the diff case. He avoids
all connected sum notions. Indeed, the basic entity for which he
defines an infinite product operation is a (proper) diff embedding
f : Rm−1 → Rm (with an unknotted ray and m ≥ 3). Stallings’
exposition seems to invite formalization in terms of a pairwise CSI
operation.

(7) Johannes de Groot in 1972 [25] announced a proof of Cantrell’s
top HLT by generalization of Brown’s proof of the top Schoenflies the-
orem. Regrettably, de Groot died shortly thereafter and no manuscript
has surfaced since.

7. Basic ray unknotting in high dimensions > 3. The first
goal of this section is to explain the well-known fact, mentioned in
Remark 6.2 above, that rays in Rm are related by an ambient isotopy
provided that m > 3. Then we go on, still assuming m > 3, to classify
so called multirays in terms of the proper homotopy classes of their
component rays.

Throughout this section, cat is one of top, pl or diff. The following
basic result will be needed for 1-manifolds mapping into manifolds of
dimension m > 3.

Theorem 7.1 (Stable range embedding theorem). Let f : Nn →Mm

be a proper continuous map of cat manifolds, possibly with boundary.
If 2n + 1 ≤ m, then f is properly homotopic to a cat embedding
g : N → M such that g(N) lies in IntM . Further, if 2n + 2 ≤ m
and g′ is a second such embedding properly homotopic to f , then a cat
ambient isotopy ht : M → M , 0 ≤ t ≤ 1, exists such that h0 = id|M
and h1g = g′.

For cat=pl or cat=diff, the proof is a basic general position
argument that can be found in many textbooks. Early references are
[2, 65].
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For top, the proof is still surprisingly difficult. One needs a famous
method of Homma from 1962 [30], as applied by Gluck [19, 20]. Many
expositions of these types of results (in particular [20]) are given in
a compact relative form, from which one has to deduce the stated
noncompact, nonrelative but proper version by a classical argument
involving a skeletal induction in the nerve of a suitable covering (see
[36, Essay I, Appendix C]).

Next, we show that, in some cases of current interest, all rays are
properly homotopic.

Lemma 7.2 (Simplest proper ray homotopies). Let X be locally
arcwise connected and locally compact. Suppose X admits a connected
closed collar neighborhood Y × [0,∞) of Alexandroff infinity. Then any
two proper maps [0,∞) → X are properly homotopic.

Proof. Any proper map f : [0,∞) → X is properly homotopic to one
with an image in the closed subset Y × [0,∞) ⊂ X , so we can and do
assume that X is Y × [0,∞).

Then, writing f(0) = (y, t0) ∈ Y × [0,∞), it is easy to construct
an explicit proper homotopy of f to the proper continuous radial
embedding ry : [0,∞) ↪→ X = Y × [0,∞) sending t �→ (y, t) for all t.

Finally, for any two points y and y′ in Y , there is a path from y to
y′ in Y , and any such path provides an explicit proper homotopy from
ry to the similarly defined radial embedding ry′ .

These last two results, when combined with the Cantrell-Stallings
theorem as stated in the last section (Theorem 6.1), yield the following
hyperplane linearization theorem already announced there.

Theorem 7.3. For m �= 3, any cat submanifold N of Rm that
is isomorphic to Rm−1 is unknotted in the sense that there is a cat
automorphism h of Rm such that h(N) = Rm−1 × 0 ⊂ Rm.

Remarks 7.4. (1) Remember that, by convention, a cat submanifold
is a closed subset and is assumed cat locally flat unless the contrary
is explicitly stated.

(2) The case cat=top of Theorem 7.3 is Cantrell’s result as he
formulated it. Beware that (still today) any completely bootstrapping
proof seems to require an exposition of Homma’s method.
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(3) It is well known that a proper ray (any cat) may be knotted
in R3. Fox and Artin [16, Example 1.2] exhibited the first such ray,
Alford and Ball [1] produced infinitely many knot types and conjectured
uncountably many exist, and McPherson [41] published a proof of this
conjecture (earlier, Giffen, 1963, Sikkema, Kinoshita, and Lomonaco,
1967, and McPherson, 1969, had announced proofs [5, page 273]). The
boundary of a closed regular neighborhood of any such knotted ray is a
knotted hyperplane in R3. Still, even in this dimension, the knot type
of any cat hyperplane N ⊂ R3 is determined by the knot type in R3

of any cat ray r ⊂ N [58] (see also [26]); in fact, N is ambient isotopic
to the boundary of a cat closed regular neighborhood of r in R3 [8].
Thus, one of the two closed complementary components of N in R3 is
cat isomorphic to R3

+.

(4) Here is an immediate corollary for cat = diff that concerns the
still mysterious dimension 4. Suppose that N3 ⊂ S4 is a smoothly
embedded 3-sphere such that the pair (S4, N3) is not diff isomorphic
to (S4, S3) and thus is a counterexample to the unsettled diff 4-
dimensional Schoenflies conjecture. Then, nevertheless, for any point
p in N3, one has (S4 − p,N3 − p) ∼= (R4,R3).

(5) We have seen that the Cantrell-Stallings unknotting theorem is
closely related to the fact that: if α := (M,P ) is a dimension m
cat CSI pair that has an inverse up to degree +1 isomorphism in the
commutative semigroup of isomorphism classes of cat CSI pairs of
dimension m ≥ 3 under CSI sum, then (M,P ) is in the identity class,
namely, that of (Rm,Rm

+ ). Thus, it is perhaps of interest to ask about
other algebraically expressible facts about this semigroup. For example:
is it true that α ∼= αβ always implies that α ∼= αβ∞? Curiously, this is
false for certain (M,P ) where M has more than one end, as Figure 9
indicates.

Although this figure is for dimension 2, it clearly has analogs in all
dimensions > 2. Is this implication true at least when M has one end?
Or when M is the interior of a compact manifold?

This concludes our exposition of the Cantrell-Stallings theorem.

8. Singular and multiple rays. This section shows that multiple
rays embed and unknot much like single rays. We define a singular
ray in a locally compact space X to be a proper continuous map



CSI AND HYPERPLANE UNKNOTTING 1837

P

M

FIGURE 9. CSI pair (M,P ) where M has two ends and one end is collared.

[0,∞) → X . In Section 9, singular rays will be a tool for unknotting
multiple hyperplanes in dimensions > 3.

Lemma 8.1. Let fi : [0,∞) → X, with i varying in the finite or
countably infinite discrete index set S, be singular rays in a locally
compact, sigma compact space X. Then, for each i ∈ S, one can
choose a proper homotopy of fi to a singular ray f ′

i such that the rule
(i, x) �→ f ′

i(x) defines a proper map f ′ : S × [0,∞) → X.

Proof. The choice fi = f ′
i will do, in case S is finite. When S is

infinite, we can assume S = Z+. Then, choose in X a sequence of
compacta ∅ = K1 � K2 � K3 � · · · with X = ∪jKj. By properness
of fi, ai in [0,∞) exists so large that fi([ai,∞)) ⊂ X −Ki. Define f ′

i

to be fi precomposed with the retraction [0,∞) → [ai,∞).

