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NOTES ON NEW (ANTISYMMETRIZED) ALGEBRAS

SEUL HEE CHOI AND KI-BONG NAM

ABSTRACT. We define the simple non-associative algebra
N(eA4s,q,n,t);, and its simple subalgebras in this work. We

also prove that the anti-symmetrized algebra N(eAS ,q,m,t) [;]

is simple. There are various papers on finding all the deriva-
tions of an associative algebra, a Lie algebra and a non-
associative algebra (see [3, 5-7, 9, 12, 14-16]). We also find
all the derivations Deranti(N(eizr,O,O,1)[_2+]) of the anti-
symmetrized algebra N(e*%" 0,0, 1)[_2+] , and every derivation

of the algebra is outer in this paper.

1. Preliminaries. Let N be the set of all non-negative integers
and Z the set of all integers. Let N* be the set of all positive
integers. Let F be a field of characteristic zero and F*® the set of
all non-zero elements in F. For fixed integers i1, ... ,%,, we define Sy,
as the set {z}'---xim o' .m0 a2 eepim o b i)
Throughout the paper, n and ¢ are given non-negative integers, and m
denotes a non-negative integer such that m < n + t. For any subset
S of S,, and ¢ < n, we can define the F-algebra Fle*!5] ¢,n, 1] :=
FletS in(z))*, ... ) In(z,)* 2, .o 2t 2,01, Znye] spanned
by

B = {e% .. e In(zy)? -+ - In(zy) ezl - -xiﬁﬁ [s1,...,8, €8,

aiy ... 7arad17--' 7dq EZ, jla"' 7jn ezaj’n-i-la"' 7jn+t EN}

where, throughout the paper, we put In(z, )% := (In(z,))%, 1 <u < q.
Note that, if t > 1, then F[e*[%], ¢, n, ] is a semi-group ring not a group
ring (see [17]). We then denote 9} ---0;" as the composition of the
partial derivatives O, , ... ,0n, on F[e*lS] ¢ ,n,t]and 8,1 < h < n+t,
denotes the identity map on F[e*l%] ¢, n,t] where 0 < hy,... , h, <
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n +t. For any o, € S C Sy, let A,, be an additive subgroup of F
such that A,, contains Z. For ¢ < n, we define the (free) F-vector
space N(es q,n,t); (respectively N(e?s,q,n,t),+) whose basis is the
set

(1) Ba = et oo Ina) - In(a) ot -l Ot 00 |
a; € Aal,... ,aT,dl,... ,dq € Aar,
815000387 €8, hiyeos yhe <+ t,pr1+--+p, <k EN (resp. N1

If we define the multiplication * on N(e“$s,q,n,t); as follows:
(2)  fOR -0 % g0y -0y = (O -+~ 037 (9)) 0 -+ - Oyt

for any foy! --- 0}, g0y - -0u! € N(e?s,q,n,t) (respectively N(e4s,
¢,n,t)p+), then we define the combinatorial algebra N(e?s,q,n,t)
(respectively N(e?s,q,n,t),+) whose product is * in (2) (see [5, 6, 14,
16]). The non-associative subalgebra N(e4s, q,n,t)(xy of the algebra
N(e?s,q,n,t); is spanned by

(3)

{for -0 | feB,1<hy,... ,hy <n+t,pi+--+p, =k <e NT}L

We define the non-associative subalgebra N(e“s,q,n, t)je+] (respec-

tively N(e?s,q,n,t);) of the algebra N(eAiS, q,n,t) is spanned by
(4) {foF|feB, 1<h<n, ke Nt(resp. for a fixed k € N*)}.

