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NONDECREASING SOLUTIONS OF
A QUADRATIC INTEGRAL EQUATION
OF URYSOHN-STIELTJES TYPE

MOHAMED ABDALLA DARWISH AND JOHNNY HENDERSON

ABSTRACT. We prove an existence theorem for a quadratic
integral equation of Urysohn-Stieltjes type in the space of con-
tinuous functions. The quadratic integral equation studied
contains as a special case numerous integral equations encoun-
tered in the theory of radioactive transfer, neutron transport
and the kinetic theory of gases. The concept of measure of
noncompactness and a fixed point theorem due to Darbo are
the main tools in carrying out our proof.

1. Introduction. Quadratic integral equations have many useful
applications in describing numerous events and problems of the real
world. For example, quadratic integral equations are often applicable
in the theory of radiative transfer, kinetic theory of gases, in the theory
of neutron transport, and in traffic theory. Especially, the so-called
quadratic integral equation of Chandrasekher type can very often be
encountered in many applications (cf. [19, 20, 28-30, 42, 45, 47]).
Moreover, a type of quadratic integral equation arises in the design of
bandlimited signals for binary communication using simple memoryless
correlation detection, when the signals are disturbed by additive white
Gaussian noise. It is shown that a bandlimited signal can be designed
which eliminates intersymbol interfererence for signaling at Nyquist
rate; this signal is a solution to a quadratic integral equationsee [1, 3,
21, 29, 45, 51].

In the last 35 years or so, many authors have studied the existence of
solutions for several classes of nonlinear quadratic integral equations.
For example, Anichini and Conti [1], Argyros [4], Bana$ et al. [8, 10,
15], Bana$ and Martinon [11], Bana$ and O’Regan [13], Bana$ and
Rzepka [16, 17], Benchohra and Darwish [18], Caballero et al. [22,
23, 26], Darwish [31-37], Darwish and Henderson [38], Darwish and
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Ntouyas [39, 40], Darwish and Sadarangani [41], Hu and Yan [46],
Leggett [48], Liu and Kang [49], Stuart [53] and Spiga et al. [52].

The classical theory of integral operators and equations can be
generalized with the help of Stieltjes integrals having kernels dependent
upon one or two variables. Such an approach was presented and
developed in many research papers and books (cf. [5-7, 14, 24, 43,
50]) and the references therein.

The aim of this paper is to investigate the existence of monotonic
solutions of a so-called quadratic integral equation of Urysohn-Stieltjes
type, namely,

z(t) = h(t) + kz?(t) + f(t,a:(t))/0 u(t, s,z(s)) dsg(t, s),
t €[0,1],

where £ > 0. Let us recall that the function f = f(¢,z) involved
in equation (1) generates the superposition operator F defined by
(Fz)(t) = f(t,z(t)), where x = x(¢) is an arbitrary function defined on
[0, 1], see [2].

We remark that:

e If k =0, f(t,z) = 1 and u(t,s,z(s)) = (¢/t+ s)|z(s)| ¢(s) in
equation (1), then we have an equation studied by Caballero et al.
in [27].

o If f(t,z) = 1 in equation (1), then we have an equation studied by
Caballero in [43].

Using the concept of measure of noncompactness related to mono-
tonicity, introduced by Bana$ and Olszowy [12], and a fixed point
theorem due to Darbo [44], we show that equation (1) has solutions
belonging to C'(I) and are nondecreasing on the interval I.

(1)

2. Auxiliary facts and results. This section collects some
definitions and results which will be needed further on. Assume that
(E, ||.]|) is a real Banach space with zero element 6. Let B(z,r) denote
the closed ball centered at x and with radius r. The symbol B, stands
for the ball B(6,r).

If X is a nonempty subset of E we denote by X and Conv X the
closure and the convex closed closure of X, respectively. Moreover, we
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denote by Mg the family of all nonempty and bounded subsets of F,
and by N its subfamily consisting of all relatively compact subsets.