It is easily seen that f ′
i is properly homotopic to fi. The properness

of the resulting f ′
i now follows. Indeed, if K ⊂ X is compact, then

K lies in the interior of Ki for some i; hence, f ′
j([0,∞)) ∩K = ∅ for

j > i. Thus, the preimage f ′−1(K) in S × [0,∞) meets j × [0,∞)
only for j ≤ i. But, the intersection f ′−1(K) ∩ {1, 2, . . . , i} × [0,∞) is
compact by the finite case.

Here is a key lemma concerning just one singular ray that will help
to deal with infinitely many rays.

Lemma 8.2. Let K be a given compact subset of a locally compact,
sigma compact space X, and let f and f ′ be singular rays in X whose
images are disjoint from K. If f and f ′ are properly homotopic in
X, then the proper homotopy can be (re)chosen to have image disjoint
from K.

Proof. If ht : [0,∞) → X , 0 ≤ t ≤ 1, is a proper homotopy from
f = h0 to f ′ = h1, then its properness assures that, for some d ≥ 0,
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the image ht([d,∞)) is disjoint from K for all t. But, the singular ray

f is proper homotopic in the complement of K to the singular ray f̂ ,
that is, f |[0,∞) precomposed with the retraction [0,∞) → [d,∞). This
is similar for f ′. Shunting together these three proper homotopies, one
obtains the asserted proper homotopy.

Lemma 8.3. Let fi and f
′
i , with i varying in the finite or countably

infinite discrete set S, be two indexed sets of singular rays in the
connected, locally compact, sigma compact space X. Suppose that the
two continuous maps f and f ′ from S× [0,∞) to X defined by the rules
(i, x) �→ fi(x) and (i, x) �→ f ′

i(x) are both proper. Suppose also that fi
is proper homotopic to f ′

i for all i ∈ S. Then, a proper homotopy
ht : S × [0,∞) → X, 0 ≤ t ≤ 1, exists that deforms h0 = f to h1 = f ′.

Proof. We propose to define the needed proper homotopy ht by
choosing, for i ∈ S, suitable proper homotopies hi,t from fi to f

′
i and

then defining ht by setting ht(i, x) = hi,t(x) for all i ∈ S, all t ∈ [0, 1],
and all x ∈ [0,∞). The choices aim to ensure that ht is a proper
homotopy which means that the rule (t, i, x) �→ ht(i, x) is proper as a
map [0, 1]× S × [0,∞) → X .

If S is finite, any choices will do. But, if S is infinite, then bad choices
abound. For example, ht is not proper if every homotopy hi,t(x) meets
a certain compactum K.

If S is infinite, we now specify choices that do the trick. Without
loss of generality, assume S = Z+. Let ∅ = K1 � K2 � K3 � · · ·
be an infinite sequence of compacta with X = ∪jKj . For each i ∈ S,
let J(i) be the greatest positive integer such that the images of the
singular rays fi and f

′
i are both disjoint from KJ(i). Since f and f ′ are

proper, J(i) tends to infinity as i tends to infinity. Use Lemma 8.2 to
choose the proper homotopy hi,t from fi to f

′
i to have image disjoint

from KJ(i). Then, the properness of the resulting ht is verified as in
the proof of Lemma 8.1.

Remark 8.4. Lemmas 8.1 to 8.3 above hold good with [0,∞) replaced
by its product with (varying) compacta.

Define a multiray in the cat manifold Mm to be a cat submanifold
lying in IntM , each component of which is a ray. Combining the
stable range embedding theorem (Theorem 7.1) with Lemmas 8.1 8.3
concerning proper maps, we get:
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Proposition 8.5. (Classifying multirays via proper homotopy). Let
Mm be a connected noncompact cat manifold, and let fi be singular
rays where i ranges over a finite or countably infinite index set S. If
m ≥ 3, then fi is properly homotopic to a cat embedding gi onto a
ray, such that the rules (i, x) �→ gi(x) collectively define a (proper) cat
embedding g : S× [0,∞) →M with the image a multiray. Furthermore,
if m > 3 and g′i is an alternative choice of the ray embeddings gi,
resulting in the alternative cat embedding g′ onto a multiray, then an
ambient isotopy ht : M → M , 0 ≤ t ≤ 1, exists such that h0 = id |M
and h1g = g′.

9. Multiple component hyperplane embeddings. In this
section we investigate proper cat embeddings into Rm of a disjoint
sum of at most countably many disjoint hyperplanes, each isomorphic
to Rm−1. Indeed, every closed subset of a separable metric space is
separable.

For cat=top we will, for the first time, make essential use of
the stable homeomorphism theorem (SHT) to show that every self
homeomorphism of Rk is ambient isotopic to a linear one [17, 34];
this is equivalent to π0(STop (k)) = 0, where STop (k) is the group
of orientation preserving self homeomorphisms of Rk endowed with
the compact open topology. Not to do so would lead to pointless
hairsplitting.

In these circumstances, we can and do revert to unrefined versions of
the definition for top of the CSI operation and its related constructions.
We use the following lemma.

Lemma 9.1. If G and G′ are top gaskets and f : ∂G → ∂G′ is a
degree +1 top isomorphism of their boundaries, then f extends to a
degree +1 top isomorphism F : G→ G′.

Proof. By definition of gasket (see Section 2), we may assume G
and G′ are linear gaskets. By the SHT, we can isotop f to a diff
isomorphism f ′. This f ′ extends to a degree +1 diff isomorphism
F ′ : G → G′ by the diff version of this lemma (Corollary 4.5 above).
Using closed collars of ∂G and ∂G′, we easily construct the asserted
top isomorphism G→ G′.

A multiple hyperplane is a properly embedded submanifold N of Rm

where N is the disjoint union of components Ni
∼= Rm−1 for i ∈ S,
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and S is a nonempty countable index set. We say that G, the closure
of a component of Rm−N in Rm, is docile if it is a gasket, and we say
that N itself is docile if the closure of every such component is docile.

Given any multiple hyperplaneN inRm, we can construct a canonical
simplicial tree T as follows. The vertices V of T are the closures of the
complementary components of N in Rm. An edge is a component
Ni of N , and it joins the two vertices u, v ∈ V whose intersection is
Ni. The tree T is clearly well-defined by the pair (Rm, N) up to tree
isomorphism; it is the nerve of the covering of Rm by the closures of
the components of Rm − N . Also, T is at most countable, but it is
not necessarily locally finite. If m = 2, then these trees are naturally
planar as the edges at each vertex are cyclically ordered.

Conversely, given such a tree T (planar in case m = 2), there is a
natural recipe to construct a multiple hyperplane N in Rm where the
closure of each complementary component is a gasket as follows. For
each vertex vk ∈ V , pick a gasket Gk with boundaries corresponding
bijectively to the edges incident with vk in T . Gluing these gaskets
together according to T gives a composite gasket TG with empty
boundary.

It was established in proving the associativity property of CSI that
there is a cat manifold isomorphism TG → Hm sending each vertex
gasket in TG to a linear gasket in Hm and, hence, each edge hyperplane
to a hyperbolic hyperplane in Hm (see Lemma 5.2 above). Further,
such an isomorphism is unique up to degree +1 cat isomorphism of
Hm.

