NOTES ON NEW (ANTISYMMETRIZED) ALGEBRAS

SEUL HEE CHOI AND KI-BONG NAM

ABSTRACT. We define the simple non-associative algebra $N(e^{A_S}, q, n, t)_k$ and its simple subalgebras in this work. We also prove that the anti-symmetrized algebra $N(e^{A_S},q,n,t)_{[k]}^$ is simple. There are various papers on finding all the derivations of an associative algebra, a Lie algebra and a nonassociative algebra (see [3, 5-7, 9, 12, 14-16]). We also find all the derivations $\operatorname{Der}_{\operatorname{anti}}(N(e^{\pm x^r},0,0,1)_{[2^+]}^{-})$ of the antisymmetrized algebra $N(e^{\pm x^T},0,0,1)_{[2^+]}^-,$ and every derivation of the algebra is outer in this paper.

1. Preliminaries. Let N be the set of all non-negative integers and \mathbf{Z} the set of all integers. Let \mathbf{N}^+ be the set of all positive integers. Let F be a field of characteristic zero and F^{\bullet} the set of all non-zero elements in **F**. For fixed integers i_1,\ldots,i_m , we define S_m as the set $\{x_1^{i_1}\cdots x_m^{i_m},x_1^{i_1}\cdots x_{m-1}^{i_{m-1}},\ldots,x_2^{i_2}\cdots x_m^{i_m},\ldots,x_1^{i_1},\ldots,x_m^{i_m}\}$. Throughout the paper, n and t are given non-negative integers, and mdenotes a non-negative integer such that $m \leq n + t$. For any subset S of S_m and $q \leq n$, we can define the **F**-algebra $\mathbf{F}[e^{\pm[S]}, q, n, t] := \mathbf{F}[e^{\pm[S]}, \ln(x_1)^{\pm 1}, \dots, \ln(x_q)^{\pm 1}, x_1^{\pm 1}, \dots, x_n^{\pm 1}, x_{n+1}, \dots, x_{n+t}]$ spanned

$$\mathbf{B} = \{e^{a_1 s_1} \cdots e^{a_r s_r} \ln(x_1)^{d_1} \cdots \ln(x_q)^{d_q} x_1^{j_1} \cdots x_{n+t}^{j_{n+t}} | s_1, \dots, s_r \in S, a_1, \dots, a_r, d_1, \dots, d_q \in \mathbf{Z}, j_1, \dots, j_n \in \mathbf{Z}, j_{n+1}, \dots, j_{n+t} \in \mathbf{N}\}$$

where, throughout the paper, we put $\ln(x_u)^{d_u} := (\ln(x_u))^{d_u}, 1 \le u \le q$. Note that, if $t \geq 1$, then $\mathbf{F}[e^{\pm [S]},q,n,t]$ is a semi-group ring not a group ring (see [17]). We then denote $\partial_{h_1}^{p_1} \cdots \partial_{h_r}^{p_r}$ as the composition of the partial derivatives $\partial_{h_1}, \ldots, \partial_{h_r}$ on $\mathbf{F}[e^{\pm [S]}, q, n, t]$ and $\partial_h^0, 1 \leq h \leq n + t$, denotes the identity map on $\mathbf{F}[e^{\pm [S]}, q, n, t]$ where $0 \leq h_1, \ldots, h_r \leq n + t$

²⁰¹⁰ AMS $\it Mathematics$ $\it subject$ $\it classification.$ Primary 17B40, 17B56. $\it Keywords$ and $\it phrases.$ Simple, non-associative algebra, anti-symmetrized algebra,

bra, m-abelian, derivation. Received by the editors on December 30, 2008, and in revised form on September 7, 2009.

n+t. For any $\alpha_u \in S \subset S_m$, let A_{α_u} be an additive subgroup of \mathbf{F} such that A_{α_u} contains \mathbf{Z} . For $q \leq n$, we define the (free) \mathbf{F} -vector space $N(e^{A_S}, q, n, t)_k$ (respectively $N(e^{A_S}, q, n, t)_{k+1}$) whose basis is the set

(1)
$$\mathbf{B}_{1} = \{e^{a_{1}s_{1}} \cdots e^{a_{r}s_{r}} \ln(x_{1})^{d_{1}} \cdots \ln(x_{q})^{d_{q}} x_{1}^{j_{1}} \cdots x_{n+t}^{j_{n+t}} \partial_{h_{1}}^{p_{1}} \cdots \partial_{h_{r}}^{p_{r}} \mid a_{1} \in A_{\alpha_{1}}, \dots, a_{r}, d_{1}, \dots, d_{q} \in A_{\alpha_{r}}, s_{1}, \dots, s_{r} \in S, h_{1}, \dots, h_{r} \leq n+t, p_{1}+\dots+p_{r} \leq k \in \mathbf{N} \quad (\text{resp. } \mathbf{N}^{+})\}.$$

If we define the multiplication * on $N(e^{A_S}, q, n, t)_k$ as follows:

$$(2) f\partial_{h_1}^{p_1}\cdots\partial_{h_r}^{p_r}*g\partial_{u_1}^{v_1}\cdots\partial_{u_q}^{v_q}=f(\partial_{h_1}^{p_1}\cdots\partial_{h_r}^{p_r}(g))\partial_{u_1}^{v_1}\cdots\partial_{u_q}^{v_q}$$

for any $f \partial_{h_1}^{p_1} \cdots \partial_{h_r}^{p_r}, g \partial_{u_1}^{v_1} \cdots \partial_{u_q}^{v_q} \in N(e^{A_S}, q, n, t)_k$ (respectively $N(e^{A_S}, q, n, t)_{k+1}$), then we define the combinatorial algebra $N(e^{A_S}, q, n, t)_k$ (respectively $N(e^{A_S}, q, n, t)_{k+1}$) whose product is * in (2) (see [5, 6, 14, 16]). The non-associative subalgebra $N(e^{A_S}, q, n, t)_{\langle k \rangle}$ of the algebra $N(e^{A_S}, q, n, t)_k$ is spanned by (3)

$$\{f\partial_{h_1}^{p_1}\cdots\partial_{h_r}^{p_r}\mid f\in\mathbf{B}, 1\leq h_1,\ldots,h_r\leq n+t, p_1+\cdots+p_r=k\leq\in\mathbf{N}^+\}.$$

We define the non-associative subalgebra $N(e^{A_S}, q, n, t)_{[k^+]}$ (respectively $N(e^{A_S}, q, n, t)_{[k]}$) of the algebra $N(e^{A_S^i}, q, n, t)_k$ is spanned by

(4)
$$\{f\partial_h^k \mid f \in \mathbf{B}, \ 1 \le h \le n, \ k \in \mathbf{N}^+ \text{ (resp. for a fixed } k \in \mathbf{N}^+)\}.$$