For an algebra A and | € A, an element [; € A is a right (respectively
left) identity of I, if I x Iy = [ (respectively Iy x I = [) holds. The
set of all right identities of N(e?s,q,n,t)y) is {2 icucntt Tulu +
Y 1<u<nit Culu | cu € F}. There is no left identity of N(eAs g,n,t)p+
(see [10, 13, 17]). The algebra N(e?s,n,t); has the left identity 1.
If A is an associative F-algebra, then the anti-symmetrized algebra A
is a Lie algebra relative to the commutator [z,y] := zy — yx (see [1,
18]). For a general nonassociative F-algebra N we define in the same
way its anti-symmetrized algebra N—. In case N~ is a Lie algebra we
shall say that NV is Lie admissible. For § C N, an element [ is ad-
diagonal with respect to S, if for any I; € S, [I,1;] = ¢l; holds where
c € F. For a given basis B of an anti-symmetrized algebra N—, the
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toral tory-(B) = tor (B) of B is n if there is a linearly independent
maximal set {ly,...l,} of ad-diagonal elements relative to B. For an
anti-symmetrized algebra N—, we define Tor (N ™) as follows:

Tor (N~ ) = max{tor (B) | B is a basis of N }.

An anti-symmetrized algebra N~ is n-toral, if Tor(N~) = n. For an
algebra A, the abelian hull AH of its anti-symmetrized algebra A~ is
the maximal abelian subalgebra of A~. An anti-symmetrized algebra
A~ is h-abelian, if the dimension of the abelian hull of A~ is h (see
[11]). The algebra N(e?s,q,n,t);; is Lie admissible (see [1, 16, 19]).
For all a € S,,, if A, is Z, then the algebra N(e4sm,q,n,t); is Z%" -
graded as follows:

(5) N(eASmaqanat)k = @ N(al,...,amg)

(alv--' 7a‘m2)

where N4, .. a,m) is the vector subspace of N(eAsm q,n,t); spanned
by

{emsr e In(@)™ - In(ag) el a0 - O
di,...,dy €Z,j1,... ,jn €4,
Jndlyeee s dntt, Uty - oo 5 Unpt € N
This implies that N(e?s,q,n,t), and N(e?s,q,n,t),+ are appropri-

ate graded subalgebras of the algebra N(e“sm q,n,t);. The alge-
bra N(0,q,n,t)r) (respectively its anti-symmetrized algebra) is Z™ x

(NU{-1,...,—k})"-graded as follows:

(6) N(O’ n, t)[k] = @ N(Ijl,--- Jntt)
(J1see sGntt)

where N/

) is the vector subspace of N (0, ¢, n, ) (respectively

(F1se- sdnt
its anti-symmetrized algebra) spanned by

{In(z,)® - - - In(z,)%eal" o guthglen ---xfl’f;(?fj | dy,...,dg €L,

u+1
1<u<n+t}.
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Thus, throughout the paper, Ny and N/, denote the (0, ... ,0)-homogeneous
components of N(e4s qg,n,t); (respectively its anti-symmetrized al-
gebra) and N(0,q,n,t)y) (respectively its anti-symmetrized algebra)

respectively. For basis elements €151 ... Srgit .. ;cil'f:; opt---0pr,

€15 ... glrsy m{ i’f{@pl -0 of N(eAsm,q,n,t)y, we define the
lexicographic order >, as follows:
(7)

ai sy ars dq dg . J1 Jn+t QP1 r

et et rirn(zy )™ - - In(zg) Myt -y 0P - 00T >,

ays)] aps! d} d’ 1 j?"L+t6P1 P if if

e e In(xy)™ - In(mg) awyt - -y iy -+ 0 if and only i
:

a; > aj, or, a; = a} and az > a), or, -+,

! / i
oray =ay, * ,Pr—1=P,_1, and p. > p,.

Thus we can define the order >, on the algebra N(e4sm, q,n,t).
By (5) and (6), we can define the order >, on each homogeneous
component of N(e4sm,q,n,t), and N(0,q,n,t); using the order >,.
Throughout the paper for any basis element €15t ... %" In(x;)% - -
ln(xq)dqlel o xZLTtt t ap: of N( ASmaQanat)ka dv7 1<v<gqis
called the power of the natural logarithmic function In(z,). For any el-
ement | of N(e?s,q,n,t); (respectively its subalgebra or subalgebra its
anti-symmetrized algebra), H(l) denotes the number of different homo-
geneous components of N(e?s,q,n,t) (v] (respectively its subalgebra or
subalgebra its anti-symmetrized algebra) such that the homogeneous
components contain a non-zero term of [. Note that the set of all
right annihilators of N(e?$,q,n,t); (respectively its appropriate sub-
algebras) is the subalgebra T}, ; of N(e“$,q,n,t); that is spanned by
{ t11 ...af: | 1<ty,...,t, <n+t,p,... ,pr € k}

