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LINEAR MAPS PRESERVING GENERALIZED
INVERTIBILITY ON

COMMUTATIVE BANACH ALGEBRAS

NADIA BOUDI AND HADDER YOUNESS

ABSTRACT. Let A and B be unital complex Banach alge-
bras such that B is commutative and semi-simple. We study
linear maps from A into B that preserve generalized invert-
ibility.

1. Introduction and preliminaries. Let A be an algebra. An
element a ∈ A is generalized invertible (or regular) if there exists a b ∈
A such that aba = a. We denote by G(A) the subset of all generalized
invertible elements of A. If A is unital, obviously, A−1 ⊆ G(A), where
A−1 denotes the group of all invertible elements of A. The well known
Gleason-Kahane-Zelazko theorem [11, 15, 24] states that if A and B
are complex unital Banach algebras such that B is commutative and
semi-simple, and if φ : A → B is a linear map preserving invertibility
(i.e., φ(a) ∈ B−1 whenever a ∈ A−1), then φ(1)−1φ is multiplicative.
It seems natural to devote some attention to the case where φ preserves
generalized invertibility instead of invertibility. The research into this
area was initiated in the noncommutative case by Mbekhta, Rodman
and Šemrl [20]. Afterwards, it was developed in several directions (see
[8, 9, 13, 18, 21]). It should be pointed out that all these studies are
closely connected with Kaplansky’s conjecture [17]. For more details
on this topic, the reader is referred to [3, 10].

Now let us define the basic concepts of this note. An algebra A is
said to be semi-prime if the condition aAa = {0} implies that a = 0,
for all a ∈ A. Obviously, a semi-simple algebra is semi-prime. Let A
be a semi-prime algebra. If A contains minimal left ideals, then the
sum of all minimal left ideals is called the socle of A and is denoted by
socA. If A does not have minimal left-ideals we define socA = {0}. It
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is well known that socA is a two-sided ideal of A and coincides with the
sum of all minimal right ideals of A. A minimal idempotent of A is a
non-zero idempotent e ∈ A such that eAe is a division algebra. For any
minimal left ideal J of A, there exists a minimal idempotent e ∈ A such
that J = Ae. For basic results on the socle of an algebra, the reader is
referred to [7, 14]. Moreover, recall that socA ⊆ G(A) [6]. As usual,
kh (socA) denotes the intersection of all primitive ideals ofA containing
socA. It is easy to show that rad (A/socA) = kh (socA)/socA,
and it is well known that kh (socA) and socA have the same set of
idempotents [4, page 107]. In particular, notice that if a ∈ kh (socA)
and a has a generalized inverse, then a ∈ socA. Suppose from now on
that the algebra A is unital, and let a ∈ A. Then a+socA is invertible
in A/socA if and only if a+kh (socA) is invertible in A/kh (socA) [4,
page 107]. An element x ∈ A is said to be Fredholm if there exists a
y ∈ A such that xy − 1 ∈ socA and yx − 1 ∈ socA [6]. We denote
by F(A) the set of Fredholm elements of A. Recall that, if a ∈ A and
there exists a b ∈ A such that aba − a ∈ G(A), then a ∈ G(A) [12,
page 246]. In view of this, we have F(A) ⊆ G(A). If moreover A is
a Banach algebra, then F(A) is open. Finally, suppose that A is a
complex commutative Banach algebra. The maximal ideal space of A
is denoted by ΔA. If A is semi-simple, it is well known that socA = {0}
if and only if ΔA has no isolated points (see for instance [1, page 255]).
Moreover, an element a ∈ A lies in socA if its Gelfand transform â has
finite support.

2. Main result. Let A and B be two Banach algebras, and let
φ : A → B be a linear map. We shall say that φ preserves generalized
invertibility if φ(a) ∈ G(B) whenever a ∈ G(A). Now suppose that
B is unital and semi-prime. Obviously, if φ(A) ⊆ socB + C1 or,
more generally, φ(A) ⊆ F(A), then φ preserves generalized invertibility.
Thus, we will assume that our maps are surjective modulo the socle in
our main results.