For an algebra A and $l \in A$, an element $l_1 \in A$ is a right (respectively left) identity of l, if $l*l_1 = l$ (respectively $l_1*l = l$) holds. The set of all right identities of $N(e^{A_S},q,n,t)_{[1]}$ is $\{\sum_{1 \leq u \leq n+t} x_u \partial_u + \sum_{1 \leq u \leq n+t} c_u \partial_u \mid c_u \in \mathbf{F}\}$. There is no left identity of $N(e^{A_S},q,n,t)_{k+1}$ (see [10, 13, 17]). The algebra $N(e^{A_S},n,t)_k$ has the left identity 1. If A is an associative \mathbf{F} -algebra, then the anti-symmetrized algebra A is a Lie algebra relative to the commutator [x,y] := xy - yx (see [1, 18]). For a general nonassociative \mathbf{F} -algebra N we define in the same way its anti-symmetrized algebra N^- . In case N^- is a Lie algebra we shall say that N is Lie admissible. For $S \subset N^-$, an element l is addiagonal with respect to S, if for any $l_1 \in S$, $[l, l_1] = cl_1$ holds where $c \in \mathbf{F}$. For a given basis B of an anti-symmetrized algebra N^- , the

toral $tor_{N^-}(B) = tor(B)$ of B is n if there is a linearly independent maximal set $\{l_1, \ldots l_n\}$ of ad-diagonal elements relative to B. For an anti-symmetrized algebra N^- , we define $Tor(N^-)$ as follows:

Tor
$$(N^-) = \max\{\text{tor } (B) \mid B \text{ is a basis of } N^-\}.$$

An anti-symmetrized algebra N^- is n-toral, if $Tor(N^-)=n$. For an algebra A, the abelian hull AH of its anti-symmetrized algebra A^- is the maximal abelian subalgebra of A^- . An anti-symmetrized algebra A^- is h-abelian, if the dimension of the abelian hull of A^- is h (see [11]). The algebra $N(e^{A_S}, q, n, t)_{[1]}$ is Lie admissible (see [1, 16, 19]). For all $\alpha \in S_m$, if A_α is \mathbf{Z} , then the algebra $N(e^{A_{S_m}}, q, n, t)_k$ is \mathbf{Z}^{2^m} -graded as follows:

(5)
$$N(e^{A_{S_m}}, q, n, t)_k = \bigoplus_{(a_1, \dots, a_{m^2})} N_{(a_1, \dots, a_{m^2})}$$

where $N_{(a_1,...,a_{2^m})}$ is the vector subspace of $N(e^{A_{S_m}},q,n,t)_k$ spanned by

$$\{e^{a_1s_1} \cdots e^{a_rs_r} \ln(x_1)^{d_1} \cdots \ln(x_q)^{d_q} x_1^{j_1} \cdots x_{n+t}^{j_{n+t}} \partial_1^{u_1} \cdots \partial_{n+t}^{u_{n+t}} \mid d_1, \dots, d_q \in \mathbf{Z}, j_1, \dots, j_n \in \mathbf{Z}, j_{n+1}, \dots, j_{n+t}, u_1, \dots, u_{n+t} \in \mathbf{N}\}.$$

This implies that $N(e^{A_S},q,n,t)_k$ and $N(e^{A_S},q,n,t)_{k+}$ are appropriate graded subalgebras of the algebra $N(e^{A_{S_m}},q,n,t)_k$. The algebra $N(0,q,n,t)_{[k]}$ (respectively its anti-symmetrized algebra) is $\mathbf{Z}^n \times (\mathbf{N} \cup \{-1,\ldots,-k\})^t$ -graded as follows:

(6)
$$N(0,q,n,t)_{[k]} = \bigoplus_{(j_1,\dots,j_{n+t})} N'_{(j_1,\dots,j_{n+t})}$$

where $N'_{(j_1,\dots,j_{n+t})}$ is the vector subspace of $N(0,q,n,t)_{[k]}$ (respectively its anti-symmetrized algebra) spanned by

$$\{\ln(x_1)^{d_1}\cdots\ln(x_q)^{d_q}x_1^{j_1}\cdots x_u^{j_u+k}x_{u+1}^{j_u+1}\cdots x_{n+t}^{j_{n+t}}\partial_u^k\mid d_1,\ldots,d_q\in\mathbf{Z},\$$
 1 < u < n+t}.

Thus, throughout the paper, N_0 and N_0' denote the $(0,\ldots,0)$ -homogeneous components of $N(e^{A_S},q,n,t)_k$ (respectively its anti-symmetrized algebra) and $N(0,q,n,t)_{[k]}$ (respectively its anti-symmetrized algebra) respectively. For basis elements $e^{a_1s_1}\cdots e^{a_rs_r}x_1^{j_1}\cdots x_{n+t}^{j_{n+t}}\partial_{t_1}^{p_1}\cdots \partial_{t_r}^{p_r}$, $e^{a_1s_1'}\cdots e^{a_rs_r'}x_1^{j_1'}\cdots x_{n+t}^{j_{n+t}'}\partial_{t_1'}^{p_1}\cdots \partial_{t_r'}^{p_r}$ of $N(e^{A_{S_m}},q,n,t)_k$, we define the lexicographic order $>_o$ as follows:

(7)
$$e^{a_1s_1} \cdots e^{a_rs_r} \ln(x_1)^{d_1} \cdots \ln(x_q)^{d_q} x_1^{j_1} \cdots x_{n+t}^{j_{n+t}} \partial_{t_1}^{p_1} \cdots \partial_{t_r}^{p_r} >_o$$

$$e^{a_1s_1'} \cdots e^{a_rs_r'} \ln(x_1)^{d_1'} \cdots \ln(x_q)^{d_q'} x_1^{j_1'} \cdots x_{n+t}^{j_{n+t}'} \partial_{t_1'}^{p_1} \cdots \partial_{t_r'}^{p_r} \text{ if and only if }$$

$$a_1 > a_1', \text{ or, } a_1 = a_1' \text{ and } a_2 > a_2', \text{ or, } \cdots,$$
or $a_1 = a_1', \cdots, p_{r-1} = p_{r-1}', \text{ and } p_r > p_r'.$

