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SURVEY ARTICLE: CONSEQUENCES OF
SOME OUTERPLANARITY EXTENSIONS

L. BOZA, E.M. FEDRIANI AND J. NÚÑEZ

ABSTRACT. In this expository paper we revise some ex-
tensions of Kuratowski planarity criterion, providing a link
between the embeddings of infinite graphs without accumu-
lation points and the embeddings of finite graphs with some
distinguished vertices in only one face. This link is valid for
any surface and for some pseudosurfaces.

On the one hand, we present some key ideas that are not
easily accessible. On the other hand, we state the relevance
of infinite, locally finite graphs in practice and suggest some
ideas for future research.

1. Introduction. The problem of extending Kuratowski’s planarity
criterion [27] to other surfaces different from the sphere, S2, looks
very difficult. This statement is shown by the fact that there has been
little progress on this research from 1930 until 1979, when Archdeacon
[1] and Glover, Huneke and Wang [23] determined the class of finite
graphs which cannot be drawn in the projective plane, P2, and which
are minimal with this property under topological containment. These
graphs were denoted by T (P2), and they found that T (P2) had 103
elements, in front of the only two in T (S2). However, the problem still
remains open when dealing with any other compact surface different
from S2 and P2.

More or less at the same time, infinite graphs constituted a relevant
generalization of classic, finite graphs. The handling of these graphs
presents substantial differences, but it is also possible to find common
aspects. In fact, in this paper we establish a link between infinite
graphs and finite graphs which verify some properties. Besides, we
revise some characterizations of embeddings of infinite graphs, paying
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special attention to those in tubular surfaces, without accumulation
and with all their vertices in one face.

This paper comprises three sections besides this introduction. The
first one is devoted to motivating the topic, showing the preliminary
attempts to face the kinds of problems we are dealing here. The next
section provides the reader with some useful, preliminary concepts and
results, linking Halin’s theorem and Oubiña and Zucchello’s theorem
for any surface, and trying to do the same with pseudosurfaces. Af-
terwards, we deal with the problem of outer-embeddings without accu-
mulation points in different tubular surfaces, including some reflections
about the topic and ideas for future research.

2. The interest of infinite graphs. Regarding infinite graphs, un-
countable graphs are of scientific significance, but its interest is mainly
theoretical (see, for example, [11, 38], where planar embeddings and
outer-embeddings are, respectively, characterized). However, contrary
to popular belief, countable (locally finite) graphs involve an intrinsic,
practical interest, since they are useful to model increasing systems,
especially those which are periodic.

About the planarity of infinite graphs, Dirac and Schuster [19] proved
that a countable graph is planar if and only if each finite subgraph is
planar, and Wagner characterized in [38] all the planar graphs. But, as
many authors have pointed out (see, for example, [24, 29, 30, 37]), it
is advisable to add some supplementary properties to planarity in the
case of infinite graphs. In particular, from a practical point of view,
accumulation points must be avoided. Hence, Halin gave in [24] the
characterization of (locally finite) graphs with a planar embedding and
without vertex accumulation points (VAP-free planarity) in terms of
forbidden subgraphs. And Thomassen introduced EAP-free planarity,
showing that all connected VAP-free planar graphs admit locally finite
planar representations such that the edge set has no accumulation point
in the plane ([36]). Later, the complete set of EAP-free planar graphs
was characterized in [6].

Other non-compact surfaces, different from the plane, also arouse
some interest. In fact, the characterization of graphs admitting em-
beddings with no vertex accumulation point on tubular surfaces S(n)
of finite genus was already found in [33]. This fact gives special rele-
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vance to two research lines. On the one hand, VAP-free embeddability
and EAP-free embeddability are closely related for every non-compact
surface (see [14], to verify the relationship between VAP-free-S(n) and
EAP-free-S(n) graphs). On the other hand, we should pay some extra
attention to the graphs admitting embeddings with all their vertices in
one face. These outerplanar embeddings have many practical and use-
ful properties, above all, for the modeling of increasing systems (some-
thing also pointed out for general infinite graphs). Therefore, three
typical fields of interest are architecture [35], printed circuit boards
[28] or communication networks and routing [21], respectively. Simul-
taneously, outerplanarity has developed into a study of other compact
surfaces and pseudosurfaces, as the Bananas surface [10] or others [9].