An indispensable tool in this section will be the following simple
lemma.

Lemma 2.1. Let A be a commutative complex unital semi-prime
Banach algebra, and let x ∈ A. Then the following are equivalent.

(i) x ∈ F(A),
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(ii) for every y ∈ A, there exists a δ > 0 such that x+λy ∈ G(A) for
every scalar λ with |λ| < δ.

Proof. The implication i) ⇒ ii) is trivial since the set of Fredholm
elements of A is open and F(A) ⊆ G(A).

ii) ⇒ i). Suppose that ii) holds true for x. Since x ∈ G(A),
the ideal Ax is closed. Fix a ∈ A. Then there exists a λ �= 0
such that x + λa ∈ G(A). This implies that there is a z ∈ A with
a−λza2 ∈ Ax. As a result, every element in the Banach algebra A/Ax
has a generalized inverse. Applying [16], we infer that the algebra
A/Ax is finite-dimensional. Now choose y ∈ A such that x2y = x.
Then (1 − xy)Ax = 0. From this it follows that dim (1 − xy)2A < ∞.
Thus 1 − xy ∈ socA. We have thereby shown that x ∈ F(A). This
completes the proof.

Having the above lemma in hand, we can deduce the following
characterization of the socle in a semi-prime commutative Banach
algebra.

Lemma 2.2. Let A be a commutative complex unital semi-prime
Banach algebra, and let a ∈ A. Then the following two conditions are
equivalent:

(i) a ∈ socA.

(ii) For every g ∈ G(A), a+ g has a generalized inverse.

Proof. Since every element of socA has a generalized inverse, the
implication (i) ⇒ (ii) follows from [12, 7.3.2.6].

To prove the converse, suppose that (ii) is satisfied. Then it follows
from Lemma 2.1 that, for every u ∈ F(A), a+u ∈ F(A), and therefore,
a+u+socA is invertible in the algebra A/socA. By [22], we infer that
a + socA ∈ rad (A/socA). As a result, a ∈ kh (socA). But a ∈ G(A);
thus, a ∈ socA.

Theorem 2.3. Let A and B be complex unital Banach algebras
such that B is commutative and semi-prime. Let φ : A → B be a
linear map preserving generalized invertibility. Suppose, moreover, that
φ is surjective modulo the socle of B. Then there exists a Fredholm
element u of B such that the map π ◦ (uφ) is multiplicative, where
π : B → B/kh (socB) is the canonical quotient map.
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Proof. We first show that π ◦ φ preserves invertibility. Fix x ∈ A−1,
and let b ∈ B. Then there exist a ∈ A and s ∈ soc (B) such that
b = φ(a) + s. Since A−1 is open, there exists a δ > 0 with the property
that x + λa ∈ A−1 for every complex number λ with |λ| < δ. Hence,
φ(x + λa) has a generalized inverse in B for every λ with |λ| < δ.
Using once again [12, 7.3.2.6], we infer that φ(x)+λb has a generalized
inverse for every λ with |λ| < δ. Applying Lemma 2.1, we conclude
that φ(x) ∈ F(B). Thus, π ◦ φ preserves invertibility, as desired.
Now it follows from the Gleason-Kahane-Zelazko theorem that the map
(π ◦ φ(1))−1π ◦ φ is multiplicative. This completes the proof.

Remark 2.4. Let A and B be complex unital semi-prime Banach
algebras such that B is commutative, and let φ : A → B be a linear
map preserving generalized invertibility. Suppose, moreover, that φ is
surjective modulo the socle of B. Then, using Lemma 2.1, we infer that
φ preserves Fredholm elements (i.e., φ(x) ∈ F(B) whenever x ∈ F(A),
for every x ∈ A).

Given a topological space X and F ⊆ X , we denote by F the closure
of F .