Thus we can define the order $>_o$ on the algebra $N(e^{A_{S_m}},q,n,t)_k$. By (5) and (6), we can define the order $>_c$ on each homogeneous component of $N(e^{A_{S_m}},q,n,t)_k$ and $N(0,q,n,t)_{[k]}$ using the order $>_o$. Throughout the paper, for any basis element $e^{a_1s_1}\cdots e^{a_rs_r}\ln(x_1)^{d_1}\cdots \ln(x_q)^{d_q}x_1^{j_1}\cdots x_{n+t}^{j_{n+t}}\partial_{t_1}^{p_1}\cdots \partial_{t_r}^{p_r}$ of $N(e^{A_{S_m}},q,n,t)_k$, d_v , $1\leq v\leq q$, is called the power of the natural logarithmic function $\ln(x_v)$. For any element l of $N(e^{A_S},q,n,t)_k$ (respectively its subalgebra or subalgebra its anti-symmetrized algebra), H(l) denotes the number of different homogeneous components of $N(e^{A_S},q,n,t)_{[k]}$ (respectively its subalgebra or subalgebra its anti-symmetrized algebra) such that the homogeneous components contain a non-zero term of l. Note that the set of all right annihilators of $N(e^{A_S},q,n,t)_k$ (respectively its appropriate subalgebras) is the subalgebra T_{n+t} of $N(e^{A_S},q,n,t)_k$ that is spanned by $\{\partial_{t_1}^{p_1}\cdots\partial_{t_r}^{p_r}\mid 1\leq t_1,\ldots,t_r\leq n+t,p_1,\ldots,p_r\in k\}$.

3. Simplicities.

Theorem 1. The algebra $N(0,q,n,t)_{[k^+]}$ and the subalgebra $N(0,q,n,t)_{[k]}^-$ of the anti-symmetrized algebra $N(0,q,n,t)_{[k^+]}^-$ are simple. The matrix ring $M_{n+t}(\mathbf{F})$ is a subalgebra of $N(0,q,n,t)_{[k^+]}$. The matrix ring $M_{n+t}(\mathbf{F})$ is a subalgebra of $N(0,q,n,t)_{[k^+]}$, and the algebra $sl_{n+t}(\mathbf{F})$ is a Lie subalgebra of $N(0,q,n,t)_{[k^+]}^-$.

Proof. The proof of simplicities of the non-associative algebra $N(0, q, n, t)_{[k^+]}$ is easy, so it is enough to prove that its anti-symmetrized

algebra $N(0, q, n, t)_{[k]}$ is simple. It is enough to show that an ideal generated by a non-zero element of T_{n+t} is the algebra $N(0,q,n,t)_{[k]}^{-}$, and an ideal generated by a non-zero element of $N(0, q, n, t)_{[k]}$ contains an element of T_{n+t} . Let I be a non-zero ideal of $N(0, q, n, t)_{[k]}^-$. First, let us show that the ideal I of $N(0,q,n,t)_{[k^+]}^-$ generated by a non-zero element of T_{n+t} is the algebra $N(0,q,n,t)_{[k]}^-$. Since the algebra $N(0,0,n,t)_{[k]}^$ is simple, the ideal I contains the algebra $N(0,0,n,t)_{[k]}^-$. For any f= $\begin{array}{l} \ln(x_1)^{d_1} \cdots \widehat{\ln(x_u)^{d_u}} \ln(x_{u+1})^{d_{u+1}} \cdots \ln(x_q)^{d_q} x_1^{j_1} \cdots x_{n+t}^{j_{n+t}} \in \mathbf{F}[0,q,n,t], \\ \text{by } [\partial_u^k, x_u^k f \partial_u^k] = k! f \partial_u^k + x_u^k \partial_u^k (f) \partial_u^k \text{ and } [x^k \partial_u^k, f \partial_u^k] = -k! f \partial_u^k + k (k+1) \int_{-\infty}^{\infty} \frac{1}{2} \left[-k! \int_{-\infty}^{$ $x_u^k \partial_u^k(f) \partial_u^k$, we have that $f \partial_u^k \in N(0,q,n,t)_{[k]}^-$ where $\widehat{\ln(x_u)^{d_u}}$ means that the term $\ln(x_u)^{d_u}$ is omitted (see [13, 14]). This implies that $\ln(x_1)^{d_1} \cdots \widehat{\ln(x_u)^{d_u}} \ln(x_{u+1})^{d_{u+1}} \cdots \ln(x_q)^{d_q} x_1^{j_1} \cdots x_{n+t}^{j_{n+t}} \partial_u^k$ is an element of the ideal I. Let us prove that the element $\ln(x_1)^{d_1}\cdots$ $\ln(x_q)^{d_q} x_1^{j_1} \cdots x_{n+t}^{j_{n+t}} \partial_u^k \in I$ by induction on d_u . If d_u is zero, then we have already proved this case. By $[x_u^{u+j_u}\partial_u, \ln(x_1)^{d_1}\cdots \ln(x_q)^{d_q}x_1^{j_1}\cdots$ $x_{n+t}^{j_{n+t}}\partial_u^k \in I$ and induction, we have that $\ln(x_1)^{d_1}\cdots \ln(x_q)^{d_q}x_1^{j_1}\cdots$ $x_{n+t}^{j_{n+t}}\partial_u^k$ is an element of the ideal I. This implies that the ideal I is the algebra $N(0,q,n,t)_{[k]}^-$. Now we can assume that the ideal I contains a non-zero element l which is not an element of $N(0,0,n,t)_{[k]}^-$. By the gradation (6), we know that every term of l is in a homogeneous component of $N(0, q, n, t)_{[k]}^-$. Note that the element

(8)
$$[l, ln(x_1)^{d'_{11}} \cdots ln(x_q)^{d'_{1q}} x_u^k \partial_u^k] \neq 0$$

is an element of I such that the powers of natural logarithmic functions of $[l, \ln(x_1)^{d'_{11}} \cdots \ln(x_q)^{d'_{1q}} x_u^k \partial_u^k]$ are positive where d'_{11}, \ldots, d'_{1q} are sufficiently large positive integers (see [13]). Thus, without loss of generality, we can assume that all the powers of the natural logarithmic functions of l are positive. Let us prove that the algebra is simple by induction on H(l) of l. Let us assume that H(l) = 1 and l is in the $(0,\ldots,0)$ -homogeneous component N'_0 of $N(0,q,n,t)^-_{[k]}$. l can be written as follows:

(9)
$$l = c_{d_{11},\dots,d_{1q},0,\dots,u,0,\dots,0,u} \ln(x_1)^{d_{11}} \cdots \ln(x_q)^{d_{1q}} x_u^k \partial_u^k + \cdots + c_{d_{11},\dots,d_{1q},0,\dots,v,0,\dots,0,v} \ln(x_1)^{d_{h_1}} \cdots \ln(x_q)^{d_{h_q}} x_v^k \partial_v^k$$

where $c_{d_{11},...,d_{1q},0,...,u,0,...,0,u} \ln(x_1)^{d_{11}} ... \ln(x_q)^{d_{1q}} x_u^k \partial_u^k$ is the maximal element of l using the orders $>_c$ and $>_c$ with appropriate coefficients (see [5, 13]). Now let us prove that the theorem on the number of non-zero terms of l. If l has one term, then we have that

$$(10) l = c_{d_{11}, \dots, d_{1q}, 0, \dots, u, 0, \dots, 0, u} \ln(x_1)^{d_{11}} \dots \ln(x_q)^{d_{1q}} x_u^k \partial_u^k.$$