3. Simplicities.

Theorem 1. The algebra N(0,q,n,t);,+) and the subalgebra N (0, g,
n,t)[_k] of the anti-symmetrized algebra N (0, q,n,t)[_kﬂ are simple. The
matriz ring My (F) is a subalgebra of N(0,q,n,t)p+). The ma-
triz ring My,+(F) is a subalgebra of N(0,q,n,t)p+), and the algebra
Slp+t(F) is a Lie subalgebra of N (0, q,n,t)[_kﬂ.

Proof. The proof of simplicities of the non-associative algebra
N(0,q,n, t)[kﬂ is easy, so it is enough to prove that its anti-symmetrized
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algebra N(0,q,n,t)q) is simple. It is enough to show that an ideal gen-
erated by a non-zero element of T, is the algebra N(0, ¢, n, t)[k]f, and
an ideal generated by a non-zero element of N (0, g,n,t);; contains an
element of T}, ;. Let I be a non-zero ideal of N(0, ¢, n, t)[_k}. First, let us
show that the ideal I of N (0, ¢, n, t)[_kﬂ generated by a non-zero element
of Tp4¢ is the algebra N(0, q,n,t){;]. Since the algebra N((],O,n,t)[;}
is simple, the ideal I contains the algebra N (0,0, n, t)[_k]. For any f =
In(zy)% - -lnG-u\)du In(2yy1) %t - In(zy)baad - -wz[rtt € F[0,q,n,t],

v [0F,ak fOK] = KIfOk + ok0k(£)0% and [o*0k, fO5] = —kIfOE +
zkOF(f)0F, we have that foF € N(O,q,n,t)fk] where lnau\)du means
that the term In(z,)% is omitted (see [13, 14]). This implies
that In(zq)%--- lnﬁvu\)duln(:cu_i_l)d“+1 o In(zg) ezl - -mi‘;rtt OF is an
element of the ideal I. Let us prove that the element In(z;)% .-
In(z4)%z ---:cf{f:t" OF € I by induction on d,. If d, is zero, then we
have already proved this case. By [#%174,,In(z1)% - --In(z,)%azl" - -
xf;j;a’;] € I and induction, we have that In(z;)% - .- In(z,)%z]* -
xfl’f; OF is an element of the ideal I. This implies that the ideal I is
the algebra N(0,q,n,t) fk]. Now we can assume that the ideal I con-
tains a non-zero element [ which is not an element of N (0,0, n,t) (] By

the gradation (6), we know that every term of [ is in a homogeneous
component of N (0, ¢,n, t)[jc}. Note that the element

(8) 1, tn(@1) ™ - In(zg) Boabdf] # 0

is an element of I such that the powers of natural logarithmic functions
of [I,In(z1)%1 - - -In(z,)%ezk %] are positive where df,... , 1q are
sufficiently large positive integers (see [13]). Thus, without loss of
generality, we can assume that all the powers of the natural logarithmic
functions of [ are positive. Let us prove that the algebra is simple by
induction on H(l) of I. Let us assume that H(l) = 1 and [ is in
the (0,...,0)-homogeneous component N{ of N(0,q,n, t)[_k]. l can be
written as follows:

(9) l = cdlly-" 7d1q707"' y,0,...,0,u ln(xl)dll e ln(xq)dquﬁa,{f + o

+ Cdyq,s.e. ,d1¢,0,..-,v,0,... ,0,v ln(wl)dhl T ln(xq)dhqxz]jaz’f
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d digk Ak ; .
where ¢4,, ... di,0,... u0,... 0,0 I0(21)* ... In(24) 19250y is the maximal

element of [ using the orders >, and >, with appropriate coefficients
(see [5, 13]). Now let us prove that the theorem on the number of
non-zero terms of [. If [ has one term, then we have that