Remark 2.5. According to [23, Corollary 7.4], if A is a function
algebra, then kh (socA) = socA. Let A be a commutative semi-simple
Banach algebra. We do not know if the equality kh (socA) = socA
holds. Recall that the compactum of A is the set of all elements x ∈ A
such that the operator Tx defined by Tx(a) = x2a for all a ∈ A is
compact. Using [5, Theorem 2.1] we see easily that socA ⊆ C(A) ⊆
kh (socA). In [2], the author proves that C(A) = socA, but his
argument is not clear.

We are now in a position to prove our main result.

Theorem 2.6. Let A and B be complex semi-prime unital Ba-
nach algebras, and suppose that B is commutative. Let φ : A → B
be a linear map preserving generalized invertibility. Suppose, more-
over, that φ is surjective modulo the socle of B. Then φ(socA) ⊂
socB, φ(kh (socA)) ⊂ kh (socB). Moreover, there exists an invert-
ible element u of B/kh (socB) such that uϕ is multiplicative, where
ϕ : A/kh (socA) → B/kh (socB) is the induced map.
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Proof. According to Theorem 2.3, it suffices to prove that φ(socA) ⊂
socB and φ(kh (socA)) ⊂ kh (socB). First observe that by Theo-
rem 2.3, φ(1) ∈ F(B). Choose v ∈ B such that vφ(1) − 1 ∈ socB,
and define ψ : A → B by ψ(x) = vφ(x) for every x ∈ A. Since
F(B) ⊆ G(B), v ∈ G(B). Consequently, ψ preserves generalized in-
vertibility. On the other hand, observe that ψ is surjective modulo
socB. It follows from Theorem 2.3 that the map π ◦ ψ is multiplica-
tive, where π : B → B/kh (socB) is the canonical quotient map. Next
we show that φ(socA) ⊂ socB. Let e be a minimal idempotent of A.
Since e− 1 ∈ F(A), then ψ(e− 1) ∈ F(B). But ψ(1)− 1 ∈ socB. This
entails that ψ(e) − 1 ∈ F(B). Moreover, using the fact that π ◦ ψ is
multiplicative, we infer that ψ(e)(ψ(e)−1) ∈ kh (socB). It follows that
ψ(e) ∈ kh (socB). But ψ(e) ∈ G(B). Therefore, ψ(e) ∈ socB, and we
get φ(e) ∈ socB. We have thereby shown that φ(socA) ⊂ socB.

Now let us show that φ(kh (socA)) ⊆ kh (socB). Since the map
π ◦ ψ is multiplicative, it follows that π ◦ ψ is continuous [7, page 83].
Hence ψ(socA) ⊆ kh (socB). Define τ : A/socA → B/kh (socB) by
τ(a + socA) = ψ(a) + kh (socB) for every a ∈ A. Observe that τ
is a surjective linear map preserving invertibility with τ1 = 1; hence,
τ(rad (A/socA)) = {0}, since the algebra B/kh (socB) is semi-simple.
Thus, ψ(kh (socA)) ⊂ kh (socB), as desired. This completes the
proof.

Remark 2.7. Let K be a non-empty, compact, Hausdorff topological
space. The commutative algebra of complex-valued, continuous func-
tions onK is denoted by C(K). Let F be a closed subset ofK. Suppose
that there exists an homeomorphism η : K → F . Then the linear map
φ : C(K) → C(K) defined by

φ(g) = g|F ◦ η,
is multiplicative and surjective. Obviously, if F �= K, then φ is not
injective. Suppose, moreover, that K has no isolated points. Then
soc (C(K)) = {0}. This simple example shows that the map ϕ in the
above theorem is not injective in general.

3. General case. To conclude this paper, we give some results and
comments about non surjective maps preserving generalized invertibil-
ity.
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Remark 3.1. Let A,B be unital Banach algebras, and let φ : A → B
be an additive map. Following [19], we say that φ preserves strongly
generalized invertibility if φ(y) is a generalized inverse of φ(x) whenever
y is a generalized inverse of x, for every x, y ∈ A. Recall that y is
a generalized inverse of x if xyx = x and yxy = y. According to
[9, Proposition 3.10], if B is commutative and φ preserves strongly
generalized invertibility, then φ(1)φ is multiplicative.