If d_{1u} is zero, then by

(11)
$$[\ln(x_1)^{-d_{11}} \cdots \ln(x_q)^{-d_{1q}} \partial_u^k, c_{d_{11}, \dots, d_{1q}, 0, \dots, u, 0, \dots, 0, u} \ln(x_1)^{d_{11}} \cdots \\ \ln(x_q)^{d_{1q}} x_u^k \partial_u^k] = k! \partial_u^k,$$

we have that $\partial_u^k \in I$. Thus, $I = N(0, q, n, t)_{[k]}^-$. This implies that the algebra is simple. If d_{1u} is non-zero, then by

$$(12) \qquad l_{1} = [x_{u}^{k} \partial_{u}^{k}, l] - \alpha_{1} \ln(x_{1})^{d_{11}} \cdots \ln(x_{q})^{d_{1q}} x_{u}^{k} \partial_{u}^{k}]$$

$$= [x_{u}^{k} \partial_{u}^{k}, c_{d_{11}, \dots, d_{1q}, 0, \dots, u, 0, \dots, 0, u} \ln(x_{1})^{d_{11}} \cdots \ln(x_{q})^{d_{1q}} x_{u}^{k} \partial_{u}^{k}]$$

$$- \alpha_{1} \ln(x_{1})^{d_{11}} \cdots \ln(x_{q})^{d_{1q}} x_{u}^{k} \partial_{u}^{k},$$

we have a non-zero element l_1 such that the order of l_1 is strictly less than the order of l where we take an appropriate scalar α_1 . Repeating similar procedures of (12), we have an element l'_1 of I such that every term of l'_1 has no natural logarithmic function $\ln(x_u)$, $1 \leq u \leq q$, and the order of l'_1 is less than the order of l_1 . By similar procedures of (11), we have a non-zero element of I such that the element is in $N(0,0,n,t)^-_{[k]}$. This implies that the algebra is simple. By induction, let us assume that if H(l) = p, then I is the algebra $N(0,q,n,t)^-_{[k]}$. Let us assume that H(l) is p+1. By using the orders $<_o$ and $<_c$, l can be written as follows:

(13)

$$l = c_{d_{\lambda,1},\dots,d_{\lambda,q},j_{1},\dots,j_{n+t},u} \ln(x_{1})^{\lambda_{11}} \cdots \ln(x_{q})^{\lambda_{1q}} x_{1}^{j_{1}} \cdots x_{u}^{j_{u}+k} x_{u+1}^{j_{u+1}} \cdots x_{n+t}^{j_{n+t}} \partial_{u}^{k} + \dots + c_{d_{\lambda,1},\dots,d_{\lambda,q},j_{1},\dots,j_{n+t},u} \ln(x_{1})^{\lambda_{r_{1}}} \cdots x_{n+t}^{j_{n+t}} \partial_{v}^{k} + \# \lim_{t \to \infty} \left(\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n$$

where the term $\ln(x_1)^{\lambda_{11}} \cdots \ln(x_q)^{\lambda_{1q}} x_1^{j_1} \cdots x_{n+t}^{j_{n+t}} \partial_u^k$ is the maximal term of l with respect to the orders $>_o$ and $>_c$, and # is the sum

of k different homogeneous components which are not equal to the (j_1,\ldots,j_{n+t}) -homogeneous component with appropriate coefficients. By (8), we can assume that all the powers of natural logarithmic functions of l are non-negative integers. Without loss of generality, we can assume that λ_{11} is a non-zero integer, otherwise either we can take the first non-zero integer $\lambda_{1,\mu}$, $1 \leq \mu \leq q$, or l is such an element of $N(0,0,n,t)_{[k]}^-$ (in this case there is nothing to prove). As a similar calculation of (12), we have an element l_1'' of I such that $H(l_1'') \leq p+1$ and $l_1'' <_0 l$. Since we have an element $l_1'' \in I$, by repeating this calculation, we have an element $l_1'' \in I$ such that every term of the (j_1,\ldots,j_{n+t}) -homogeneous component does not have a natural logarithmic function. If $H(l_1'')=1$, then l_r'' is an element of $N(0,0,n,t)_{[k]}^-$, i.e., the ideal I is the algebra $N(0,q,n,t)_{[k]}^-$. Thus, there is nothing to prove. If $H(l_r'') \leq r+1$, then we can find an appropriate element ∂_r^k such that

$$(14) l_{r+1}'' = [\partial_v^k, [\partial_v^k, \dots, [\partial_v^k, l_r''] \dots]$$

of I where we applied the Lie bracket appropriate number of times so that l''_{r+1} is a non-zero element of I with no term of the (j_1,\ldots,j_{n+t}) -homogeneous component N'_0 . This implies that $H(l_q) \leq r$. This implies that the ideal I is $N(0,q,n,t)^-_{[k]}$, i.e., the algebra $N(0,q,n,t)^-_{[k]}$ is simple. The remaining proofs of the theorem are obvious. Therefore we have proven the theorem. \square

Theorem 2. The algebra $N(e^{As}, q, n, t)_{[k^+]}$ and the anti-symmetrized subalgebra $N(e^{As}, q, n, t)_{[k]}^-$ of the anti-symmetrized algebra $N(e^{As}, q, n, t)_{[k^+]}^-$ are simple. The matrix ring $M_{n+t}(\mathbf{F})$ is a subalgebra of $N(e^{As}, q, n, t)_{[k^+]}$, and the algebra $sl_{n+t}(\mathbf{F})$ is a Lie subalgebra of $N(e^{As}, q, n, t)_{[k^+]}^-$.