Next we give the concept of a measure of noncompactness [9]:

Definition 2.1. A mapping p : Mg — [0,+00) is said to be a
measure of noncompactness in F if it satisfies the following conditions:

1) The family kerp = {X € Mg : u(X) = 0} is nonempty and
ker u C Ng.

2) X C Y = u(X) < p(Y).

3) u(X) = u(Conv X) = p(X).

D pAX+1=-)Y) <Ap(X)+ (1 =N pY)for 0 <A< 1.

5 If X,, € Mg, X, = X, Xpny1 C X, forn = 1,2,3,... and
lim,, 00 u(X,) =0, then NS, X, # &.

We recall the fixed point theorem due to Darbo [44]. Before quoting
this theorem, we need the following definition:

Definition 2.2. Let M be a nonempty subset of a Banach space F
and T : M — FE a continuous operator that transforms bounded sets
onto bounded ones. We say that T satisfies the Darbo condition (with
constant K > 0) with respect to a measure of noncompactness p if, for
any bounded subset X of M, we have

u(TX) < K p(X).

If T satisfies the Darbo condition with K < 1, then it is called a
contraction operator with respect to p.

Theorem 2.3. Let Q be a nonempty, bounded, closed and convex
subset of space E, and let

H:Q—Q

be a contraction with respect to the measure of noncompactness . Then
H has a fized point in the set Q.
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Remark 2.4 [9]. Under the assumptions of Theorem 2.3, the set Fix H
of fixed points of H belonging to @ is a member of ker . In fact, as
pw(H(FixH)) = p(FixH) < Ku(FixH) and 0 < K < 1, we deduce
that p(Fix H) = 0.

In what follows we will work in the Banach space C[0,1] consisting
of all real functions defined and continuous on [0, 1]. The space C[0, 1]
is equipped with the standard norm

||| = sup{|(?)| : ¢ € [0,1]}.

For convenience, we write I = [0,1] and C(I) = C[0, 1]. Now, we recall
the definition of a measure of noncompactness in C'(I) which will be
used in the next section (see [11, 12]).

Let us fix a nonempty and bounded subset X of C'(I). For z € X
and € > 0 denoted by w(z, ), the modulus of continuity of the function
x, i.e.,

w(z,e) = sup{|z(t) —z(s)| : ¢, s€ I, |t —s| <e}.
Further, let us put

w(X,e) = sup{w(z,e) 1z € X}

and
wo(X) = gig(l)w(X, €).
Define
d(z) = sup{|z(s) — z(t)| — [z(s) —z(t)] : ¢, s€ I, t < s}
and

d(X) = sup{d(z) : z € X}.

Observe that d(X) = 0 if and only if all the functions belonging to
X are nondecreasing on I.

Now, let us define function p on the family M¢ () by the formula

u(X) = wo(X) + d(X).
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The function p is a measure of noncompactness in the space C(I) [12].
Moreover, the kernel ker . consists of all sets X belonging to M¢(r)
such that all functions from X are equicontinuous and nondecreasing
on the interval I.

Now, we recall some auxiliary facts related to functions of bounded
variation and the Stieltjes integral, [25]. Let x be a given real function
defined on the interval I. The symbol V}z will denote the variation of
x on the interval I, defined by

Vo =sup { Slott) - a(t:-0)]

P={0=ty<t1 <...<t,=1} isapartitionof[}.

If Viz is finite, then we say that x is of bounded variation on I. We
have

(i) Voz = Vg(—2)

(ii) Vi(z +y) < Voz + Vy
(i) Vo(z —y) < Voz + Viy
(iv) |Viz — Vy| < Vi(@ — ).