We now summarize these observations, where cat is top, pl or diff.

Theorem 9.2 (Multiple hyperplane linearization theorem (MHLT)).
For m distinct from 3, every cat multiple hyperplane embedding N
in Rm is docile. Hence, for m > 3, such embeddings are naturally
classified modulo ambient degree +1 cat automorphism by arbitrary
countable simplicial trees modulo simplicial tree automorphisms. For
m = 2 (and only m = 2) one must use planar trees and their planar
tree automorphisms (where planar here means that, at each vertex, the
edges are cyclicly ordered).

Corollary 9.3 (Gasket recognition theorem (GRT)). Consider a cat
m-manifold with nonempty boundary whose interior is isomorphic to
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Rm, and for which every boundary component is isomorphic to Rm−1.
Exclude the case m = 3. Then M is isomorphic to a linear gasket.

Proof of the GRT (Corollary 9.3). Int M is always isomorphic to the
manifold obtained by adding toM an external open collar along ∂M .

Corollary 9.4. With the same data as in the MHLT and assuming
m ≥ 4, the pair (Rm, N) is cat isomorphic to a Cartesian product

(H2, N ′)×Rm−2

where each component of N ′ is a hyperbolic line.

Proof of the MHLT (Theorem 9.2) for m > 3 and cat=pl or diff.
Let G be the closure of a component of Rm − N in Rm. Reindex so
that Ni, i ∈ S, are the boundary components of G. For each Ni, let Vi
denote the closed component of Rm−IntG with boundary Ni. EachNi

is unknotted inRm by the cat HLT (Theorem 7.3). Therefore, for each
i ∈ S there is a cat proper ray ri ⊂ IntVi so that Vi is a cat regular
neighborhood of ri in Rm. As N ⊂ Rm is a proper submanifold, the
union of the rays ri is a proper multiray in Rm.

Choose G′ ⊂ Hm a linear gasket with boundary hyperplanes N ′
i ,

i ∈ S. For each N ′
i , let V

′
i denote the closed component of Hm− IntG′

with boundary N ′
i , and let r′i ⊂ IntV ′

i be a radial ray. Plainly, V ′
i is

a cat regular neighborhood of r′i for each i ∈ S, and the union of the
rays r′i is a proper multiray in Hm.

Choose a cat isomorphism ψ : Rm → Hm. cat proper multirays
unknot in Hm, m > 3, by the basic cat stable range embedding
theorem (Theorem 7.1), proved by general position, and Lemmas 7.2
and 8.3. Thus, there is an ambient isotopy of Hm carrying ψ(ri) to r

′
i

for all i ∈ S simultaneously. So, we may as well assume ψ(ri) = r′i for
i ∈ S. By pl and diff regular neighborhood ambient uniqueness (see
Section 3), we may further assume that ψ(Vi) = V ′

i for all i ∈ S. Then,
ψ|G : G→ G′ is a cat isomorphism as desired.

Proof of the MHLT (Theorem 9.2) for m > 3 and cat=top. Again,
let G be the closure of a component of Rm −N in Rm and reindex so
that Ni, i ∈ S, are the boundary components of G. We have three cases
depending upon whether the number |S| of boundary components of G
is 1, 2, or > 2.
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Case |S| = 1. This is exactly Cantrell’s top HLT (Theorem 7.3).

Case |S| = 2. This case is well known as the Slab Theorem and
is a worthy sequel by Greathouse [24], 1964, to Cantrell’s top HLT
(Theorem 7.3), so we include a proof. Greathouse deduced it from
results then recently established, together with the following (for m >
3), then unproved.

Theorem 9.5 (Annulus conjecture (AC (m))). If S1 and S2 are two
disjoint locally flatly embedded (m − 1)-spheres in Sm, and X is the
closure of the component of Sm − (S1 ∪ S2) with ∂X = S1 	 S2, then
X is homeomorphic to the standard annulus Sm−1 × [0, 1].

This annulus conjecture was later proved, along with the SHT, in
[34] 1969 for m > 4, and in [17], 1990, for m = 4 (see also [15]). The
already proved results used in [24] included Cantrell’s top HLT, that
we have reproved (Theorem 7.3), and the following, proved by Cantrell
and Edwards [12], 1963.

Lemma 9.6 (Arc flattening lemma). If a compact arc A topologically
embedded in Sm, m > 3, is locally flat except possibly at one interior
point P , then A is locally flat also at P .

Assuming these tools for the moment, we now give:

Proof of the slab theorem. We consider the sphere Sm to be Rm∪∞.
Let Gi, i = 1, 2, be the components of Rm − IntG. By the top HLT
(Theorem 7.3), each Gi

∼= Rm
+ . Hats will indicate the adjunction of

the point ∞ ∈ Sm. Enlarge Ĝ := G∪∞ by adding to it a closed collar
Ci of the (m − 1)-sphere ∂Ĝi in Ĝi, for i = 1, 2. Denote the result

X := Ĝ ∪ C1 ∪ C2. This is a top submanifold of Sm with boundary
two (m − 1)-spheres S1 and S2, where Si, for i = 1 and 2, is the

component of ∂Ci disjoint from Ĝ (see Figure 10).

The theorem AC (m) (Theorem 9.5) tells us that X ∼= Sm−1 × [0, 1].
Furthermore, we have collaring identifications Ci = Si×[0, 1]. Consider
the locally flat arc Ai that is the arc fiber of the collaring Ci = Si×[0, 1]
that contains ∞ ∈ Sm. Clearly, A1 ∩A2 = ∞; thus A := A1 ∪A2 is an
arc in X that is locally flat except possibly at ∞ ∈ Sm. By the above
arc flattening lemma (Lemma 9.6), A is locally flat at ∞; hence, it is a
locally flat 1-submanifold of X joining the two boundary components
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∂G2∂G1

C1 C2

S1 S2A1 A2
^^

Ĝ

FIGURE 10. Almost global view of Ĝ in Sm = Rm ∪ ∞, focused on the point
∞ = A1 ∩ A2.

of X . Note that G ∼= X −A by Brown’s collaring uniqueness theorem
[4].

By the uniqueness clause of the elementary (but subtle!) top version
of the stable range embedding theorem (Theorem 7.1), any two such
arcs are related by a top automorphism of X ∼= Sm−1 × [0, 1]. Thus,
the complement X −A is homeomorphic to Rm−1 × [0, 1].

Proof of the arc flattening lemma. Split A at P to get two compact
arcs A1 and A2 with A1 ∩ A2 = P .

Assertion 9.7. A compact locally flat n-ball neighborhood B of
Int A1 exists such that A1 is unknotted in B and B is disjoint from
IntA2.

Proof of Assertion 9.7. In our one application of the arc flattening
lemma above (namely to prove the Slab Theorem), B can obviously
be any tubular neighborhood of A1 in C1 derived from the product
structure C1 = S1× [0, 1]. Thus, we leave the full proof of this assertion
to the interested reader with just this hint: B can in general be the
closure in Sm of a suitably tapered trivial normal tubular neighborhood
of IntA1 in Sm (see [38]).