Sometimes, only a few vertices are of interest to the future growth
of the modeled system. Therefore, Oubiña and Zucchello introduced
a concept very related to our aims. They defined and characterized
in [32] the W -outerplanar graphs, where W is any non-empty set of
vertices of a graph G, G is planar and each vertex of W is on the
boundary of the outer face. In this sense, we say that a graph is W -S-
embeddable if it has an embedding in S such that all the vertices of W
are in the same face.

Another step ahead for our infinite graphs is the analysis of infinite
outerplanar graphs, and the first attempts to generalize outerplanar
graphs to the case of infinite graphs were [8, 16]. They characterized
some specific families of graphs with planar embeddings and without
accumulation points. Since then, more papers about infinite graphs
have been produced (see, for example, [11] with respect to uncountable
graphs and [12] regarding countable graphs).

As another consequence of the previously mentioned relations and
of the important results about graph minors obtained by Robertson
and Seymour in [34] (for any compact surface and for the spindle
surface), it is proved that the minimal set of forbidden minors for graph
embeddings with no vertex accumulation point in non-compact surfaces
is finite, something that we are about to recall for infinite graphs.

3. Some basic concepts and results. All graphs in this paper
will be considered undirected and without loops or multiple edges. We
will use the standard graph-theoretical terminology, as it is presented
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FIGURE 1. The grid (left) has one unstable end, while the Euclidean line (right)
has two stable ends.

FIGURE 2. GW (right) is the strongly stable graph built from G (left); W is the
set of both distinguished vertices.

in [25], except vertex instead of point and edge instead of line. When
infinite graphs are considered, we use the terminology in [26, 27, 31].
When we deal with infinite graphs in this paper, we mean locally finite
graphs with a countable vertex set, i.e., countable graphs such that the
degree of any vertex is finite. The formal definition of an embedding
for this kind of graphs in tubular surfaces can be consulted in [29, 30].

These tubular surfaces are built from a compact surface S, of a
finite genus, where n open discs are replaced by n open cylinders.
For tubular surfaces of finite genus, we will use an invariant of non-
compact spaces, namely Freudenthal end [22]. So, S(n) represents
a non-compact surface of finite genus with n Freudental ends. For
example, if S2 is the sphere and P2 is the projective plane, then S2(1)
is homeomorphic to the plane, S2(2) is the open cylinder and P2(1) is
homeomorphic to the Möbius band.

In addition, when G is a graph we can use the following countable
sequence G1 ⊆ G2 ⊆ · · · of finite subgraphs to define the ends of G.
An infinite ray in a graph G is a morphism ψ : Pw → G inducing an
injection on both the vertex set and the edge set, where Pw represents
a graph such that its underlying topological space is homeomorphic
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to the positive half-line R+. Two infinite rays in G define the same
Freudenthal end if vertices exist in G−H for any subgraphH of G. For
example, the Euclidean half-line R+ = [0,+∞) has one Freudenthal
end and the Euclidean line has two. All Euclidean spaces Rn, with
n ≥ 2, have, exactly, one Freudenthal end.

An end of a graph defined by Pw is said to be stable if any G − K
(for any K compact in G) defined by Pw is a tree. Otherwise, the end
is said to be unstable (see Figure 1). An interesting theorem about
unstable ends can be found in [18]. We say that an end of a graph G is
strongly stable if a finite subgraph H exists such that every component
of G − H is an infinite ray. If G is a finite graph and W is a set of
vertices of G, we denote by GW to the strongly stable graph built from
G with one infinite ray starting from every vertex of W (see Figure 2).
Therefore, a graph G′ is strongly stable if and only if G and a subset
of its vertices, W , exist such that G′ is isomorphic to GW . However,
we have other methods to obtain infinite graphs:

In short, the way to characterize VAP-free-S(n) graphs is based on
removing some points to make the graph non-compact (i.e., replacing
an open disc from S by an open cylinder and replacing an edge from
the graph by an infinite ray). From now on, we denote this process by
decompactification (see Figure 3). In general, one can apply a sequence
of decompactifications (or a decompactification by n points), but some
extra difficulties emerge, as can be checked in [12]. If G is a countable
graph with all its n ends strongly stable and admitting an embedding
without accumulation points in tubular surface S(n), then it is possible
to obtain some graph G∗ from which G is the decompactification of
G∗ by n points. In general, such a graph G∗ is not unique, since it
depends upon the embedding chosen in G (moreover, it depends upon
the “remaining” vertices of degree two after contracting each end).
We define a main n-compactification when the rays are replaced by n
vertices and one vertex of each ray remains.