For other properties of functions of bounded variation see [43, 50].
Let g : I x I — R be a function; then the symbol V®__g(t, s) indicates
the variation of the function ¢ — g¢(¢,s) on the interval [a,b] C I.
Now, let us assume that x, ¢ : I — R are bounded functions. Then
under some extra conditions, ([43, 50]), we can define the Stieltjes
integral fo t) do(t) of function x with respect to the function ¢. In
this case, we say that x is Stieltjes integrable on interval I with respect
to the function ¢. If x is continuous and ¢ is of bounded variation
on the interval I, then z is Stieltjes integrable with respect to ¢ on I.
Moreover, under the assumption that x and go are of bounded variation
on the interval I, the Stieltjes integral fo ) dp(t) exists if and only if
the functions x and ¢ have no common pomts of discontinuity. Finally,
we recall a few properties of the Stieltjes integral which will be used
later. These properties are contained in the following lammas (cf. [43,
50]).
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Lemma 2.5. Ifx is Stieltjes integrable on I with respect to a function
¢ of bounded variation, then

/ () ZOE (s let0)) \/90

Moreover, the following inequality holds:
1 1 t
[ eaeto] < [ na( V)
0

Corollary 2.6. If x is a Stieltjes integrable function with respect to
a nondecreasing function ¢, then

‘/le(t) dSO(t)‘ < < sup |x(t)|> ((1) = o(0)).

0<t<1

Lemma 2.7. Let x1 and x2 be the Stieltjes integrable functions on I
with respect to a nondecreasing function ¢ and such that z1(t) < x2(t)
fort € 1. Then

/ Lo (t) dilt) < / ' oa®) do(t).

Corollary 2.8. Let x be the Stieltjes integrable function on I with
respect to a nondecreasing function ¢ and such that z(t) > 0 for all
tel. Then

/1 z(t) dp(t) > 0.
0

Lemma 2.9. Let p1 and py be nondecreasing functions on I with
w2 — 1 a nondecreasing function. If x is a Stieltjes integrable on I and
z(t) >0 fort € I, then

/olx(t) dpa (1) < /Olfc(t) dips(t).
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We will need later the Stieltjes integral of the form fol z(s) dsg(t, s)
where g is a function of two variables, g : I X I — R, and the symbol
ds indicates that the integration is taken with respect to s.

3. Main theorem. In this section, we will study equation (1)
assuming that the following assumptions are satisfied:

a1) h : I — R is a continuous, nondecreasing and nonnegative
function on I.

az) f : I xR — R is continuous and there exists a nonnegative
constant ¢ such that

[f(t,2) = f(ty)| < clz —yl

forallt € I and z, y € R. Moreover, f: I x Ry — R.

a3) The superposition operator F' satisfies for any nonnegative func-
tion x the condition
d(Fz) < cd(z),
where ¢ is the same constant as in as).
aq) g: I x I — R satisfies the following conditions:

(i) The function s — g(¢, s) is a nondecreasing function on I for each
tel

(ii) For all ¢1, to € I such that f; < to, the function s — g(t2,s) —
g(t1, s) is a nondecreasing function on I.

(iii) The functions ¢t — ¢(¢,0) and ¢ — g(t,1) are continuous on I.

as) u : I x I x R — R is a continuous function such that u :
I xIxR;y — Ry, and, for an arbitrary fixed s € I and z € Ry,
the function t — u(t, s, z) is nondecreasing on I.

ag) The function u satisfies the following conditions:

(i) There exists a continuous nondecreasing function ¢ : Ry — R4
such that

u(t, s, )| < é(|z|)
for each t, s € I and =z € R.

(ii) For any p > 0, there exists a continuous nondecreasing function
Y, : Ry — Ry with ¢,(0) = 0, such that, for each s € I, z € R with
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|z| < p and, for all t1, ty € I, t; < t2, we have
lu(ta, s, x) — u(ty, s, z)| < Y,(ta — t1).
a7) The inequality
Bl + k2 + (cr+m)T é(r) <r

has a positive solution ry such that 2rok + c¢p(rg)T < 1, where
m = maxses f(¢,0) and T = sup{V!l_yg(t,s) : t € I}, see Remark 3.3
below.

Proposition 3.1 [25]. Assume that the function g : I x I — R
satisfies aq) (ii) and (iii). Then for every e > 0 there exists a § > 0
such that, for ty, to € I, t1 < to with to —t; < §, we have

1

V (g(t2, 5) = g(tr,5)) < e

s=0

Proposition 3.2 [25]. Assume that the function g : I x I — R
satisfies a4) (ii) and (iii) and the function s — g(t,s) is of bounded
variation on I for each t € I. Then the function t — Vi_yg(t,s) is
continuous on I.