Proof. It is easy to prove that the algebra $N(e^{A_S}, q, n, t)_{[k^+]}$ is simple (see [12]). Let us prove that its anti-symmetrized algebra $N(e^{A_S}, q, n, t)_{[k]}^-$ is simple. By (5), the anti-symmetrized algebra $N(e^{A_S}, q, n, t)_{[k]}^-$ is a graded algebra depending on the cardinality $|A_S|$ of A_S . This implies that, without loss of generality, we can put that the algebra is \mathbf{Z}^p -graded, i.e., $N(e^{A_S}, q, n, t)_{[k]}^- = \bigoplus_{(a_1, \dots, a_p)} N_{(a_1, \dots, a_p)}$

as (5). Let I be a non-zero ideal of the algebra $N(e^{A_S},q,n,t)_{[k]}^-$ and l a non-zero element of I. Let us prove the theorem by induction on H(l) of l. Let us assume that H(l) is one. If l is in the $(0,\ldots,0)$ -homogeneous component N_0 , then the ideal generated by l is the algebra by Theorem 1, i.e., we have proved the theorem. If l is not an element of N_0 , then we can assume that l is an element of $N_{(a_1,\ldots,a_n)}$ such that $a_1 \neq 0$. We have that $[e^{-a_1x_1}\cdots e^{-a_kx_k}\partial_1^k,l]$ is a non-zero element of N_0 , and the element has a term in the homogeneous component N_0 . For this case, by Theorem 1, we have proven that the algebra is simple. By induction, let us assume that the algebra $N(e^{A_S},q,n,t)_{[k]}^-$ is simple when H(l) is p. Let us assume that H(l) is p+1. First let us assume that l has a term in N_0 . Note that N_0 is the subalgebra $N(0,q,n,t)_{[k]}^-$ of the algebra $N(e^{A_S},q,n,t)_{[k]}^-$, and it is simple. Using the gradation of $N(0,q,n,t)_{[k]}^-$, l can be written as follows:

(15)

$$l = \#_1 + c_{d_{\lambda,1},\dots,d_{\lambda,q},j_1,\dots,j_{n+t},u} \ln(x_1)^{\lambda_{11}} \cdots \ln(x_q)^{\lambda_{1q}} x_1^{j_1} \cdots x_{n+t}^{j_{n+t}} \partial_u^k + \cdots + c_{d_{\lambda,1},\dots,d_{\lambda,q},j_1,\dots,j_{n+t},u} \ln(x_1)^{\lambda_{r_1}} \cdots + \ln(x_q)^{\lambda_{r_q}} x_1^{j_1} \cdots x_{n+t}^{j_{n+t}} \partial_v^k + \#_2$$

where $\ln(x_1)^{\lambda_{11}} \cdots \ln(x_q)^{\lambda_{1q}} x_1^{j_1} \cdots x_{n+t}^{j_{n+t}} \partial_u^k$ is the maximal term of lin the $(j_1,\ldots,j_u-k,j_{u+1},\ldots,j_{n+t})$ -homogeneous component with respect to the orders $>_o$ and $>_c$ in (6), $\#_1$ is the sum of terms of l which are not in $N_0, \#_1$ is the sum of k different homogeneous components of l with appropriate coefficients, and $\#_2$ is the sum of remaining terms of $(j_1,\ldots,j_u-k,j_{u+1},\ldots,j_{n+t})$ -homogeneous component which are in N_0' . Since $c_{d_{\lambda,1},\ldots,d_{\lambda,q},j_1,\ldots,j_{n+t},u} \ln(x_1)^{\lambda_{11}} \cdots \ln(x_q)^{\lambda_{1q}} x_1^{j_1} x_{n+t}^{j_{n+t}} \partial_u^k + \cdots + c_{d_{\lambda,1},\ldots,d_{\lambda,q},j_1,\ldots,j_{n+t},u} \ln(x_1)^{\lambda_{r_1}} \cdots \ln(x_q)^{\lambda_{r_q}} x_1^{j_1} \cdots x_{n+t}^{j_{n+t}} \partial_v^k + \#_2 \text{ is}$ in N_0' and the algebra N_0' is simple, by Theorem 1, we have a nonzero element $l_1 \in I$ such that $l_1 = \#_3 + c\partial_u^k$ where $\#_3$ is the sum of the remaining terms of l_1 which does not contain a term of N_0 , $H(l_1) \leq p+1$, and $c \in \mathbf{F}^{\bullet}$. Furthermore, without loss of generality, we can assume that $\#_3$ contains a term in the (a_1, \ldots, a_p) -homogeneous component such that $a_1 \neq 0$. This implies that $[\partial_1^k, l_1] = l_2$ with $H(l_2) = k$. Thus, by Theorem 1 and by induction, we have proven that the algebra is simple. Let us assume that l does not have a term of N_0 , it has a non-zero term in the (a_1, \ldots, a_p) -homogeneous component, and $e^{a_1x_1}\cdots e^{a_px_p}ln(x_1)^{d_1}\cdots ln(x_q)^{d_q}x_1^{j_1}\cdots x_{n+t}^{j_{n+t}}\partial_1^k$ is the maximal term of l with respect to $>_o$. Then $[e^{-a_1x_1}\cdots e^{-a_px_p}\partial_1^k,l]=l_3$ is a non-zero element of I. Since $H(l_3)$ is less than or equal to p+1 and it has a term of N_0 , we have already proven that the ideal I is $N(e^{A_S},q,n,t)_{[k]}^-$, i.e., the algebra is simple. The remaining proofs of the theorem are obvious. Therefore we have proven the theorem.

Corollary 1. The Lie algebra $N(e^{A_S}, q, n, t)_{[1]}^-$ is simple.

Proof. The proof of the corollary is straightforward by Theorem 2. \square

Theorem 3. The non-associative algebras $N(e^{A_S},q,n,t)_k,N(e^{A_S},q,n,t)_{k+},\ N(e^{A_S},q,n,t)_{\langle k\rangle},\ N(e^{A_S},q,n,t)_{[k+]},\ and\ N(e^{A_S},q,n,t)_{[k]}\ are$ simple. The matrix ring $M_{n+t}(\mathbf{F})$ is a subalgebra of $N(e^{A_S},q,n,t)_k,\ N(e^{A_S},q,n,t)_{k+},\ N(e^{A_S},q,n,t)_{\langle k\rangle},\ N(e^{A_S},q,n,t)_{[k+]}\ and\ N(e^{A_S},q,n,t)_{[k]}.$

Proof. Since the algebra $N(e^{A_S}, q, n, t)_k$ is simple, the remaining proofs of the theorem are easy (see [12]). So they are omitted. \square

Proposition 1. The dimension of the abelian hull AH of the algebra $N(e^{\pm x^r}, 0, 0, 1)_{\lceil 2^+ \rceil}$ is 2, i.e., it is 2-abelian.

Proof. It is easy to prove that the finite dimensional maximal abelian subalgebra $\langle \partial^2, x \partial^2 \rangle$ of $N(e^{\pm x^r}, 0, 0, 1)_{[2^+]}^-$ is spanned by ∂^2 and $x \partial^2$. This completes the proof of the proposition.

Corollary 2. There is no non zero anti-symmetrized algebra homomorphism from the anti-symmetrized algebra $N(e^{\pm x^r},0,0,1)_{[2^+]}^-$ to the anti-symmetrized algebra $N(0,0,0,1)_{[2^+]}^-$, i.e., the algebras $N(e^{\pm x^r},0,0,1)_{[2^+]}^-$ and $N(0,0,0,1)_{[2^+]}^-$ are not isomorphic.