In 1966 Halin [24] already characterized VAP-free-S2(1) graphs in
terms of forbidden subgraphs:

Theorem 3.1 [24]. A planar graph is VAP-free if and only if it has
no subgraph homeomorphic to K∞

5 , L∞
3,3, K

∞
3,3 or L∞

5 (see Figure 4).

Clearly, if G is a minor of G′ and G′ is VAP-free-S(n), then G is VAP-
free-S(n). In this way, the characterization of the VAP-free-S(n) graphs
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FIGURE 3. Decompactification of K3,3 in a vertex (left) and in an inner point of
an edge (right).
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FIGURE 4. Halin’s graphs.

FIGURE 5. (G2,W2)R1(G1,W1): subgraph.
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FIGURE 6. (G2,W2)R2(G1,W1): contracting edge x in w.

can be given in terms of forbidden minors. We denote by KVAP(S(n))
the set of forbidden VAP-free-S(n) minors. A graph G is in KVAP(S(n))
if it is not VAP-free-S(n), and it verifies that if H is a minor of G and
G is not a minor of H then H is VAP-free-S(n).

The explicit characterization of graph embeddings with no vertex
accumulation point in the Möbius band was independently obtained by
Revuelta [33] and Archdeacon, et al. [3]; they gave the list of forbidden
minors for VAP-free-P2(1)-embeddability.

In the following, we are going to prove that there exists an equivalence
between one infinite-type problem and one finite-type problem. In this
way, we will allow the characterization of VAP-free-S embeddings (a
generalization of Theorem 3.1) for any compact surface S. But we
need some previous results related to W -S-embeddable graphs. First,
in order to enunciate Oubiña and Zucchello’s theorem (see [32] for more
details), we define some elementary relationships on the set L of pairs
(G,W ), where G is a graph and W is a set of vertices of G (in the
corresponding figures, the vertices in this set W will be marked).

1. (G2,W2)R1(G1,W1) if G1 is a subgraph of G2, W1 is a subset of
W2 and (G1,W1) �= (G2,W2) (see Figure 5).

2. (G2,W2)R2(G1,W1) if G1 is obtained from G2 by contracting an
edge x = {u, v} in a new vertex w and

• if u, v /∈ W2, then W1 is W2, and

• if {u, v} ∩W2 �= ∅, then W1 = (W2 ∩ V (G1)) ∪ {w} (Figure 6).

3. (G2,W2)R3(G1,W1) if v ∈ W2 exists such that G1 = G2 − v and
W1 is the union of W2 and the set of adjacent vertices of v (Figure 7).
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FIGURE 7. (G2,W2)R3(G1,W1): deleting vertex v ∈ W2.

FIGURE 8. (K4, V (K4)) (left) and (K2,3, {a, b, c}) (right).

Now we are able to define the relation >i, for i = 1, 2, in the
following way: let (G,W ) and (G′,W ′) be two arbitrary elements of
L. We will say that (G,W ) >i (G

′,W ′) if a sequence of elements of
L exists, (G1,W1), (G2,W2), . . . , (Gn,Wn), with (G1,W1) = (G,W )
and (Gn,Wn) = (G′,W ′) such that (Gk,Wk)Rhk

(Gk+1,Wk+1), with
hk ∈ {1, 2, . . . , i+ 1}, for each k = 1, 2, . . . , n− 1. We will also denote
by (G,W ) ≥i (G

′,W ′) if (G,W ) = (G′,W ′) or (G,W ) >i (G
′,W ′).

Obviously, if (G,W ) >1 (G′,W ′), then (G,W ) >2 (G′,W ′). Besides,
≥1 is closely related to the minor ordering and ≥2 is also related to the
YΔ ordering (see [5], for example, for a detailed description of these
orderings). The above introduced relation is interesting to us because
Oubiña and Zucchello’s theorem can be re-formulated in the following
way:

Theorem 3.2 [32]. A graph G is not W -outerplanar if and only if
(G,W ) ≥2 (K4, V (K4)) or (G,W ) ≥2 (K2,3, {a, b, c}), where a, b and
c are vertices of K2,3 with degree 2 (Figure 8).

By using this result, it is easy to check the following:
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FIGURE 9. (K5 −K2, {a, b}) (left) and (K3,3 −K2, {c, d}) (right).

Corollary 3.3 A graph G is not W -outerplanar if and only if
(G,W ) ≥1 (K4, V (K4)), (G,W ) ≥1 (K2,3, {a, b, c}), where a, b and
c are the vertices of K2,3 with degree 2, (G,W ) ≥1 (K5 −K2, {a, b}),
where a and b are the vertices of K5 −K2 with degree 3, or (G,W ) ≥1

(K3,3 − K2, {a, b}), where a and b are the vertices of K3,3 − K2 with
degree 2 (Figures 8 and 9).