Now, by the top Schoenflies theorem, Sm−IntB is also an m-ball B′

in Sm. In B′ the second arc A2 is embedded in a manner that is locally
flat except possibly at P ∈ ∂B′. To the non-compact top manifold



1844 J. CALCUT, H. KING AND L. SIEBENMANN

B′ − P ∼= Rm
+ , we apply the uniqueness clause of the stable range

embedding theorem (Theorem 7.1); we conclude, on recompactifying
in Sm, that the arc A2 is unknotted in B′. It follows that the arc
A := A1 ∪A2 is locally flat in Sm. This completes our proof of the arc
flattening lemma (Lemma 9.6).

Assuming AC (m) (now known!), this completes the proof of the slab
theorem which is the MHLT (Theorem 9.2) for the case when G has
two boundary components.

Remark 9.8. Greathouse [23], 1964, also proved that the slab theorem
in dimensionm implies AC (m), granting results known in 1964 that we
have mentioned. Hints: given an m-annulus X in Sm, form a locally
flat arc A ⊂ X joining the two boundary (m−1)-spheres. Show that A
is cellular (i.e., an intersection of compactm-cell neighborhoods in Sm)
so that the quotient space (Sm/A) is homeomorphic to Sm, and apply
the slab theorem to show that X − A ∼= Rm−1 × [0, 1]. Deduce that
X ∼= Sm−1 × [0, 1] with the help of collarings and the Mazur-Brown
Schoenflies theorem.

Remark 9.9. An easy argument shows that AC (n) (Theorem 9.5),
n = 1, . . . ,m, together imply the following.

Theorem 9.10 (Stable homeomorphism conjecture (SHC (m))). For
any homeomorphism h : Rm → Rm, a homeomorphism h′ : Rm → Rm

exists that coincides with h near the origin and with the identity map
outside a bounded set.

Hint: For this implication, you will need some Alexander isotopies.
Exactly this form of the SHC (m) was proved for m ≥ 5 by Kirby in
[34].

Remark 9.11. An easy argument establishes the implication SHC (m)
⇒ AC (m).

Proof of the MHLT (Theorem 9.2) for cat=top and |S| > 2. Let
G be the closure in Rm of a component of Rm − N . Let Ni, i ∈ S,
be an indexing of the components of ∂G. For each Ni, let Vi denote
the closed component of Rm − IntG with boundary Ni. By the top
HLT (Theorem 7.3), each Vi is top isomorphic to closed upper half



CSI AND HYPERPLANE UNKNOTTING 1845

space Rm
+ . It is straightforward to produce, for each i ∈ S, a diff

proper ray ri ⊂ IntVi. Let T (ri) ⊂ IntVi be a diff (closed) regular
neighborhood of ri. The boundary Hi of T (ri) is a diff hyperplane.
By the slab theorem, the closure of the region between Hi and Ni is
top isomorphic to Rm−1 × [0, 1]. This isomorphism yields an obvious
isotopy of Ni to Hi for each i ∈ S. Using disjoint collars of the Hi and
Ni, these isotopies readily extend to an ambient isotopy of Rm which
carries the collection Ni, i ∈ S, to the diff collection Hi, i ∈ S. The
result now follows from the diff proof of the MHLT (Theorem 9.2)
above.

This completes the proof of the MHLT (Theorem 9.2) for m > 3 and
cat=top.

Proof of the MHLT (Theorem 9.2) for m = 2. We begin with the
following.

Observation 9.12. By triangulation and smoothing theorems for
dimension 2 that we refer to collectively as the 2-Hauptvermutung (see
[48, 55]), it suffices to establish the MHLT (Theorem 9.2) for any one
of the three categories cat = diff, pl, or top.

We work in the smooth category. The diff proof of the MHLT
(Theorem 9.2) already given for m > 3 easily adapts to m = 2 using
the following.

Theorem 9.13 (Multiray radialization theorem in R2 (2-MRT)).
Let L ⊂ R2 be a diff multiray. Then there exists a degree +1 diff
automorphism g of R2 such that g(L) is a radial multiray.

Proof of the 2-MRT (Theorem 9.13). Translate so that L misses the
origin. Morse theory tells us that, by a small smooth perturbation of
L in R2, we may assume that

R2 f−→ R

x �−→ |x|

restricts to a Morse function on L with distinct critical values, cf. [46].
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Assertion 9.14. By an ambient isotopy, we may assume that, on
each component r of L, an absolute minimum of the restriction f |r is
attained at the point ∂r only, and this point is noncritical for f |r.

Proof of Assertion 9.14. For each component ri of L for which f(∂ri)
is not the unique minimum pointmi of f on ri, consider a small smooth
regular neighborhood Ni of the interval Ki in ri that joins mi to ∂ri.
These Ni can be chosen so small that their union N is a disjoint sum
of these Ni. Then, independent smooth isotopies, each with support in
one Ni, together establish the assertion (cf. [47, pages 22 24]).

Seen in a nutshell, the remainder of our proof plan is as follows:

(1) Let L1 = L and do the following steps (a) and (b) for i =
1, 2, 3, . . . until all critical points of f |Li are eliminated:

(a) Pick an appropriate local minimum u0 and maximum u1 of f |Li

and find a degree 1 diffeomorphism hi of R
2 so that the critical points

of f |hi(Li) are the critical points of f |Li , with the exception of u0 and
u1.

(b) Let Li+1 = hi(Li).

(2) Using special properties of the hi, show that the (probably
infinite) composition h = . . . h3h2h1 is a diffeomorphism.

(3) Since f |h(L) has no critical points, conclude that a further diffeo-
morphism will straighten h(L), by integrating a vector field on R2 that
is tangent to h(L) and is transverse to the level spheres of f .

Step (3) follows from:

Lemma 9.15. Let M be a closed diff manifold, and let

p:M × [0,∞) −→ [0,∞)

be projection. Suppose L ⊂ M × [0,∞) is a diff multiray so that p|L
has no critical points. If L intersects M × 0, assume further that L is
straight near M × 0, i.e., L ∩M × [0, ε] = F × [0, ε] for some ε > 0
and some finite set F ⊂ M . Then there is a diff automorphism h of
M × [0,∞) so that:

(1) h(L) is a disjoint union of straight rays xi × [ti,∞).

(2) ph = p.
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(3) h is the identity near M × 0.