Let K be a non-empty, compact, Hausdorff topological space. For
f ∈ C(K), we denote the zero set of f by Z(f). Let φ : A → C(K) be
a linear map. Let K ′ be a closed subset of K. Then we denote by φK′

the linear map φK′ : A → C(K ′) with φK′(a)(u) = φ(a)(u) for every
u ∈ K ′.

Lemma 3.2. Let K be a non-empty, compact, Hausdorff topological
space, and let A be a unital Banach algebra. Suppose that φ : A→ C(K)
is a linear map preserving generalized invertibility. Then the set
K ′ = {u ∈ K : φ(a)(u) �= 0 for all a ∈ A−1} is closed. Moreover,
the map (φK′ (1))−1φK′ is multiplicative.

Proof. Pick v ∈ K ′, and suppose for a moment that there exists
an a ∈ A−1 such that φ(a)(v) = 0. Since φ(a) has a generalized
inverse, then the map φ(a) must vanish in a neighborhood of v.
This contradicts our assumption on v and K ′. Thus the set K ′ is
closed. Now observe that the map φK′ preserves invertibility. Applying
the Gleason-Kahane-Zelazko theorem, we infer that (φK′ (1))−1φK′ is
multiplicative.

One is tempted to expect in the above lemma that the set K ′ is also
open. The following example shows that this is not true in general.

Example. Set K = [−1, 0] ∪ {1/n : n ∈ N∗}. For each n ∈ N∗,
define ϕn ∈ C(K) by ϕn(x) = 1 if x �= 1/n and by ϕn(1/n) = 2. We
check easily that the set {ϕn : n ∈ N∗} ∪ {1} is linearly independent.
Choose {fj}j ⊆ C(K) such that the set B = {ϕn : n ∈ N∗}∪{1}∪{fj}
is a Hamel basis of C(K). Define a linear map φ : C(K) → C(K) by
φ(g) = g for every g ∈ B with g �∈ {ϕn : n ∈ N∗}, (φ(ϕn))(1/n) = 0,
and (φ(ϕn))(x) = 1 if x ∈ K with x �= 1/n. Suppose that f ∈ C(K)
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has a generalized inverse, and write f = α1 +
∑

n αnϕn +
∑

j βjfj ,
where α, αn, βj ∈ C. Then, it is clear that φ(f)(x) = f(x) for every
accumulation point of K. This entails that φ(f) has a generalized
inverse. Now observe that K \ K ′ = {1/n : n ∈ N∗}. Hence, the set
K ′ is not open, as required.

Proposition 3.3. Let K be a non-empty connected compact Haus-
dorff topological space, and let A be a unital Banach algebra. Suppose
that φ : A → C(K) is a linear map preserving generalized invertibility.
Then either φ(1) is invertible and the map (φ(1))−1φ is multiplicative,
or φ has rank 1.

Proof. Assume first that φ preserves invertibility. Then φ(1) is
invertible and the map (φ(1))−1φ is multiplicative by the Gleason-
Kahane-Zelazko theorem. Suppose now that there exists an a ∈ A−1

such that φ(a) /∈ A−1. Since φ preserves generalized invertibility, the
set Z(φ(a)) is open. But evidently, Z(φ(a)) is also closed; therefore,
Z(φ(a)) = K and φ(a) = 0. Next let b ∈ A. Then, for λ ∈ C
with |λ| sufficiently small, we have a + λb ∈ A−1. It follows that
φ(a + λb) = λφ(b) ∈ G(C(K)). Thus, φ(b) ∈ G(C(K)) for every b ∈ A.
Now choose b ∈ A such that φ(b) �= 0. Pick u ∈ K with the property
that φ(b)(u) �= 0. Let b′ ∈ A. Then there exists a λ ∈ C such that
φ(b′ − λb)(u) = 0. As before, we conclude that φ(b′ − λb) = 0. This
completes the proof.
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