(10) l= Cdy1,...,d14,0,-.. ,u,0,... ,0,u ln(xl)dn e ln(wq)dlqwzaqu'
If dy, is zero, then by

(11) [ln($1)—d11 T ln(mq)_dlqazljJ Cdi1,...,d14,0,...,u,0,... ,0,u ln(ml)dll ce

In(z,) "2k 0k] = k10",

we have that 0% € I. Thus, I = N(0,q, n,t)x; - This implies that the
algebra is simple. If dy, is non-zero, then by

I = [mﬁafj, ] — o ln(:cl)d11 - -ln(:vq)dlq:vﬁaz]

(12) = [mkak Cdyy,... ,d14,0,... ,u,0,... ,0,u 1n(xl)d11 T ln(wq)dlqwﬁaﬂ

u-ul

— oy In(zy) % - - In(z, ) Pazk ok,

we have a non-zero element [; such that the order of [; is strictly less
than the order of | where we take an appropriate scalar ;. Repeating
similar procedures of (12), we have an element I} of I such that every
term of I} has no natural logarithmic function In(z,), 1 < u < gq,
and the order of [} is less than the order of I;. By similar procedures
of (11), we have a non-zero element of I such that the element is in
N(0,0,n, t)[_k]. This implies that the algebra is simple. By induction,
let us assume that if H(l) = p, then I is the algebra N(0, g, n, t)[;]. Let
us assume that H(l) is p+ 1. By using the orders <, and <., [ can be
written as follows:

(13) ' ' '
l= Cdx, 1,0 3@x,q50150 0 sdinttsU 111(:131))‘11 T ln(mq))\quil T xiu—i_kxz;i:ll T

Jn+t ok i i Ar1
Tptt au + 4+ Cdy 1, ,dx,qsJ1 5 sdntt t ln(xl) T

A J1 otk Jv+1 Jn+t ok
ln(rcq) 7ﬂq:l’.l e xvv xv—i—l e anrt 81) + #

where the term In(z) ---In(z,) Moz ---wi’ff@fj is the maximal
term of | with respect to the orders >, and >., and # is the sum
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of k different homogeneous components which are not equal to the
(j1,- -+ »Jntt)-homogeneous component with appropriate coefficients.
By (8), we can assume that all the powers of natural logarithmic
functions of [ are non-negative integers. Without loss of generality,
we can assume that A;; is a non-zero integer, otherwise either we
can take the first non-zero integer Ay ,, 1 < p < g, or [ is such an
element of N(0,0,n,t) (8] (in this case there is nothing to prove). As
a similar calculation of (12), we have an element I{ of I such that
H(Y) < p+1andlf <gl. Since we have an element l{ € I, by
repeating this calculation, we have an element [/ € I such that every
term of the (ji,...,Jnt+t)-homogeneous component does not have a
natural logarithmic function. If H(I)) = 1, then [/ is an element of
N(0,0,n, if)[fk]7 i.e., the ideal T is the algebra N(0, ¢, n, t)[jc]. Thus, there
is nothing to prove. If H(I!') < r + 1, then we can find an appropriate
element 0F such that

(14) e =[00,105, ..., [05,1]..]

of I where we applied the Lie bracket appropriate number of times so
that [;’, ; is a non-zero element of I with no term of the (ji1,... , jnit)-
homogeneous component Nj. This implies that H(l;) < r. This
implies that the ideal I is N(0, g, n, t) (] 1-€-, the algebra N(0,q,n, t)fk}
is simple. The remaining proofs of the theorem are obvious. Therefore
we have proven the theorem. ]

Theorem 2. The algebra N(eAS, q,n, t)[kﬂ and the anti-symmetrized
subalgebra N(eAS,q,n,t)[jc] of the anti-symmetrized algebra N(es,q,
n,t)fkﬂ are simple. The matriz ring M, +(F) is a subalgebra of
N(eAS7q,n,t)[k+], and the algebra sl,+(F) is a Lie subalgebra of
N(eAS7q,n,t)[7€+].