Proof. Let v be a nowhere 0 tangent vector field on L. Since p|L has
no critical points, we know v(p) is nowhere 0 on L. After negating v on
some of the components of L, we may thus assume v(p) > 0 everywhere
on L. Extend v to a vector field v on a neighborhood U of L. If L
intersectsM×0, we may assume v = (0, 1) nearM×0. We may suppose
after shrinking U and replacing v by v/v(p) that v(p) = 1 everywhere
on U . Let f :M × [0,∞) → [0, 1] be a smooth function with support
in U and equal to 1 on L. Define a vector field w on M × [0,∞) by
w = fv+(1−f)(0, 1). Note that w(p) = fv(p)+(1−f) = 1 everywhere.
Let φ((x, s), t) be the maximal flow obtained by integrating w. Since
w is (0, 1) near M × 0, we know φ((x, 0), t) = (x, t) for small t ≥ 0.
Since w(p) = 1, we know pφ((x, s), t) = p(x, s) + t = s + t everywhere
φ is defined. As M has empty boundary, for each (x, s) ∈ M × (0,∞)
an ε > 0 exists such that φ is defined on (x, s) × (−ε, ε). For each
(x, s) ∈ M × [0,∞), the last three sentences and compactness of
M × [s, s + 1] imply that φ is defined on (x, s) × [0, 1]. Fitting these
solutions together, we see that φ is defined on (M × [0,∞)) × [0,∞)
(cf. [28, pages 149 151]). Since w is tangent to L, we know that if
φ((x, s), t0) ∈ L then there is an interval [a,∞) so that φ((x, s), t) ∈ L
for all t ∈ [a,∞), and in fact φ((x, s)×[a,∞)) is a connected component
of L. We now define h by specifying h−1(x, t) = φ((x, 0), t) or
equivalently, h(x, t) = (qφ((x, t),−t), t) where q:M × [0,∞) → M is
projection.

Step (2) will follow from Proposition 9.16 below with X := R2 and Uj

the open disc of radius j. To ensure applicability of this proposition,
we will make sure that fhi(x) ≤ f(x) for all i and for all x ∈ R2

(guaranteeing hypothesis (i)) and also that the support of hi is disjoint
from Uai for some sequence ai → ∞ (guaranteeing hypothesis (ii)).

Proposition 9.16. Let U1 ⊂ U2 ⊂ · · · be open subsets of a
space X so that X =

⋃∞
i=1 Ui. Let h1, h2, . . . be a sequence of self

homeomorphisms of X satisfying the two hypotheses:

(i) hi(Uj) ⊆ Uj for all i and j.

(ii) For each j, the set of i for which hi|Uj �= Id is finite.



1848 J. CALCUT, H. KING AND L. SIEBENMANN

Then the infinite composition:

· · · ◦ hk ◦ hk−1 ◦ · · · ◦ h2 ◦ h1

is a homeomorphism h : X → X. Further, if X is a cat manifold and
each hi is a cat isomorphism, then h is a cat isomorphism.

Remark 9.17. Intuitively, (i) says the hi’s “pull in” and (ii) says their
supports “move out.”

Proof of Proposition 9.16. We may assume that hi|U1 �= Id for some i
since the general case follows from this special case. For each j, let n(j)
be the largest positive integer such that hn(j)|Uj �= Id, which exists by
hypothesis (ii). Thus:

(1) hi|Uj
= Id for every i > n(j).

As Uj ⊆ Uj+1, we also have:

(2) n(j + 1) ≥ n(j) for every j.

For each N ≥ n(j), hypothesis (i) along with (1) imply that:

(3) (hn(j) ◦ · · · ◦ h1)
∣∣
Uj

= (hN ◦ · · · ◦ hn(j) ◦ · · · ◦ h1)
∣∣
Uj
.

We may naturally define h : X → X as follows. Let x ∈ X . Then x
lies in Uj for some j. We define:

(4) h(x) := hn(j) ◦ · · · ◦ h1(x).

Properties (2) and (3) show that h(x) is well defined, independent
of alternative choices of j such that x ∈ Uj . Hence, for each j the
restriction h|Uj , defined by (4), is a homeomorphism onto its image.
Therefore, h is a local homeomorphism, and h is injective since each
given pair of points in X lies in Uj for some j. To conclude h is a
homeomorphism, it remains to show that h is surjective.

Let y ∈ X and choose j so that y ∈ Uj. The homeomorphism:

(5) hn(j) ◦ · · · ◦ h1 : X −→ X
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sends a unique x ∈ X to y. We claim that h(x) = y. In the case x ∈ Uj ,
the claim is clear since h|Uj is defined by (4). Otherwise, choose j′ > j
such that x ∈ Uj′ . Then n(j

′) ≥ n(j) by (2), and:

h(x) = hn(j′) ◦ · · · ◦ h1(x) = hn(j′) ◦ · · · ◦ hn(j)+1(y) = y

where the third equality holds by (1) since y ∈ Uj. We conclude that
h is surjective and h is a homeomorphism.

For the second conclusion in the proposition, we need only show that
h is a local cat isomorphism. But this is immediate since if the hi
are cat isomorphisms, then for each j the restriction h|Uj , defined by
(4), is a cat isomorphism onto its image. This completes the proof of
Proposition 9.16.

So, to complete the proof of Theorem 9.13, we must show how
to do step (1) (a). We will produce diffeomorphisms hi satisfying
fhi(x) ≤ f(x) with support in the annulus f−1([f(u0) − 1,∞)), thus
guaranteeing the applicability of Proposition 9.16. In particular, for
any j there are only finitely many critical points of f |L in the disc of
radius j+1. After a finite number n of steps (1) we will have gotten rid
of all these critical points (except for those on the boundary of Ln), so
f |Ln has no critical points in the disc of radius j + 1 (except for those
on the boundary of Ln). Consequently, for i > n we have f(u0) > j+1
so the support of hi is disjoint from Uj .

If r is a component of Li and a and b are two points of r, we let r[a, b]
denote the closed segment of r from a to b, oriented going from a to b.
For convenience, we consider the points in ∂Li to be critical points of
f |Li from here on.

Let u1 be the local maximum of f |Li on which f assumes the
minimum value. Let r be the component of Li containing u1. Let
u0 and u′0 be the critical points of f |Li adjacent to u1 in r; the only
critical points in r[u0, u

′
0] are u0, u1 and u′0. After switching u0 and

u′0, if needed, we may assume f(u0) > f(u′0). Since f is increasing on
r[u′0, u1], there is a unique w0 in r[u′0, u1] so that f(w0) = f(u0).

Let A denote the complement in R2 of the open disk of radius f(u0)
centered at the origin. Let D be the compact region in A bounded by
the segment of r from w0 to u0 and an arc of the circle of radius f(u0)
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u 1

u 0

r

w 0

w 1

r

FIGURE 11. Canceling pair of critical points u0 and u1, where u1 is the least
maximum of f(x) = |x| on the multiray L. The dashed and dotted lines are arcs
of the circles |x| = |u0| and |x| = |u1|, respectively. The shaded region D will be
pushed below the circle |x| = |u0| during the cancelation process. The fine arc
indicates the trajectory of the improved ray after cancelation. The least maximum
property of u1 ensures that L intersects D in exactly the segment r[w0, u0] ⊂ r, not
more.

between u0 and w0 (see Figure 11). We produce hi from Assertion 9.18
with U the complement of the disc of radius f(u0)− 1.

Assertion 9.18. For any neighborhood U of D, there is a diffeomor-
phism hi of R

2 so that:

(a) f(hi(x)) ≤ f(x) for all x ∈ R2.

(b) The support of hi lies in U .

(c) The support of hi does not intersect Li−r and also only intersects
r in a small neighborhood of the segment r[w0, u0].

(d) The critical points of the restriction of f to hi(Li) are the same
as those of f |Li, except for u1 and u0 which are no longer critical or
even in hi(Li).