Proof. Let us assume that there is a non-zero homomorphism (called retraction) θ from $N(e^{\pm x^r}, 0, 0, 1)_{[2^+]}^-$ to $N(0, 0, 0, 1)_{[2^+]}^-$. By Proposition 1, we have that $\theta(\partial) = c_1 \partial + c_2 \partial^2$ where $c_1, c_2 \in \mathbf{F}^{\bullet}$. If one of

the c_1 and c_2 is non-zero, then the element $\theta(e^{\pm x^r}\partial^2)$ cannot be an element of $N(0,0,0,1)^-_{[2^+]}$. This contradiction shows that θ is the zero map between them. So we have proved the corollary.

Theorem 4. If k is not equal to m, and if L_1 is a k-abelian anti-symmetrized algebra L_1 and L_2 is an m-abelian anti-symmetrized algebra L_2 , then they are not isomorphic. The abelian hull is isoinvariant (see [2, 8]).

Proof. Without loss of generality, we can assume that n > m. If there is an isomorphism θ from L_1 to L_2 , then L_2 has a k-dimensional abelian subalgebra. This contradiction shows that there is no isomorphism between them. The remaining proof of the theorem is straightforward by definitions of an abelian hull and an isomorphism. \square

Corollary 3. If k_1 is not equal to k_2 , then the algebras $N(e^{\pm x^r}, 0, 0, 1)_{[k_1^+]}^-$ and $N(e^{\pm x^r}, 0, 0, 1)_{[k_2^+]}^-$ are not isomorphic.

Proof. Since $N(e^{\pm x^r}, 0, 0, 1)^-_{[k_1^+]}$ is k_1 -abelian and $N(e^{\pm x^r}, 0, 0, 1)^-_{[k_2^+]}$ is k_2 -abelian, by Theorem 4 they are not isomorphic. Thus we have proved the corollary. \square

Corollary 4. If one of n and t is not zero, then there is no non-zero homomorphism from one of the algebras $N(e^{A_S},q,n,t)_k^-$, $N(e^{A_S},q,n,t)_{\langle k \rangle}^-$, $N(e^{A_S},q,n,t)_{\langle k \rangle}^-$, $N(e^{A_S},q,n,t)_{[k^+]}^-$ and $N(e^{A_S},q,n,t)_{[k^+]}^-$ to the algebra $N(e^{\pm x^r},0,0,1)_{[k^+]}^-$.

Proof. Since the dimensions of the abelian hulls of $N(e^{A_S},q,n,t)^-_k$, $N(e^{A_S},q,n,t)^-_{k+}$, $N(e^{A_S},q,n,t)^-_{\langle k \rangle}$, $N(e^{A_S},q,n,t)^-_{[k+]}$ and $N(e^{A_S},q,n,t)^-_{[k]}$ are infinite and the dimension of the abelian hull of $N(e^{\pm x^r},0,0,1)^-_{[k+]}$ is finite, there is no non-zero homomorphism from one of the algebras $N(e^{A_S},q,n,t)^-_k$, $N(e^{A_S},q,n,t)^-_{k+}$, $N(e^{A_S},q,n,t)^-_{\langle k \rangle}$, $N(e^{A_S},q,n,t)^-_{[k+]}$, and $N(e^{A_S},q,n,t)^-_{[k]}$ to the algebra $N(e^{\pm x^r},0,0,1)^-_{[k+]}$. This completes the proof of the corollary. □

4. Derivations of the anti-symmetrized algebra $N(e^{\pm x^r},0,0,1)^-_{[2^+]}$.

Note 1. For any basis elements $e^{px^r}x^i\partial$ and $e^{px^r}x^i\partial^2$ of $N(e^{\pm x^r}, 0, 0, 1)_{[2^+]}^-$, and given $c \in \mathbf{F}$, if we define an \mathbf{F} -linear map D_c from the algebra $N(e^{\pm x^r}, 0, 0, 1)_{[2^+]}^-$ to itself as follows: (16)

$$D_c(\partial) = 0,$$
 $D_c(\partial^2) = 0,$ $D_c(x^i \partial) = 0,$ $D_c(x^i \partial^2) = 0,$ $D_c(e^{kx^r} x^i \partial^j) = \delta_{1,j} k c e^{kx^r} x^i \partial + \delta_{2,j} k c e^{kx^r} x^i \partial^2,$

then the map D_c can be linearly extended to an anti-symmetrized algebra derivation of $N(e^{\pm x^r}, 0, 0, 1)_{[2^+]}^-$ where $\delta_{1,j}$ and $\delta_{2,j}$ are Kronecker delta and $1 \le j \le 2$ (see $[\mathbf{4}, \mathbf{7}, \mathbf{9}]$).

Lemma 1. For any $D \in \operatorname{Der}_{\operatorname{anti}}(N(e^{\pm x^r}, 0, 0, 1)_{[2^+]}^-)$, $D = D_c$ holds where D_c is the derivation as shown in Note 1 where $c \in \mathbf{F}$.

Proof. Let D be the derivation in the lemma. Since the algebra $N(e^{\pm x^r}, 0, 0, 1)^-_{[2^+]}$ is **Z**-graded, $D(\partial)$ and $D(x\partial)$ is the sum of terms in different homogeneous components of (5). Thus $D(\partial)$ and $D(\partial^2)$ can be written as follows:

$$D(\partial) = \sum_{i>0} a_{i,1} e^{px^r} x^i \partial + \sum_{i>0} a_{i,2} e^{px^r} x^i \partial^2$$

and

$$D(\partial^{2}) = \sum_{i>0} b_{i,1} e^{px^{r}} x^{i} \partial + \sum_{i>0} b_{i,2} e^{px^{r}} x^{i} \partial^{2}$$