Remark 3.3. As every nondecreasing function is of bounded variation,
in view of Proposition 3.2 and the compactness of the interval I, there
exists a constant T > 0 such that V1_;g(¢,s) < T for every t € I, if g
satisfies assumption ay).

Now, we are in a position to state and prove our main result in the
paper.

Theorem 3.4. Let assumptions ai)—ar) be satisfied. Then equa-
tion (1) has at least one solution & € C(I) which is nondecreasing on
the interval I.
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Proof. Let M : Ry — R be
1
M(e) = sup{ \/(g(tg,s) —g(t1,8)) it ta € I, ty <ty  ty —t1 < E}-
s=0

Now Proposition 3.1 implies M(¢) — 0 as ¢ — 0. Denote by F
the operator associated with the right-hand side of equation (1), i.e.,
equation (1) takes the form

(1) z=Fu,

1
(Fa)(t) = ht) + k2*(t) + f(t,(t)) / ulty 5,2(5)) dag (1, 9),
tel.

Solving equation (1) is equivalent to finding a fixed point of the operator
F defined on the space C(I).

First we claim that if z € C(I) then Fz € C(I). To establish this
claim, it suffices to show that if z € C(I) then Uz € C(I), where

Uz)(t) = /0 ult, 5, 2(5)) dog(t, 5).

Let us fix € > 0 and take t{, to € I such that t; < t3 and t; — t; < €.
Let « € C(I) so there exists a u > 0 with ||z|| < p. Then we have

|[(Uz)(t2) — Uz)(t1)]
= /0 u(ta, s, (s)) dsg(tg,s)—/ u(ty, s,2(s)) dsg(t1,s)

1
0

1
0

< | [t 06 dts,5) ~ [ s, ,206) gt )

+

/0 u(ty, 5, 2(5)) daglta, s) — / ultr, 5,2(5)) dag(ta, 5)

< [tttz at6) = attnssatspl e/ otean))

p=0
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/ lu(t, 5, 2(s))| ds <\/ (t2,p) tl,p))>

< Yu(ta —t1) \/ g(t2,p) + o(llll) \/ (9(t2,p) = 9(t1,p))

< Pule) - T+ o(|l]]) M(e).

Thus, we obtain the following estimate

wlUz,e) < Pu(e) - T+ ¢([|z]]) M(e)-

Now we have w(ldz,e) — 0 as € — 0. So our claim is established.

Second, we show that F is a continuous operator on the space C(I).
In order to prove this result it is sufficient to prove the continuity of
operator U on C(I). To do this, fix ¢ > 0, and take an arbitrary
x € C(I) with ||z — y|| < e. Then, for a fixed t € I, we have

U () — W)t
‘ / (t,5,2(s)) duglt, s) - / ult, 5,y(5)) dag(t, )
/|utsm))fu(tsy |d<\i/ >

1

e) \ 9(t,p)

p=0

< 5(6) ) Ta
where ((¢) is given by

B(e) = sup {|u(t, s,x1) — u(t, s,x2)| : t, s € I,

1, o3 €[] =& [Jz] +el, |21 — 22| < e}

By virtue of the uniform continuity of the function u(t, s, z) on the set
I xIx[—||z|| —e&,]|z| + €], we have that 3(¢) — 0 as € — 0. This fact
and the last inequality prove that the operator U is continuous, and
consequently the operator F is continuous. Now, let us fix an arbitrary



A QUADRATIC INTEGRAL EQUATION 555

x € C(I). Then, in view of our assumptions, we get

(Fa)(t)] = \h(t) S ka?(0) + 1(60(0) [ u(es,2(6)) deg(t,9)
< Al + kel + 17t 2(0)
« [ futtss.ate))a, vg<t,p>)

< ||hll + & lll* + | £ (8, 2(8)) — £(2,0) + £(2,0)|

< Juts,2(s) @V ale.n))

=0

=

< [[hll + Elll® + [ellz] +m]

< 1¢(||m||>ds(p\i/og<t,p))

1
< 1] + k all? + elle] + m] ¢<||x||>( \ g(t,p>)
p=0
< 1Al + kel + lelle]l + m] #(le]l) - T-
Thus, if ||z]| < r¢, we obtain from a7) that

Al + krg + [ero + m] T ¢(ro) < ro.