Proof of Assertion 9.18. Note that the interior of D does not intersect
Li, since that would give a local maximum of f |Li with value < f(u1),
contrary to our choice of u1. Consequently, we may assume U does not
intersect Li − r and does not intersect r outside a small neighborhood
of r[w0, u0].
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We get hi by integrating a suitable vector field v on R2. In particular:

• v(x) · x ≤ 0 for all x ∈ R2 (to get (a)).

• v(x) · x = −|x| for all x in some neighborhood U ′ of D.

• v points into D on the interior of r[w0, u0].

• The support of v is contained in U , does not intersect Li − r and
does not intersect r outside of a small neighborhood of r[w0, u0].

It suffices to find such a v locally, since then v is obtained by piecing
together with a partition of unity. Finding v locally is easy. The vector
field v(x) = −x/|x| works on the interior of D, on the circle of radius
f(u0) (except possibly at w0), and near u1. Near a point y ∈ r[w0, u0]
(with y �= u1 and y �= u0), one may take v to be v′ + v′′ divided by the
locally positive scalar function x �→ −(v′+v′′)·x/|x| where v′ is tangent
to r with v′ · y < 0, and v′′ is the unique unit vector at y directed into
D and tangent at y to the circle f(x) = |y|.
Having obtained a vector field v satisfying the above conditions, one

can construct hi by elementary methods (cf. [45, pages 10 13]). More
precisely, suppose g : [a, b] → U ′ parameterizes a slightly larger segment
of r than r[w0, u0]. Let φ(x, t) be the flow associated to the vector field
v. Note that

d/dt(fφ(x, t)) = v · ∇f = v(φ(x, t)) · φ(x, t)/|φ(x, t)| = −1

as long as φ(x, t) ∈ U ′. Consequently, fφ(g(s), t) = fg(s) − t as long
as φ(g(s) × [0, t]) ⊂ U ′. Since v enters D on the interior of r[w0, u0],
we are thus guaranteed that, for some ε > 0, fφ(g(s), t) = fg(s)− t for
all t ≥ 0 with fg(s)− t ≥ f(u0)− ε.

Choose a smooth function α : [a, b] → [0,∞) with support in (a, b) so
that fg−α is within ε of f(u0) and has positive derivative everywhere;
this is possible since f(g(a)) is slightly less than f(u0) and f(g(b)) is
slightly greater than f(u0). Let γ : R → R be a smooth function
with compact support such that γ(0) = 1. Then we define hi to
be the identity outside φ(g((a, b)) × R) and we define hiφ(g(s), t) =
φ(g(s), t + α(s)γ(ct)) for some appropriate c > 0. In particular, if
M0 = maxα(s) and M1 = min γ′(s) and 0 < c < −1/(M0M1),
then the mapping (s, t) �→ (s, t+ α(s)γ(ct)) is a diffeomorphism (since
its restriction to any vertical line has positive derivative), so hi is a
diffeomorphism. Note that hi(Li) is obtained from Li by replacing the
segment g([a, b]) with the segment {φ(g(s), α(s)) | s ∈ [a, b]}.
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But fφ(g(s), α(s)) = fg(s) − α(s) which has nonzero derivative, so
the replacement segment has no critical points of f . This completes
the proof of Assertion 9.18.

This completes the proof of the MHLT (Theorem 9.2) for m = 2.

Remark 9.19. The basic technique used in the above proof of the
2-MRT (Theorem 9.13) is to ambiently cancel a minimal height local
maximum of f |L with an adjacent local minimum in a controlled fashion
(“2-dimensional embedded Morse theory”). This technique is notewor-
thy for its simplicity and its utility. The diff Schoenflies theorem was
nowhere employed as only basic separation properties are needed to
obtain the vector field. Indeed, this technique quickly yields proofs of
both the diff Schoenflies theorem and the diff HLT (Theorem 6.1)
for m = 2, the latter without assuming any ray hypothesis, as we now
describe.

Proof of diff Schoenflies for m = 2. Let K be a smooth circle in
the plane. Let f : R2 → R be a coordinate projection. Perturb K so
that f is Morse on K with distinct critical values. Let m and M be
the absolute minimum and maximum points of f on K. Now, apply
the above technique to the two segments of K connecting m and M .
The rest of the proof is an exercise.

Proof of diff HLT (Theorem 6.1) for m = 2. Let N be a smooth
proper embedding of R1 in R2. Let P be a point in N . Translate so
that P is the origin in the plane. Push N to coincide with its tangent
line at P in an ε-neighborhood Nε of P in N . Perform a homothety
so that N intersects the disk of radius two in a linear segment N2. Let
D2 denote the unit disk, and let N1 := N ∩ D2. Consider the two
component multiray L := N − IntN1. Apply the above cancelation
technique to L, noting that these cancelations fix N2 pointwise. Finally,
apply Lemma 9.15 to L ⊂ R2 − IntD2.

Remark 9.20. It is natural to consider the n-dimensional analog of
the 2-MRT (Theorem 9.13), namely:

Theorem 9.21 (Multiray radialization theorem) (n-MRT)). Let
L ⊂ Rn be a smooth proper multiray. If n �= 3, then L is ambient
isotopic to a radial multiray.
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Recall that the n-MRT is ‘false’ in dimension n = 3 because even one
proper ray may knot in R3 (see Remarks 7.4). On the other hand, if
n > 3, then the n-MRT holds (any cat) by the argument in the third
paragraph of the proof of the MHLT (Theorem 9.2) for m > 3 and
cat=pl or cat=diff given earlier in this section; for cat=top, this
argument uses Homma’s method.

We mention that, for cat=diff and n > 3, one may prove the n-
MRT via the basic technique used in the above proof of the 2-MRT
(Theorem 9.13). Indeed, this approach works with Rn replaced by any
smooth manifold W that is collared at infinity. By ray shortening one
can assume without loss that W = M × [0,∞). We claim that L may
be straightened, i.e., there is an ambient isotopy of W carrying each
ray of L to a ray of the form m× [t,∞). Since n > 3, one can slightly
perturb L so that its projection to M is a one-to-one immersion. This
canonically provides a Whitney 2-disk D for suppression of a pair u1
and u0 of critical points, cf. Figure 11; indeed, D is made up of vertical
segments (just two degenerate), and the vector field is vertical. One
then concludes as for Theorem 9.13. We need not process the u1 in min
max order but we do need to ensure that hk does not increase the [0,∞)
coordinate, as this guarantees the infinite composition · · ·hk · · ·h1 is a
diffeomorphism. The interested reader may enjoy seeing where this
argument fails in ambient dimension n = 3; an infinite number of
trefoils tied in a ray reveals the problem (a single trefoil tied in a ray
reveals the local problem). One cannot make the projection of L to M
one to one and thus may no longer exclude L from the interior of the
Whitney disc.