Oubiña and Zucchello’s theorem presents the characterization of the
W -S2-embeddable graphs and Cáceres gave in [15] the characterization
of the W -P2-embeddable graphs. Now we can provide the reader with
some properties for the general compact surface S. Later, we will
consider the case of pseudosurfaces (at the end of this section).

It is easy to check that, if (G,W )Rk(G
′,W ′) (with k = 1, 2, 3)

and G is W -S-embeddable, then G′ is W ′-S-embeddable. Thus, if
(G,W ) >i (G

′,W ′) (with i = 1, 2) and G is W -S-embeddable, then G′

is W ′-S-embeddable and the characterization of the W -S-embeddable
graphs can be given in terms of minimal elements of L in the order >i,
in the sense that (G,W ) is minimal if G is non-W -S-embeddable and
if (G,W ) >i (G

′,W ′), then G′ is W ′-S-embeddable.

We denote by Li(S), with i = 1, 2, the set of minimal elements in
the order >i. Hence, L2(S

2) is {(K4, V (K4)), (K2,3, {a, b, c})}, where
a, b and c are the vertices of K2,3 with degree 2 (Figure 8), and L1(S

2)
is L2(S

2) ∪ {(K5 −K2, {a, b}), (K3,3 −K2, {c, d})}, where a and b are
the vertices of K5 − K2 with degree 3, and c and d are the vertices
of K3,3 − K2 with degree 2 (Figure 9). In this sense, we can state
that Cáceres found in [15] the set of minimal elements of L1(P2) and
L2(P2).

It is obvious that a relationship exists between the infinite graphs that
have a planar embedding with no vertex accumulation point, charac-
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terized by Halin, and the finite graphs with a planar embedding such
that some distinguished vertices are in the same face, characterized by
Oubiña and Zucchello. Moreover, as a consequence of Corollary 3.3,
we can see that, if we add an infinite ray in each vertex, the forbidden
graphs for W -outerplanarity (by Oubiña and Zucchello) are the same
as the forbidden graphs for VAP-free-planarity (by Halin). So the four
graphs of Halin’s theorem are the graphs GW , where the (G,W ) are the
elements of L1(S

2(1)). By the following results, this relationship is gen-
eralized, showing that, for any compact surface S, the characterization
of VAP-free-S(1) graphs is equivalent to the one of W -S-embeddable
graphs. In other words, it is sufficient to determine one of the sets
KVAP(S(1)) or L1(S(1)) to obtain the other. This relation is expressed
by the following theorem:

Theorem 3.4 [33]. KVAP(S(1)) is the set {GW : (G,W ) ∈
L1(S(1))}, for any compact surface S.

The proof of Theorem 3.4 (the same applies to Lemmas 3.5 and 3.6)
can also be found in [33], although in Spanish and with minor typos;
we include it in the following to allow subsequent generalizations. In
order to prove this result, we firstly need the two following lemmas. In
fact, there is a proof of Lemma 3.5 in [7], but we propose this as an
alternative.

The following results are also useful to our purposes.

Lemma 3.5 [33]. Every graph in KVAP(S(1)) is strongly stable.

Proof. We suppose that there are infinitely many components of
G − H different from an infinite ray for any finite subgraph H of G.
We consider a sequence {Gk} of finite graphs such that, for any k ∈ N,
Gk is a subgraph of Gk+1 and limk→+∞ Gk = G.

For any k ∈ N, we consider Wk as the set of vertices of Gk such that
for any infinite component of G−Gk incident with Gk, there is a vertex
of Wk. Then, the graph (Gk)Wk

is strongly stable and it is a subgraph
of G, since it is not a minor of G. So, (Gk)Wk

is VAP-free-S(1), since
G ∈ KVAP(S(1)).
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Every VAP-free embedding of (Gk)Wk
in S(1) induces a VAP-free

embedding of (G1)W1 in S(1). As there is a finite number of different
embeddings of (G1)W1 in S(1), there is a subsequence of {(Gk)Wk

} such
that all of its elements induce the same VAP-free embedding of (G1)W1

in S(1). We call {(Gk)Wk
} to this subsequence. Then, by using the

same argument with G2, G3 . . . , we build a VAP-free embedding of G
in S(1), which is contradictory.