Consequently, the operator F transforms the ball B, into itself.

Further, let us consider operator F on the subset B,fg of By, defined
in the following way:

B! ={z € By, : x(t) >0, for t € I}.

Then B;! is a nonempty, bounded, closed and convex subset in C([).
In view of these facts and assumptions a;), as) and as), we conclude
that F transforms the set B;t) into itself.

We claim that operator F is continuous on B C C(I). To establish
this claim, let us fix ¢ > 0 and take arbitrary z, y € B;g such that
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|z — y|| < e. Then, for t € I, we have the following estimates

|[(Fz)(t) — (Fy) ()]
<klz(t) —y(@O)] |z(t) +y(O)] + ‘f(t,w(t))/o u(t, s, (s)) dsg(t, 5)

— f(t () / ult, 5,4(s)) dugl(t, 5)

< 2kry [2(t) — ()] + ‘f(t,w(t)) [ ates o) gt

o) / ult, 5, 2(s)) dug(, 5)
; \f(t,y@)) | utes.ate) dates

o) / ult, 5,4(s)) dug(t, 5)
< 2hrolle — yl| + |£(t,2() — F(t ()]

x/o ult, 5, 3(5))| dsg(t, 5)

1
1 @) / fut, 5, 2(s)) — u(t, 5, y(s))| dugt, )

<2kro |z =yl +cllz — yllo(llz]))
1

x \/ a(t,p) + [c|lz|| +m] B(e) \/ g(t,p)

p=0
<2kroe+ced(ro) T+ [cro +m]B(e) T.

By virtue of the uniform continuity of the function u(t, s, z) on the set
IxIx[—rg—e¢,ro+e], it is easy to see that 8(¢) — 0 as ¢ — 0. From
the above estimate, we have

|Fz — Fyl| < 2kroe +ced(ro) T + [cro + m] B(e) T,

which implies the continuity of operator F on the set B;;.

Now, let us take a nonempty set X C B;’; . Fix arbitrarily the number
e > 0, and choose z € X and ¢, to € I such that |[t2 — t1| < e.
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Assume, without loss of generality, that to > ¢;. Then, in view of our
assumptions, we obtain

[(Fz)(t2) — (Fa)(t)]
< |h(t2) = h(t1)] + k[z(t2) — 2(t1)] [z (t2) + z(t1)]

; ‘f(tz,w(tz)) | a5, (6 deg(tn, o

— f(tn,2(t) / ultr, 5, 2(5)) dug(tr, 5)
<w(h,e) +2krgw(z,e)

; ‘f(tz,x(tz)) | uttas. o) gt
~ f(tne(ts)) / ulty, 5,2(5)) dag (t, 5)
+‘f(tz,w(tz)) | utts s dugteas)

~ f(te(t)) / ulty, 5,2(5)) dag (t, 5)
; \f(tl,xm)) | e s.ae) dgteas)
~ f(tne(t)) / ulty, 5,2(5)) dag (t1, 5)

<w(h,e) +2kryw(z,e)
+ |tz alea)] [ ulta,5,2(5)) — u(t1,5,2(5)) dag(t2,)
1t a(t2) — Fltra(t)] + [F(ta(t2) — Fltr,a(t)]
« [ luftr, s, 26|+ 1 2(00)

/\utl,sx ) da(g(ta, ) — g(t, 5))

w(h,e) +2krow(z,e)
1

+ [ellell +m]u(ts —t:) \/ g(t2,p)

p=0
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1
+ o (f€) + cw(@, 2) $(llell) \/ g(ta, p)
p=0