Proof. 1t is easy to prove that the algebra N(eAS,q,n,t)[kﬂ is
simple (see [12]). Let us prove that its anti-symmetrized algebra
N(eAS,q,n,t)[jﬂ is simple. By (5), the anti-symmetrized algebra
N(eAs,q,n, t)[_k} is a graded algebra depending on the cardinality |Ag|
of Ag. This implies that, without loss of generality, we can put that
the algebra is ZP-graded, i.e., N(eAS,q,n, t)[_k] = @(al,..-,ap)N(al,..

L,ap)
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as (5). Let I be a non-zero ideal of the algebra N(e“s, q,n, t)fk] and ! a
non-zero element of I. Let us prove the theorem by induction on H(l) of
l. Let us assume that H(!) is one. If [ is in the (0,...,0)-homogeneous
component Ny, then the ideal generated by [ is the algebra by The-
orem 1, i.e., we have proved the theorem. If [ is not an element of
Ny, then we can assume that [ is an element of N(,, . .,.) such that
a; # 0. We have that [e~@1%1 ...~ 29 [] is a non-zero element of
Ny, and the element has a term in the homogeneous component Nj.
For this case, by Theorem 1, we have proven that the algebra is simple.
By induction, let us assume that the algebra N(e“s,q,n, t)[_k] is simple
when H(l) is p. Let us assume that H(l) is p + 1. First let us assume
that [ has a term in Ny. Note that Ny is the subalgebra N (0, g, n t)[k}

of the algebra N(e?s,q,n,t); K]’ and it is simple. Using the gradation
of N(0,q,n,t) (k] l can be written as follows:

(15)
L=F1+4Cdy 1, dsgiirs dnseru ln(ml))‘“ e 'ln(xq))\lqmil o i:rttak
+ Cdx 1,0 y8x,qs15e sdingtrU ln(xl))\rl
ln(wq))\rqul'l .. i:rttak + #2
where In(z)?1 - .- In(zg) Mozl - f;f;@k is the maximal term of [
in the (Ji,---,Ju — K, Jut1s--- ,jn+t) homogeneous component with

respect to the orders >, and > in (6), #; is the sum of terms of [ which
are not in Ny, #1 is the sum of k different homogeneous components of
I with appropriate coeflicients, and #5 is the sum of remaining terms

of (ji,--+sJu — Ky Jut1,--- ,Jn+t)-homogeneous component which are
. ! . i . A1l .. Mg ndl dntt k
in Ng. Since cay ... dx g1 e u (1) ln'( )y Ty 0y

A Aragll ... gpint gk
T Cdy g gt e (T1) 0 I(Tg) Myt - 2y O 4 #o s

in NV} and the algebra Nj is simple, by Theorem 1, we have a non-
zero element I; € I such that I; = #3 + cOF where #3 is the sum
of the remaining terms of /; which does not contain a term of Ny,
H(l;) <p+1, and ¢ € F°*. Furthermore, without loss of generality, we
can assume that #3 contains a term in the (aq, ... ,a,)-homogeneous
component such that a; # 0. This implies that [0F,l;] = I with
H(l3) = k. Thus, by Theorem 1 and by induction, we have proven that
the algebra is simple. Let us assume that [ does not have a term of Ny,
it has a non-zero term in the (ay, . .. , ap)-homogeneous component, and
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€Mt ... emrn ()4 .. In(zy) b - -z}t OF is the maximal term of
| with respect to >,. Then [e7@1%1-..e~%%JF [] = [3 is a non-zero
element of I. Since H(l3) is less than or equal to p+1 and it has a term
of Ny, we have already proven that the ideal I is N(e?s,q,n,t) (k] 1€
the algebra is simple. The remaining proofs of the theorem are obvious.
Therefore we have proven the theorem. i