We suppose now that a finite subgraph H exists such that every
component of G−H is an infinite ray and that some rays start at the
same vertex. We consider the graph G′ obtained from G by deleting
an infinite ray such that there is another infinite ray starting at the
same vertex. G′ is a subgraph of G and G is not a subgraph of G′.
Then, G′ is VAP-free-S(1), since G ∈ KVAP(S(1)). However, a VAP-
free embedding of G′ in S(1) induces a VAP-free embedding of G, which
is also contradictory.

Lemma 3.6 [33]. Let (G,W ) be an element of L. Then, G is W -S-
embeddable if and only if GW is VAP-free-S(1).

Proof. We consider an embedding of G in S having all the vertices of
W in one same face. In this face, we replace an open disc with an open
cylinder, and we draw an infinite ray starting at each vertex of W in
the cylinder. Thus, we obtain a VAP-free embedding of G in S(1).

We now consider a VAP-free embedding of GW in S(1). The infinite
rays are in the cylinder of S(1). If we cut them and we replace the
open cylinder with an open disc, we obtain an embedding of G in S
such that the vertices of W are in the same face.

Proof of Theorem 3.4. Let (G,W ) be an element of L1(S(1)).
According to Lemma 3.6, GW is not a VAP-free-S(1) graph. Let H be
a minor of GW such that GW is not a minor of H . We can suppose that
H is obtained from GW by contracting or by deleting an edge of G.

If H is obtained from GW by contracting an edge x = {u, v} of G, we
can denote by G/x the graph obtained from G by contracting x. Let
w be the new vertex in G/x. We consider three subcases:
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Case 1. If no vertices of x are in W , then H is (G/x)W and, since
(G,W )R2 (G/x,W ), G/x is embeddable, and thus H is VAP-free-S(1),
according to Lemma 3.6.

Case 2. If one vertex of x, for instance u, is in W , then H is
(G/x)(W\{u})∪{w} and, as (G,W )R2(G/x, (W \ {u}) ∪ {v}), then H
is VAP-free-S(1).

Case 3. If u and v are in W , (G/x)(W\{u,v})∪{w} is VAP-free-S(1),
because (G,W )R2(G/x, (W \ {u, v}) ∪ {v}). As H is the union of
(G/x, (W \ {u, v}) ∪ {w}) with a second ray starting at w, the VAP-
free embedding of (G/x, (W \ {u}) ∪ {v})) in S(1) induces a VAP-free
embedding of H , and thus H is VAP-free-S(1).

If H is obtained from GW by deleting an edge x of G, then H =
(G − x)W and (G,W )R1(G − x,W ). So, G − x is S-embeddable and
thus, H is VAP-free-S(1), according to Lemma 3.6.

The same thing occurs if H is obtained from GW by deleting an
edge x of an infinite ray starting at a vertex w ∈ W , because as
(G,W )R1(G,W \ {w}), GW − {w} is VAP-free-S(1). Then, as H is
the union of an infinite ray and (G/x)W\w with a finite chain starting
at w, the VAP-free embedding of GW − w in S(1) induces a VAP-free
embedding ofH , and thusH is VAP-free-S(1), according to Lemma 3.6.
Therefore, GW is in KVAP(S(1)).

Now, let H be a graph of KVAP(S(1)). According to Lemma 3.5, H
is strongly stable. Therefore, G and W exist such that H is GW and
G is non-W -S-embeddable, according to Lemma 3.6. Let (G′,W ′) be
an element of L such that (G,W )Ri(G

′,W ′), with i = 1, 2. In any
case, G′

W ′ is a minor of H and H is not a minor of G′
W ′ . So, G′

W ′ is
VAP-free-S(1). Lemma 3.6 implies that G′ is W ′-S-embeddable and
(G,W ) ∈ L2(S(1)).

These results (Theorem 3.4, Lemma 3.5 and Lemma 3.6) can be
generalized in several ways for the general tubular surface S(n); some of
these generalizations are easy to prove and will be applied in Section 4.

Another natural generalization of the previous results could be the
consideration of pseudosurfaces instead of compact surfaces, but W -S-
embeddability is not a hereditary property for minors. In fact, in some
pseudosurfaces, S-embeddability is not even a hereditary property for
minors. Next we propose an original example of a pseudosurface which
shows both problems:
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FIGURE 10. Pseudosurface S1 (left) and a non-planar, S1-embeddable graph.
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FIGURE 11. Forbidden p-outerplanar minors.