1

+lell +m] 6 Ml(V (1.9) - 9(t1.) )

=0
<w(h,e)+2kry w(x,s) [Yro (f,€) + cw(z, €)|d(ro) T
+lero +m][Yu(e) T + ¢(ro) M(e)];

where
77‘0(]075) = Sup{|f(57x) - f(t7x)| LS, te Ia TE [077'0]7 |S _t‘ S 6}'
Thus from the last inequality, we get

(Fz)(s) — (Fz)(t)] < w(h,e) + 2krow(z,¢)
+ [y (fy8) + cw(m,e)] d(ro) T
+[ero +m] [Yu(e) T + ¢(ro) M(e)].

In view of the uniform continuity of function f on the set I x [0,7q]
and from the last inequality, we have

(3) wo(FX) < (2krg + cop(rg) T) wo(X).

In what follows, fix arbitrary x € X and ¢y, to € I such that ¢; < ¢,.
Then we have

(4)
|(Fz)(t2) — (Fz)(t)| - [(F)(t2) — (Fa)(t2)]

= [Aes) + ka0 + 02,0002
< [ ulta,.2(5) deglta,s) = h(t) = k(1) = (11, 2(00)
0
1
< [ utts o) degten,
(02 + k(1) + F(eaa(t2) [ iz, ,0(6) deg(tn o)
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—h(t) = kz*(t:) —f(t1,fv(t1))/0 u(ts, s,(s)) dsg(ts, s)

< [h(t2) = h(t1)] = [A(t2) = h(t1)]
+k(Je(t2) — z(t)| = [2(t2) — 2(t)]) [2(t2) + 2(t1)]

; ‘f(tz,x(tZ)) [ uttas, a6 gt
— f(tr,2(t)) / ultr, 5,2()) dag (i, 5)
; [f(tmm) / u(ta, 5,2(3)) dug(t2, 3)

- Jlne(w) [ ults, s,2(s)) dgltr, 5)
0 _
< 2krod(x) + |F(ta, a(ta))]

1
/0 ult, 5,2(s)) dag (t, 5)

X

1
- [t s (o) degttr, )
+ [f(t2, z(t2)) — f(t1, z(t1)))
/Ou(tl,s,a:(s))dsg(tl,s)

X

~ flta,o(t2) [ / ultn ,2(5)) gt )

—/0 u(t1, s,2(s)) dsg(t1, s)
= [f(t2,z(t2)) — f(t1, z(t1))]

x/o u(ts, 5,2(5)) dsg(tr, 5) < 2k 7o d(z) + f(ts, o(t2))

1
/ u(ta, s, 2(s)) dug(t2, 5)
0

X

_ /0 u(tl, S, I(S)) dsg(tl’ S)
{1t 2(62)) = f (0, 2(t0))] = [F(t2,2(t2)) = (b1, 2(0)])
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/ ults,5,2(s)) dyg(t1, )
f(ta2, z(t2)) |:/01U,t25$ ) dsg(ta, s)

_/0 u(ty, s x(s))dsg(tlas)]

< 2krod(z) + d(Fz) ¢(|l2[l) \/ g(t1,p)

+f<t2,w<t2>>{ [ uttas,a(6) dugtens)

_/0 u(t1, s, 2(s)) dsg(t1, s)

. [ /0 ultars,2(s)) dugltan )

- "ty 5,2(s)) duaft1,9)] .

/0 u(ta, s, 2(s)) dsg(ta, s) —/0 u(t1, s,2(s)) dsg(ti,s) > 0.

In fact, we have

Next we will prove that

6) [ ultasa(e)dalts,) =~ [ uttsa(o)dalt)
1 1
:/ u(t%svm(s))dsg(t%s)*/ U(tl,S,I(S)) dsg(t278)
0 0
+/0 u(tl,s,x(s))dsg(tz,s)—/o u(ty, s,z(s)) dsg(ty, s)

Moreover,

/Ou(tg,s,a:(s))dsg(tg,s)—/o u(ty, s,z(s)) dsg(ta, s)
= [ e s,2(6)) = . s, 2(6))] g 5).
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So assumption as) and Corollary 2.8 yield

1 1
(6) /0 u(ta, s,z(s)) dsg(t2, s) 7/0 u(t1, s, x(s)) dsg(tz,s) > 0.