Corollary 1. The Lie algebra N(e“s, q,n,t)[_u 1s simple.
Proof. The proof of the corollary is straightforward by Theorem 2. 0O

Theorem 3. The non-associative algebras N(e*s,q,n,t);,N(e?s,q,
Ny )+, N(eAs,q,n,t)<k>, N(eAS,q,n,t)[kﬂ, and N(eAS,q,n,t)[k] are
simple. The matriz ring M, +(F) is a subalgebra of N(e?s,q,n,t)y,
N(e?s,g,n,t)p+, N(eAs,g,n, t) (kY N(e“s,q,n, t)e+) and N(e?s,q,n, k-

Proof. Since the algebra N(e“s,q,n,t); is simple, the remaining
proofs of the theorem are easy (see [12]). So they are omitted. O

Proposition 1. The dimension of the abelian hull AH of the algebra
N(e*®",0,0,1);g+] s 2, i.e., it is 2-abelian.

Proof. Tt is easy to prove that the finite dimensional maximal abelian
subalgebra (9%, z02) of N(e**",0,0, 1)[2ﬂ_ is spanned by 0% and z02.
This completes the proof of the proposition. O

Corollary 2. There is no non zero anti-symmetrized algebra homo-
morphism from the anti-symmetrized algebra N(eizr,O, 0, 1)[_2+} to the
anti-symmetrized algebra N(0,0,0, 1)[;+}, i.e., the algebras N(e**",0,
0, 1)[_2+] and N(0,0,0, 1)[_2+] are not isomorphic.

Proof. Let us assume that there is a non-zero homomorphism (called

retraction) # from N(e**",0,0, 1)[7%] to N(0,0,0, 1){2+]. By Proposi-

tion 1, we have that 6(9) = c10 + c20? where c1,c2 € F*. If one of
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the ¢; and ¢y is non-zero, then the element f(e** §2) cannot be an
element of N(0,0,0, 1){7%]. This contradiction shows that 6 is the zero
map between them. So we have proved the corollary. ]

Theorem 4. If k is not equal to m, and if L, is a k-abelian
anti-symmetrized algebra Ly and Lo is an m-abelian anti-symmetrized
algebra Lo, then they are mot isomorphic. The abelian hull is iso-
invariant (see [2, 8]).

Proof. Without loss of generality, we can assume that n > m. If there
is an isomorphism 6 from L to Lo, then Ly has a k-dimensional abelian
subalgebra. This contradiction shows that there is no isomorphism
between them. The remaining proof of the theorem is straightforward
by definitions of an abelian hull and an isomorphism. O

Corollary 3. If ky is not equal to ko, then the algebras N(ei’”r, 0,0,

and N(e**",0,0,1)" . are not isomorphic.

1) )

(k]

Proof. Since N(e**",0,0, 1)[_k+] is ky-abelian and N(e**",0,0, 1)[_k+]
1 2

is ko-abelian, by Theorem 4 they are not isomorphic. Thus we have
proved the corollary. ]

Corollary 4. If one of n and t is not zero, then there is no
non-zero homomorphism from one of the algebras N(eAs,q,n,t),;,

N(eASa q,n, t)]:+’ N(eAsa q,n, t)<_k>7 N(eAS’ q,n, t) [_]€+] and N(eAS y 4, T,

t)[_k] to the algebra N(e**",0,0, 1){_,#].

Proof. Since the dimensions of the abelian hulls of N(e?s, g, )5,

N(eAS7 Q7 ’I’L7 t);,JrJ N(eAS’ q7 TL, t)(k)v N(eAS7 Q7 ’I’L7 t)[7]c+} a‘nd N(eAS ’ q7 7'L,

t)[_k] are infinite and the dimension of the abelian hull of N(e**",0,0,
1)[_k+} is finite, there is no non-zero homomorphism from one of the alge-
bras N(es,q,n,t),, N(e4s,q,n,t),., N(eAs,q,n,t), N(e?s,q,n,
t)[_kﬂ’ and N(eAS,q,n,t)[;} to the algebra N(eiwr,0,0,l)[_kﬂ. This
completes the proof of the corollary. O
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4. Derivations of the anti-symmetrized algebra N(eizT,O,O,
1)[;+]-