Let us consider two copies of the bananas-surface, choose one of the
singular points of each copy and connect both points by a sphere. The
resulting pseudosurface will be S1 (see Figure 10, left). Now, let G
be the graph obtained when taking two copies of K5 and connecting
one vertex of each copy by an edge, which we call x (as in Figure 10,
right). G is obviously S1-embeddable, but if one contracts x, a non-S1-
embeddable minor appears.

Similar examples can be designed when dealing with W -S-embedda-
bility. If more specific cases are needed, the reader may consult
Section 3 of [9], where some related ideas are presented.

4. Outer-embeddings in tubular surfaces and open prob-
lems. The concepts and results previously presented inspire the cor-
responding ones for the following situation. In the case of outer-
embeddings, which can be seen as a particular case ofW -embeddability,
the first generalization leads us to the consideration of p-outerplanar
(i.e., VAP-free-outerplanar) graphs. These graphs admit embeddings
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FIGURE 12. Spindle surface; its pinch point is P1.

in the plane without any vertex accumulation point and with all their
vertices in the same face; its characterization can be found in [8]. Anal-
ogously, we can define the set of forbidden p-outer-S(n) (i.e., VAP-
free-outer-S(n)) minors, Kp(S(n)). So, Kp(S

2(1)) is represented in
Figure 11; this list is obtained in [8] from the list of two forbidden
outerplanar minors (K4 and K2,3) given for the very first time in [17].

As was pointed out before for the VAP-free-S(n) embeddings, every
graph which does not admit a p-outer-S(n) embedding (a non-p-outer-
S(n) graph) is the decompactification of a non-outer-S graph by n
points (see [12] if more details are needed). If n = 1, this fact provides
us with a method to obtain lists of forbidden minors (and even lists of
forbidden subgraphs). In fact, forbidden p-outer-S(1) minors can be
immediately generated when forbidden outer-S subgraphs are known.
The difference with respect to the process of obtaining forbidden VAP-
free graphs from the obstruction lists for finite graphs is that spare
graphs may appear, which have to be removed from the final list (see
[20] if more details are needed).

Two particular cases of p-outer-S(n)-embeddability are presented in
[13]: the open cylinder (S = S2 and n = 2) and the Möbius band
(S = P2 and n = 1). In the first case, the list of forbidden minors
consists of 11 graphs, and it is obtained from the set of forbidden p-
outerplanar graphs. In the second, a list of 92 forbidden minors as
well as a list of 182 forbidden subgraphs exist; both come from the
characterization of outer-projective graphs (see [5]). Nowadays, other
lists of forbidden minors (or subgraph) do not exist that allow the study
of other particular cases.
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To conclude, Kuratowski’s theorem has unquestionable importance.
In fact, it was one of the most cited papers during the twentieth century,
allowing a number of practical applications and generalizations. Some
examples of its relevance are the frequent attempts to characterize
embeddings in different surfaces and pseudosurfaces, as well as the
definition of outerplanar graphs. Regarding this last concept, several
generalizations have emerged, too. For instance, we have commented
upon some ideas about S-embeddable and W -S-embeddable graphs,
since S is a surface or even a pseudosurface. Both extensions seem
to possess enough relevance to deserve our future attention; above all,
because they allow the study of indefinitely increasing systems.

In the first sections of this paper we have introduced the nature of
topological problem and presented a link between an infinite-type prob-
lem (the characterization of VAP-free embeddable graphs) and the “fi-
nite” problem of W -S-embeddability. We think that this relationship
may be useful when modeling increasing systems, but its main interest
for us is the possibility of obtaining forbidden-minors characterization
for different kinds of embeddings in quite diverse surfaces and pseu-
dosurfaces. For future research, we propose the use of our results to
characterize outer-embeddings in non-compact surfaces with a greater
number of open cylinders, S(n). This is similar to the analysis pre-
sented in [12], but considering that all the ends have a similar charac-
ter, which is more realistic, it is also more difficult.

We have also given an example of a pseudosurface whose embeddabil-
ity and outer-embeddability do not admit lists of forbidden minors.
Finally, we suggest the future study of embeddings through the link
between some specific pseudosurfaces and non-compact surfaces, such
as the case of the spindle surface (see Figure 12) and the open cylinder,
which can be obtained by placing the pinch point of the pseudosurface
at infinity. Starting from the list of forbidden p-outercylindrical mi-
nors, we hold that the spindle surface is a good candidate to reach the
third Kuratowski-type characterization.
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15. J. Cáceres, Diversos tipos de planaridad de grafos, Ph.D. thesis, Dpto. de
Geometŕıa y Topoloǵıa, Universidad de Almeŕıa, 1996.
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