On the other hand,

/u(tl,s,m(s))dsg(t27s)—/ u(ty, s,z(s)) dsg(t1,s)
0 0
1
= [ uttros o) dulatta,) — st )

But we have that g(t2, s) —g(t1, s) is a nondecreasing function (assump-
tion a4) (i), u(t1,s,x) > 0 (assumption as)) and g(ts, s), g(t1, s) are
nondecreasing functions (assumption a4) (i)). From these facts and
Lemma 2.9, we deduce that

(7) /Ou(tl,s,a:(s))dsg(tg,s)—/o u(ts, s,2(s)) dog(tr, 5) > 0.

Now (5), (6) and (7) imply

/0 u(ta, s, 2(s)) dsg(ta, s) —/0 u(t1, s,x(s)) dsg(t1,s) > 0.

This together with (4) yields
d(Fz) <2krod(z) + ¢(ro) T d(Fz).

Therefore,
d(Fz) < (2kro+ cd(ro) T) d(z)

and consequently,
(8) d(FX) < (2kro+cod(ro) T)d(X).

Finally, from (3) and (8) and the definition of the measure of noncom-
pactness u, we obtain

wWFX) < (2kro+ cp(ro) T) u(X).
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Now, the above obtained inequality, together with the fact that (2 kro+
c@(r9) T) < 1 enables us to apply Theorem 2.3; then equation (1) has
at least one solution z € C(I). Also, such a solution is nondecreasing in
view of Remark 2.4 and the definition of the measure of noncompactness
w given in Section 2.

Remark 3.5. The result of our main theorem holds for the quadratic
integral equation

1
O) () =h(O) + ka"(O) + F(t,2(0) [ ult.s2(5) dg(t,5)
0
with n € N provided that assumption ag) is changed to: the inequality
lh|| + kr™ + (er + m)T ¢(r) <r
has a positive solution rg such that

nry~ 'k +cd(r)T < 1.

The case when n = 1 is more easier since we can rewrite the equation
in the form

2(t) = lhft)k 4 (f’f(lf)) /0 ult, 5,2(s)) dug(t, ).

4. Example. Consider the function g : I x I — R defined by

t-In(t+s/t) forte(0,1], s €1,
0 fort=0,s€el.

g(t,s) = {

The function s — g(¢, s) is nondecreasing for each ¢ € I. In fact,

d t+s t
— |t = > t 1.
ds[ n( t >] t—i—s_o’ 8 €

By this fact we have that

1
\/ g(t,s) <In2.

s=0
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In order to prove that g(t, s) satisfies assumptions a4) (ii) and ay4) (iii),
we fix t1, t3 € I, t; <ty and we get

to - In(t t for t; = 0,
g(ta,s) — gltr,s) = 2 In(t2 + s/t2) or iy

ty - ln(tg + S/tz) —tq - ln(t1 + S/tl) for t; > 0.
It is clear that the function ¢t — g(t2,s) — g(t1, ) is nondecreasing on
I. Moreover, functions g(t,0) and g(t, 1) are continuous on I.

As dsg(t,s) =t/(t + s) our integral equation (1) takes the form

1

(10) () = h(t) + k(1) + £(t.2() | %u(t s,x(s))ds, tel.

Equation (10) is a generalization of a famous equation in transport
theory, the so-called Chandrasekhar H-equation. In fact, taking h(t) =
1, k=0, f(t,z) = = and u(t,s,z) = ¢(s)z(s) in equation (10), we
obtain Chandrasekhar’s H-equation [10, 21, 28-30, 47, 48, 52].

Note that, to apply our analysis, we have to impose an additional
condition that the characteristic function ¢ is continuous nondecreasing
and satisfies ¢(0) = 0.
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