Two alternative proofs of the MHLT for dimension 2. We
have seen in the proof of the MHLT (Theorem 9.2) in this section that
it suffices to give alternative proofs that each closure M2 in R2 of a
complementary component of a properly embedded family of lines in
R2 is isomorphic to a linear gasket. Thus, it suffices to give new proofs
of the gasket recognition Theorem 9.3 for dimension 2, that we restate
as:

Theorem 9.22 (2-Gasket recognition theorem (2-GRT)). Consider
a pl 2-manifold M whose interior is isomorphic to R2, and of which
every boundary component is non-compact. Then M is isomorphic to
R2, or to a linear gasket.
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Note that the converse of Theorem 9.22 is trivial.

We pause to offer a broader understanding of this result. We accept as
known the following analog for dimension 2 of the Poincaré conjecture:

Classical fact 9.23 (2-PC). Every compact 2-manifold N2 having
H1(N ; Z/2Z) = 0 is isomorphic to the sphere S2 or to the disk B2.

This 2-PC is part of almost any classification of compact pl (or diff)
surfaces; see for example Section 9 of [28].

Aiming to analyze the hypotheses of Theorem 9.22 (2-GRT), we prove:

Proposition 9.24. Consider a connected non-compact 2-manifold
M2. The following conditions are equivalent:

(a) Int M ∼= R2.

(b) M is irreducible; in other words every circle pl embedded in M
is the boundary of a pl 2-disk embedded in M .

(c) M is contractible.

(d) H1(M ; Z/2Z) = 0.

Proof of Proposition 9.24. Note that all four conditions are invariant
under deletion (or addition) of boundary. Thus, without loss of
generality, we can and do assume for the proof that ∂M = ∅, i.e.,
M is ‘open.’

We can and do choose to work in the pl category.

By the pl Schoenflies theorem, (a) implies (b). Trivially, (a) implies
(c). By (PLCT) in Section 7 of [55], (b) implies (a). By the homotopy
axiom for homology, (c) implies (d). To conclude, we prove that (d)
implies (b).

Consider any circle C that is pl embedded inM . This C is bicollared,
for otherwise its regular neighborhood is a Möbius band, which shows
that C has self-intersection number 1, and hence the class of C is non-
zero in H1(M ; Z/2Z) = 0, a contradiction.

Continuing the proof that (d) implies (b), we examine several cases.
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Case 1. C does not separate M . Then another embedded curve C′

in M exists that intersects C in a single point and transversally. Thus,
C and C′ have mod 2 intersection number 1 in M . This shows that
the homology classes of C and C′ in H1(M ; Z/2Z) are both nonzero,
which contradicts (d). Thus, Case 1 cannot occur.

Case 2. C separates M . Then, as C is bicollared, it necessarily cuts
M into two connected pieces, M1 and M2, each with boundary a copy
of C. We now treat two subcases of Case 2 separately.

Subcase (i). Neither piece Mi is compact. Seeking a contradiction,
suppose this subcase occurs. There then exists a properly embedded
path C′ in M that intersects C in a single point and transversally.
There is thus a nonzero mod2 intersection number of C with C′

proving that the class of C in H1(M ; Z/2Z) is nonzero, a contradiction.
Thus this subcase cannot occur. We conclude that the following must
always occur.

Subcase (ii). One piece, say M1, is compact. Then we claim
that H1(M1; Z/2Z) = 0. To prove this claim, suppose the contrary.
Capping M1 with a 2-disk B yields a pl closed 2-manifold N1 with

H1(N1; Z/2Z) ∼= H1(M1; Z/2Z) �= 0.

In H1(N1; Z/2Z), Poincaré duality provides a pair of compact curves
C1 and C′

1 (disjoint from B by general position) having non-zero
intersection number mod2. They lie in both M and M1 and have
the same non-zero intersection number in M as in M1, contradicting
H1(M ; Z/2Z) = 0. This proves the claim.

Next, since H1(M1; Z/2Z) = 0, the classical 2-PC tells us that M1

is a 2-disk. This proves for M the irreducibility condition (b), and
thereby completes the proof of Proposition 9.24.

By the above Proposition 9.24, the following assertion is equivalent
to 2-GRT.

Assertion 9.25. Every noncompact contractible 2-manifold M2 is
isomorphic to a linear gasket in H2, or to H2 itself.

To conclude, we present two quite different proofs of this assertion.

Sketch of a classical topological proof of Assertion 9.25. We can



1856 J. CALCUT, H. KING AND L. SIEBENMANN

assume cat = top. The case of the assertion whereM has 3 boundary
components readily implies it for 2, 1 or 0 boundary components, so
we assume M has ≥ 3 boundary components.

We shall use a pleasant top classification of suchM2 stated below. It
is an easy consequence of three difficult classical theorems applied to the
double DM of M formed from two copies of M with their boundaries
identified. More details and references are given in [56].

The first theorem was discovered by Schoenflies [52] and states that
a compact connected subset J of the plane is a circle if and only if
its complement has two components and each point of J is accessible
as the unique limit of a path in each. The second is the Osgood-
Schoenflies theorem (proved circa 1912, see [55]) stating that every
circle J topologically embedded in the plane bounds a topological 2-
disk. The third is due to Kérékjartó [33] and classifies all surfaces
without boundary, in particular DM , in terms of what is now known
as the (Kérékjartó-Freudenthal) end compactification.

Classification 9.26. The end compactification of a noncompact
contractible surface M with nonempty boundary, written E(M) =
M ∪ e(M), is always a 2-disk, whose interior is IntM , and whose
boundary circle ∂E(M) is the disjoint union ∂M ∪ e(M) where e(M)
is the compact and totally disconnected end space of M . Thus, M is
homeomorphic to a 2-disk E(M) minus a compact part e(M) of its
boundary.

Proof of Classification (in outline). By [33], the end compactification
E(DM) is S2. Then [52] shows that the obvious involution τ on
E(DM) has fixed point set a Jordan curve, and finally the Osgood-
Schoenflies theorem shows that S2/τ = E(M) is a 2-disk as required.

The remainder of the proof of Assertion 9.25 is elementary. Identify
E(M) to the round Euclidean disk B2 ⊂ R2 and consider the convex
hull Hull (e(M)) in R2. Since M has ≥ 3 ends, the convex hull
Hull (e(M)) is topologically a 2-disk in R2, and all its extremal points
(as a convex subset of R2) constitute e(M) ⊂ ∂B2. Hence, there is
a standard homeomorphism Hull (e(M)) → B2, respecting every ray
emanating from the barycenter of the hull, and fixing e(M). Thus, M
itself is top isomorphic to the linear gasket

Hull (e(M)) ∩ IntB2 = Hull (e(M)) ∩H2.
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Sketch of a geometric proof of Assertion 9.25. There is a famous
procedure that tiles any closed 2-manifold Mg of genus g ≥ 2 by
compact hexagonal 2-cells (tiles), and then constructs a hyperbolic
structure for Mg in which each 2-cell has geodesic edges and all vertex
angles π/2. In reply to our inquiry about known geometric proofs, J.-
P. Otal promptly suggested that a similar approach would prove the
assertion.

The case of the assertion for ≥ 3 boundary components implies the
general case, so we restrict to this case in what follows.

We work in the diff category.

Given an arbitrary enumeration of the components of ∂M (called
sides below), there is a construction procedure of ‘cut and paste’
topology to construct onM a diff tiling in which each two-dimensional
tile is closed and is either a compact hexagonal tile or a noncompact
cusp tile (a triangle with one ideal vertex at Alexandroff’s infinity).