with appropriate coefficients. Since ∂ centralizes ∂^2 , we have that

$$\begin{split} &\left[\sum_{i\geq 0}a_{i,1}e^{px^{r}}x^{i}\partial+\sum_{i\geq 0}a_{i,2}e^{px^{r}}x^{i}\partial^{2},\partial^{2}\right]\\ &+\left[\partial,\sum_{i\geq 0}b_{i,1}e^{px^{r}}x^{i}\partial+\sum_{i\geq 0}b_{i,2}e^{px^{r}}x^{i}\partial^{2}\right]\\ &=-\sum_{i\geq 0}p^{2}r^{2}a_{i,1}e^{px^{r}}x^{i+2r-2}\partial\\ &-\sum_{i\geq 0}pr(i+r-1)a_{i,1}e^{px^{r}}x^{i+r-2}\partial\\ &-\sum_{i\geq 1}pria_{i,1}e^{px^{r}}x^{i+r-2}\partial-\sum_{i\geq 2}i(i-1)a_{i,1}e^{px^{r}}x^{i-2}\partial\\ &-\sum_{i\geq 1}p^{2}r^{2}a_{i,2}e^{px^{r}}x^{i+2r-2}\partial^{2}\\ &-\sum_{i\geq 0}pr(i+r-1)a_{i,2}e^{px^{r}}x^{i+r-2}\partial^{2}\\ &-\sum_{i\geq 1}pria_{i,2}e^{px^{r}}x^{i+r-2}\partial^{2}-\sum_{i\geq 2}i(i-1)a_{i,2}e^{px^{r}}x^{i-2}\partial^{2}\\ &+\sum_{i\geq 1}prb_{i,1}e^{px^{r}}x^{i+r-1}\partial+\sum_{i\geq 1}ib_{i,1}e^{px^{r}}x^{i-1}\partial\\ &+\sum_{i\geq 0}prb_{i,2}e^{px^{r}}x^{i+r-1}\partial^{2}+\sum_{i\geq 1}b_{i,2}e^{px^{r}}x^{i-1}\partial^{2}=0 \end{split}$$

with appropriate coefficients. Note that since the algebra is **Z**-graded, it is enough to assume that non-zero terms of $D(\partial)$ and $D(\partial^2)$ are in the homogeneous components N_0 or N_p where $p \neq 0$. By (17), we have that $a_{i,1}$, $a_{i,2}$, $b_{i,1}$ and $b_{i,2}$ are zeroes, $i \geq 0$, and $D(\partial)$ and $D(\partial^2)$ are also zeroes. Since $D([\partial, x\partial])$ is zero, we are able to prove that $D(x\partial) = c_{0,1}\partial + c_{0,2}\partial^2$. Since $D([\partial, x^2\partial]) = 2D(x\partial) = c_{0,1}\partial + c_{0,2}\partial^2$, we are also able to prove that $D(x^2\partial) = 2c_{0,1}x\partial + 2c_{0,2}x\partial^2 + t_1\partial + t_2\partial^2$. Since $x\partial$ is an ad-diagonal element with respect to the element $x^2\partial$, we have that $c_{0,2}$, t_1 and t_2 are zeroes. This implies that $D(x\partial) = c_{0,1}x\partial$ and $D(x^2\partial) = 2c_{0,1}x\partial$ hold with appropriate coefficients. By induction on i of $x^i\partial^2$ and $D([x^i\partial, x^{i+1}\partial]) = D(x^{2i}\partial)$, we have that

 $D(x^{2i}\partial)=2ic_{0,1}x^{2i-1}\partial$. Similarly, we can prove that $D(x^{2i-1}\partial)=(2i-1)c_{0,1}x^{2i-2}\partial$. This implies that $D(x^i\partial)=ic_{0,1}x^{i-1}\partial$ for all i. By $D([\partial,x\partial^2])=0$, we have that $D(x\partial^2)=g_{0,1}\partial_1+g_{0,2}\partial^2$ with appropriate coefficients. By $D([x\partial,x\partial^2])=D(x\partial^2)$, we can prove that $c_{0,1}=g_{0,1}=g_{0,2}=0$. Thus, $D(x^i\partial)=0$ for all i and $D(x\partial^2)=0$. By induction on i of $x^i\partial^2$ and $D([x^2\partial,x^{i-1}\partial^2])=(i-1)D(x^i\partial^2)-2D(x^{i-1}\partial)$, we can also prove that $D(x^i\partial^2)=0$ for all i. Assume that

$$\begin{split} D(e^{x^r} x^i \partial) &= \sum_{k \geq 0} u_{k,1} e^{px^r} x^k \partial + \sum_{k \geq 0} u_{k,2} e^{px^r} x^k \partial^2, \\ D(e^{x^r} x^{i+1} \partial) &= \sum_{k \geq 0} w_{k,1} e^{px^r} x^k \partial + \sum_{k \geq 0} w_{k,2} e^{px^r} x^k \partial^2 \end{split}$$

with appropriate coefficients. By $D([x\partial, e^{x^r}x^i\partial]) = rD(e^{x^r}x^{r+i}\partial) + (i-1)D(e^{x^r}x^i\partial)$ and $D([\partial, e^{x^r}x^{i+1}\partial]) = rD(e^{x^r}x^{r+i}\partial) + (i+1)D(e^{x^r}x^i\partial)$, we have that $D([x\partial, e^{x^r}x^i\partial]) - (i-1)D(e^{x^r}x^i\partial) = D([\partial, e^{x^r}x^{i+1}\partial]) - (i+1)D(e^{x^r}x^i\partial)$. This implies that $w_{k+1,1} = u_{k,1}, k \geq 0, w_{0,1} = 0$, and $u_{k,2} = w_{k,2} = 0, k \geq 0$. These imply that

$$\begin{split} D(e^{x^r}x^{i+1}\partial) &= \sum_{k\geq 1} w_{k,1}e^{px^r}x^k\partial \\ &= x\bigg(\sum_{k\geq 0} u_{k,1}e^{px^r}x^k\partial\bigg) = xD(e^{x^r}x^i\partial). \end{split}$$

Let us put that $D(e^{x^r}x^i\partial) = xD(e^{x^r}x^{i-1}\partial) = x^2D(e^{x^r}x^{i-1}\partial) = \cdots$ $= x^iD(e^{x^r}\partial), u_{0,1} = \cdots = u_{i-1,1} = 0, \text{ and } D(e^{x^r}\partial) = \sum_{k\geq i}u_{k,1}e^{px^r}\partial_1.$ By $D([\partial, e^{x^r}\partial]) = rD(e^{x^r}x^{r-1}\partial) = rx^{r-1}(i-1)D(e^{x^r}\partial),$ we can prove that p=1. We can also prove that $u_{k,1}=0, k\geq i+1$. So we have that $D(e^{x^r}\partial) = u_{i,1}e^{x^r}\partial_1 = ce^{x^r}\partial_1$ with $c=u_{i,1}$. By $D([x\partial^2, e^{x^r}\partial]) = r^2D(e^{x^r}x^{2r-1}\partial) + r(r-1)D(e^{x^r}x^{2r-1}\partial) - D(e^{x^r}\partial^2),$ we have that $D(e^{x^r}\partial^2) = ce^{x^r}\partial^2.$ By $D([e^{x^r}\partial, e^{x^r}x\partial]) = D(e^{2x^r}\partial),$ we have that $D(e^{2x^r}\partial) = 2ce^{2x^r}\partial.$ By $D([e^{x^r}\partial, e^{x^r}x^{i+1}\partial]) = (i+1)D(e^{2x^r}x^i\partial),$ we also have that

$$D(e^{2x^r}x^i\partial) = 2ce^{2x^r}x^i\partial.$$

Thus, we need to consider the following two cases:

Case I. Put p=2m. We have that $D([e^{mx^r}\partial, e^{mx^r}x^{i+1}\partial])=(i+1)D(e^{2mx^r}x^i\partial)$. By induction on p of $e^{px^r}x^i\partial$, we are also able to prove that

 $D(e^{px^r}x^i\partial) = pce^{px^r}x^i\partial.$

Case II. Put p = 2m + 1. Then we have that

(18)
$$D([e^{mx^r}\partial, e^{(m+1)x^r}x^{i+1}\partial]) = rD(e^{(2m+1)x^r}x^{r+i}\partial) + (i+1)D(e^{(2m+1)x^r}x^i\partial)$$

and

(19)
$$D([e^{mx^r}x^{i+1}\partial, e^{(m+1)x^r}\partial]) = rD(e^{(2m+1)x^r}x^{r+i}\partial) - (i+1)D(e^{(2m+1)x^r}x^i\partial).$$

By induction on p of $e^{px^r}x^i\partial$ and by (18)–(19), we are also able to prove that

$$D(e^{px^r}x^i\partial) = pce^{px^r}x^i\partial.$$

By $D([e^{px^r}\partial, x\partial^2]) = D(e^{px^r}\partial^2) - p^2r^2D(e^{px^r}x^{2r-2}\partial) - pr(r-1) \times D(e^{px^r}x^{r-2}\partial)$, we have that $D(e^{px^r}\partial^2) = pce^{px^r}\partial^2$. By

$$D([x^{i+1}\partial^2, e^{px^r}\partial]) = p^2 r^2 D(e^{px^r} x^{i+2r-1}\partial) + pr(r-1)D(e^{px^r} x^{i+r-1}\partial) - (i+1)D(e^{px^r} x^i\partial^2),$$

we also have that $D(e^{px^r}x^i\partial^2) = pce^{px^r}x^i\partial^2$. Thus D can be linearly extended to the derivation D_c as shown in Note 1. Therefore we have proved the lemma.

Theorem 5. For any $D \in \operatorname{Der}_{\operatorname{anti}}(N(e^{\pm x^r},0,0,1)_{[2^+]}^-)$, D is the linear sum of the derivations D_c as shown in Note 1 where $c \in \mathbf{F}$. Every derivation of the algebra $N(e^{\pm x^r},0,0,1)_{[2^+]}^-$ is outer.

Proof. The proofs of the theorem are straightforward by Lemma 1 and Note 1, and the fact that D_c is not inner.

Corollary 5. The dimension of $\operatorname{Der}_{\operatorname{anti}}(N(e^{\pm x^r},0,0,1)_{[2^+]}^-)$ of the algebra $N(e^{\pm x^r},0,0,1)_{[2^+]}^-$ is two. For any derivation D of $\operatorname{Der}_{\operatorname{anti}}(N(e^{\pm x^r},0,0,1)_{[2^+]}^-)$

 $(0,0,1)_{[2^+]}^-$, $D(N_0') = 0$ holds where N_0' is the zero-homogeneous component of $N(e^{\pm x^r},0,0,1)_{[2^+]}^-$.

Proof. The proofs of the corollary are straightforward by Theorem 5 and Note 1. \Box

REFERENCES

- 1. Mohammad H. Ahmadi, Ki-Bong Nam and Jonathan Pakianathan, *Lie admissible non-associative algebras*, Algebra Colloq. 12, World Scientific, 2005.
- 2. G. Brown, Properties of a 29-dimensional simple Lie algebra of characteristic three, Math. Ann. 261 (1982), 487–492.
- 3. Seul Hee Choi, Jeong-Sig Lee and Ki-Bong Nam, W-type and H-type non-associative algebras using additive maps I, Int. J. Algebra 1 (2007), 335-346.
- 4. Seul Hee Choi, Jongwoo Lee and Ki-Bong Nam, Derivations of a restricted Weyl type algebra containing the polynomial ring, Commun. Algebra 36 (2008), 3435–3446.
- 5. Seul Hee Choi and Ki-Bong Nam, The derivation of a restricted Weyl type non-associative algebra, Hadronic Journal 28 (2005), 287-295.
- 6. ——, Weyl type non-associative algebra using additive groups I, Algebra Colloq. 14 (2007), 479–488.
- 7. ——, Derivations of a restricted Weyl type algebra I, Rocky Mountain Math. J. 37 (2007), 1813–1830.
- 8. I.N. Herstein, *Noncommutative rings*, Carus Math. Mono. 15, Mathematical Association of America, Washington, DC, 1994.
- 9. T. Ikeda, N. Kawamoto and Ki-Bong Nam, A class of simple subalgebras of generalized W algebras, Proc. Inter. Conf. at Pusan, 1998, A.C. Kim, ed., Walter de Gruyter Co. KG, 2000.
- 10. V.G. Kac, Description of filtered Lie algebra with which graded Lie algebras of Cartan type are associated, Izv. Akad. Nauk SSSR 38 (1974), 832–834.
- 11. Naoki Kawamoto, Atsushi Mitsukawa, Ki-Bong Nam and Moon-Ok Wang, The automorphisms of generalized Witt type Lie algebras, J. Lie Theory 13 (2003), 571–576.
- 12. Jongwoo Lee and Ki-bong Nam, Non-Associative algebras containing the matrix ring, Linear Algebra Appl. 429 (2008), 72-78.
- 13. Ki-Bong Nam, $Generalized\ W\ and\ H\ type\ Lie\ algebras$, Algebra Colloquium 6, (1999), 329–340.
- 14. ——, On some non-associative algebras using additive groups, Southeast Asian Bull. Math. 27 (2003), 493–500.
- 15. Ki-Bong Nam and Seul Hee Choi, On the derivations of non-associative Weyl-type algebras, Southeast Asian Bull. Math. 31 (2007), 341-348.
- 16. Ki-Bong Nam and Moon-Ok Wang, Notes on some non-associative algebras, J. Appl. Algebra Discrete Structured 1 (2003), 159–164.

- 17. D.S. Passman, Simple Lie algebras of Witt type, J. Algebra 206 (1998), 682-692.
- 18. A.N. Rudakov, Groups of automorphisms of infinite-dimensional simple Lie algebras, Math. USSR-Izvestija 3 (1969), 707–722.
 - 19. R.D. Schafer, Introduction to nonassociative algebras, Dover, New York, 1995.

Dept. of Mathematics, Jeonju University, Chon-ju 560-759, Korea Email address: chois@jj.ac.kr

DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE, UNIVERSITY OF WISCONSIN-WHITEWATER, WHITEWATER, WI 53190

Email address: namk@uww.edu