Note 1. For any basis elements ePr" 219 and eP®” z'H? ofN(ei“”T, 0,0,
1)[;+], and given ¢ € F, if we define an F-linear map D, from the algebra
N(et*",0,0, 1)[_2+} to itself as follows:

(16 | |
D.(0)=0, D.(0*)=0, D, (2'0)=0, D.(2'0*) =0,
Dc(ek’”r:riaj) = 617jkcekzrxi8 + 627jkcekzrxi82,

then the map D, can be linearly extended to an anti-symmetrized alge-
bra derivation of N(e**",0,0, 1){_2+] where 1 ; and J2 ; are Kronecker

delta and 1 < j < 2 (see [4, 7, 9]). o

Lemma 1. For any D € Derapn (N(e**",0,0, 1)[;+]), D = D. holds
where D, is the derivation as shown in Note 1 where c € F.

Proof. Let D be the derivation in the lemma. Since the algebra
N(e**",0,0, 1)[;+} is Z-graded, D(9) and D(z0) is the sum of terms in
different homogeneous components of (5). Thus D(9) and D(9?) can
be written as follows:

D(@) = Z ai’lem’xia + Z aivgel’z"mi62

i>0 i>0

and

D(82) = Z bivle”“‘rmia + Z bi726pzr$i82

i>0 i>0
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with appropriate coefficients. Since d centralizes 82, we have that

(17)
. .
[ E a; 1€’ z'0 + g a; 2eP” $’82,62}
i>0 i>0
. .
+ |:8, E bi716px z'0+ E bivgepz $282:|
i>0 i>0
— _ E :p2’f‘2&i71€pw xz+27‘—28
i>0
. r ; —
- g pr(i+r —1)a; 1eP* 729
i>0
. r 7 a— . . s 7 —
— E pria; 1eP* 2" 29 — g i(i — 1)a; 1eP* o 29
i>1 i>2
o E p2r2ai726pz mz+27“7262
i>0
. r ; a—
- E pr(i+r — 1)a; 2eP* 2" 7292
i>0
— E pria; 2eP® 2 =2p% — g i(i — 1)a;2eP” 2+7292
i>1 i>2
r ; — . ” ; —
+ g prb; 1€P” 2o+ g ib;1€P" x’ 19
i>0 i>1

+ Zprbilgem 2192 4 Z bio2eP” zi710% = 0
i>0 i>1

with appropriate coefficients. Note that since the algebra is Z-graded,
it is enough to assume that non-zero terms of D(8) and D(§?) are in
the homogeneous components Ny or N, where p # 0. By (17), we
have that a; 1, a; 2, bi,1 and b; » are zeroes, i > 0, and D(9) and D(9?)
are also zeroes. Since D([0,z0]) is zero, we are able to prove that
D(Ia) = 00718 + 607282. Since D([a, Iza]) = 2D(m8) = 60716 + 007282,
we are also able to prove that D(z29) = 20071134—200721082 +t10+1t202.
Since z0 is an ad-diagonal element with respect to the element 20,
we have that ¢ 2, t; and ¢y are zeroes. This implies that D(z0) =
0,120 and D(z28) = 2cp,120 hold with appropriate coefficients. By
induction on i of 0% and D([z'0, z'*10]) = D(x*0), we have that
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D(2?0) = 2ico,1x? 0. Similarly, we can prove that D(z*19) =
(26 — 1)cp12%720. This implies that D(z'0) = ico 12"~ for all i.
By D([8,20%]) = 0, we have that D(z0%) = go101 + go,20? with
appropriate coefficients. By D([zd,28%]) = D(zd?), we can prove
that co1 = go1 = go2 = 0. Thus, D(z'd) = 0 for all i and
D(z9%?) = 0. By induction on i of z'9* and D([z20,z' 19?]) =
(i — 1)D(2'0%) — 2D(2*~'9), we can also prove that D(z‘0%) = 0 for
all . Assume that