These tiles will fit together as follows. Each finite vertex lies in ∂M .
Each hexagonal tile H has 3 of its 6 edges alternatively in three distinct
sides of ∂M , and the remainder of ∂H lies in IntM . The intersection
of any hexagonal tile with any distinct tile is either empty or a common
edge joining distinct components of ∂M . Every cusp tile meets ∂M in
its two infinite sides while its compact side is shared with one hexagonal
tile. The nerve of the tiling of M is thus a tree T with one trivalent
vertex for each hexagonal tile and one univalent vertex for each cusp
tile.

The procedure is initialized by construction of a hexagonal tile that
meets the first three sides in the given enumeration of sides. After the
first three sides, for each successive new side, one more hexagonal tile
H is inductively constructed; H meets the new side and those two of
the earlier sides that are in a topological sense adjacent. This induction
completes the construction of all the hexagonal tiles. To terminate the
tiling procedure, the cusp tiles are then defined to be the closures of
the components of the complement of the union of all the hexagonal
tiles. The cusp tiles correspond bijectively to the isolated ends of M .

This diff tiling is well defined by the given enumeration of the sides
ofM , up to a diff isomorphism of tilings that is piecewise diff isotopic
to the identity of M .
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Each tile has a hyperbolic structure with the length of each compact
edge equal to one, and a right angle at each vertex (infinity excepted).
After an isotopy of such structures, they fit together to form a complete
hyperbolic structure σ on M making ∂M geodesic.

This hyperbolic structure σ on M is well defined by the tiling, up to
isometry ambient isotopic to the identity.

To conclude, one develops Mσ isometrically into H2, proceeding
inductively tile by tile, climbing up the above tree T , to realize M
as a linear gasket in H2.

Remark 9.27. The hyperbolic structure σ on M obtained by the
above tiling procedure is often distinct from any structure obtained
by the classical proof; indeed, for every isolated end of M the limit
points of its cusp tile neighborhood in the ideal circle at infinity ∂B2 of
H2 constitute a whole compact interval rather than a point. However,
this clear geometric distinction can be suppressed as follows: the cut-
locus in Mσ of ∂Mσ is a properly embedded piecewise geodesic graph
Γ ⊂ IntM , which meets each tile in a standard way. The convex hull
of the closure of Γ in B2, intersected with H2, is a smaller but visibly
diffeomorphic copy M ′ of M whose hyperbolic structure is of the sort
obtained in the classical proof.

Acknowledgments. The authors thank R.D. Edwards, J.-P. Otal,
and an anonymous referee for helpful comments. We also thank the
patient editor, David G. Wright.

REFERENCES

1. W.R. Alford and B.J. Ball, Some almost polyhedral wild arcs, Duke Math. J.
30 (1963), 33 38.

2. R.H. Bing and J.M. Kister, Taming complexes in hyperplanes, Duke Math. J.
31 (1964), 491 511.

3. M. Brown, A proof of the generalized Schoenflies theorem, Bull. Amer. Math.
Soc. 66 (1960), 74 76.

4. , Locally flat imbeddings of topological manifolds, Ann. Math. 75 (1962),
331 341.

5. C.E. Burgess and J.W. Cannon, Embeddings of surfaces in E3, Rocky Moun-
tain J. Math. 1 (1971), 259 344.



CSI AND HYPERPLANE UNKNOTTING 1859

6. S.S. Cairns, Smooth approximations to polyhedra, Michigan Math. J. 14 (1967),
305 319.

7. J.S. Calcut and H.C. King, Noncompact codimension-1 real algebraic mani-
folds, Michigan Math. J. 52 (2004), 361 373.

8. , Unknotting tubes in euclidean space, preprint, 2010.

9. J.C. Cantrell, Separation of the n-sphere by an (n − 1)-sphere, Trans. Amer.
Math. Soc. 108 (1963), 185 194.

10. , Almost locally flat embeddings of Sn−1 in Sn, Bull. Amer. Math.
Soc. 69 (1963), 716 718.

11. , Non-flat embeddings of Sn−1 in Sn, Michigan Math. J. 10 (1963),
359 362.

12. J.C. Cantrell and C.H. Edwards, Jr., Almost locally polyhedral curves in
Euclidean n-space, Trans. Amer. Math. Soc. 107 (1963), 451 457.

13. A.V. Chernavsky, On the work of L.V. Keldysh and her seminar, Uspekhi
Mat. Nauk 60 (2005), 11 36 (in Russian); Russian Math. Surv. 60 (2005), 589 614
(in English).

14. M.W. Davis, Groups generated by reflections and aspherical manifolds not
covered by Euclidean space, Ann. Math. 117 (1983), 293 324.

15. R.D. Edwards, The solution of the 4-dimensional annulus conjecture (after
Frank Quinn), Contemp. Math. 35 (1984), 211 264, in Four-manifold theory,
American Mathematical Society, Providence, RI, 1984.

16. R.H. Fox and E. Artin, Some wild cells and spheres in three-dimensional
space, Ann. Math. 49 (1948), 979 990.

17. M.H. Freedman and F. Quinn, Topology of 4-manifolds, Princeton Math. Ser.
39, Princeton University Press, Princeton, NJ, 1990.

18. R. Geoghegan, Topological methods in group theory, Grad. Texts Math. 243,
Springer, New York, 2008.

19. H. Gluck, Embeddings in the trivial range, Bull. Amer. Math. Soc. 69 (1963),
824 831.

20. , Embeddings in the trivial range, Ann. Math. 81 (1965), 195 210.

21. R.E. Gompf, An infinite set of exotic R4’s, J. Diff. Geom. 21 (1985), 283 300.

22. B.I. Gray, Spaces of the same n-type, for all n, Topology 5 (1966), 241 243.

23. C. Greathouse, Locally flat strings, Bull. Amer. Math. Soc. 70 (1964),
415 418.

24. , The equivalence of the annulus conjecture and the slab conjecture,
Bull. Amer. Math. Soc. 70 (1964), 716 717.

25. J. de Groot, The generalized Schoenflies theorem for Euclidean n-space,
Colloq. Math. Soc. János Bolyai 8, North Holland, Amsterdam, 1974.

26. O.G. Harrold, Jr., and E.E. Moise, Almost locally polyhedral spheres, Ann.
Math. 57 (1953), 575 578.

27. J. Hempel, 3-Manifolds, Ann. Math. Stud. 86, Princeton University Press,
Princeton, NJ, 1976.



1860 J. CALCUT, H. KING AND L. SIEBENMANN

28. M.W. Hirsch, Differential topology, Grad. Texts Math. 33, Springer, New
York, 1976.

29. M.W. Hirsch and B. Mazur, Smoothings of piecewise linear manifolds, Ann.
Math. Stud. 80, Princeton University Press, Princeton, NJ, 1974.

30. T. Homma, On the imbedding of polyhedra in manifolds, Yokohama Math. J.
10 (1962), 5 10.

31. J.F.P. Hudson and E.C. Zeeman, On combinatorial isotopy, Inst. Hautes
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