z” _k z” ka2
= E ug,1€’” 8—}-5 ug 2eP” "0°,

k>0 k>0
D(e @ ’“a E wklem k3+§ wkgemx
k>0 k>0

with appropriate coefficients. By D([z8, e® #'0]) = rD(e* z"t*0)+(i—
1)D(e* ') and D([9, e z**10]) = rD(e* 2" 19) + (i + 1) D(e* 2'9),
we have that D([z0,e® 2%0]) — (i — 1)D(e* 2'0) = D([0,e” x*+19]) —
(i + 1)D(e* 2'd). This implies that Wet1,1 = Uk, K >0, w1 =0,
and ug,2 = wi,2 = 0, k > 0. These imply that

D z" 7,+16 E :wklep:c iL'k
k>1

=z < Z ukvlepzr:ck6> =zD(e” #'9).

k>0

Let us put that D(e* 2'0) = xzD(e” 2'10) = z?D(e” 2*7109) =

= z'D(e*"d), up,1 = -+ =1uj—1,1 =0, and D(e* 9) = D ki uk,lemral.
By D([0,e* 9]) = rD(e* x"10) = ra" (i — 1)D(e* 9), we can prove
that p = 1. We can also prove that up; =0, kK > i+ 1. So we have that
D(e* 9) = u;1e” 0y = ce® 9y with ¢ = u; ;. By D([z8%,e* 9]) =
r2D(e* £?"710) + r(r — 1)D(e® 22"719) — D(e® 82), we have that
D(e” 0?) = ce” 0. By D([e” r8 e rm@]) D(e**"9), we have that
D(e**"9) = 2¢e?* 9. By D([e* 0, e* z'T19]) = (i + 1)D(e** z'0), we
also have that

D(e?*" 29) = 2ce®™ z'0.

Thus, we need to consider the following two cases:
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Case I. Put p = 2m. We have that D([e™® 0,e™® zit10]) =
(i + 1)D(e*™*"£'9). By induction on p of eP* 20, we are also able
to prove that

D(eP* £'8) = pceP® &'d.

Case II. Put p = 2m + 1. Then we have that

D([emzra, e(m+1)zrxi+1a]) _ TD(€(2m+1)szr+ia)

18 B
" + (i 4+ 1)D(e®m+1)" 21 9)
and
(19) D([emz"'xi-'rla’ e(m-ﬁ-l)z"a]) _ TD(€(2m+1)wr$T+i8)

— (i + 1) D(e®mHt2"zig),

By induction on p of €P* z'd and by (18)—(19), we are also able to
prove that . .
D(eP® x'0) = pceP® z*0.

By D([eP* 8,20%]) = D(eP* 8%) — p*r2D(eP* z?"=20) — pr(r — 1) x
D(eP* 27 ~20), we have that D(eP* 9%) = pceP® 9%, By
D([z'*19%, 7% 9]) = p*r2D(eP® zi+? = 19)

+pr(r = 1)D(er a7 10) — (i + 1) D(e 2'0%),
we also have that D(eP* x°0%) = pceP* z'0%. Thus D can be linearly

extended to the derivation D, as shown in Note 1. Therefore we have
proved the lemma. a

Theorem 5. For any D € Deraui(N(e*®,0,0, 1)[_2+]), D is the
linear sum of the derivations D. as shown in Note 1 where ¢ € F.
Every derivation of the algebra N(e**",0,0, 1)[;+} is outer.

Proof. The proofs of the theorem are straightforward by Lemma 1
and Note 1, and the fact that D, is not inner. O

Corollary 5. The dimension of Deray; (N (e, 0,0, 1){_%]) of the al-
gebra N(e**",0,0, l)[;ﬂ is two. For any derivation D of Der,n; (N (e*®),
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0,0, l)[2+]) D(N, ) = 0 holds where N is the zero-homogeneous com-
ponent of N(e**",0,0, 1){_2+].

Proof. The proofs of the corollary are straightforward by Theorem 5
and Note 1. ]
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