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ON THE TOPOLOGY OF
LOCALLY 2-CONNECTED PEANO CONTINUA

M.J. CHAVEZ, T. FERNANDEZ-BAYORT,
A. QUINTERO AND M.T. VILLAR

ABSTRACT. Several recent results by Thomassen ([23,
24]) concerning locally (2-)connected, compact, connected
metrizable spaces are considered in the setting of continuum
theory. By doing that we find out that Thomassen’s theorems
are closely related to classical powerful theorems, due to
Kuratowski, Claytor and Borsuk, among others, which allow
an alternative approach to them. This way we are able to
generalize Thomassen’s results to locally compact spaces.

1. Introduction. This paper provides an alternative approach to
the study of locally 2-connected compact metric spaces carried out
by Thomassen [24]. The goal is to show that a good deal of the
results in [24] and its companion [23] are essentially consequences
of well-established theorems of continuum theory. In addition we
are able to generalize Thomassen’s results to locally compact spaces.
More precisely, we give purely topological proofs of the two following
theorems generalizing results in [24].

Theorem A. Let X be a locally 2-connected, locally planar, locally
compact metric space. Then X is a closed subset of a surface Mx
whose boundary OMx = U;ciR consists of a sequence (possibly empty
or finite) of copies of the Euclidean line. Moreover, the inclusion
i: X C Mx induces a homeomorphism i, : F(X) = F(Mx) between
the Freudenthal end spaces.

Furthermore, Mx is determined by X in the following sense
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Theorem B. A 1-dimensional metric space Y embeds as a closed
set of X if and only if Y does so in Mx. Moreover, given a (closed)
embedding ¥ :' Y — Mx, the embedding ¢ : Y — X can be chosen in
such a way that the homeomorphism i, : F(X) =2 F(Mx) restricts to
a homeomorphism ¢(Y) N F(X) =2 (Y)NF(Mx). Here the closures
are taken in the corresponding Freudenthal compactifications.

As a consequence of Theorem B, the local planarity of locally 2-
connected generalized Peano continua is characterized by any of the
two curves Ly and Lo added by Claytor [7] to the two Kuratowski’s
forbidden graphs K33 and K5 in order to characterize planar Peano
continua; see Figure 1. Although a curve is usually assumed to be
compact, in this paper we will extend this term to the non-compact
setting by calling a curve any 1-dimensional generalized Peano contin-
uum (see Section 2 for definitions). Namely, we prove

Theorem C. Let X be a locally 2-connected generalized Peano
continuum. The following statements are equivalent:

(a) X is not locally planar at p € X.
(b) There is an embedding ¢ : L1 — X such that ¢(p1) = p.
(c) There is an embedding ¢ : Ly — X with ¢(p2) = p.

This theorem provides an alternative characterization to the one given
by Thomassen in [24, Theorem 4.6] by using complete infinite graphs.
Although Thomassen’s theorem is stronger than the previous theorem,
in the sense that any infinite complete graph contains the curves L;
and Ly (Remark 5.7), Theorem C highlights Claytor’s curves as the
minimal forbidden configurations characterizing the local planarity of
a locally 2-connected Peano continuum. We will also use Claytor’s
curves to disprove a conjecture by Thomassen on the characterization
of planarity for Peano continua, see subsection 3A.

2. Locally 2-connected Peano continua. We recall that a Peano
continuum X is a compact, connected, locally connected metrizable
space. When compactness is replaced by local compactness the space
X is called a generalized Peano continuum. Any connected open set
of a generalized Peano continuum is arcwise connected [22, Theorem
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FIGURE 1. Claytor’s curves L and La.

4.2.5]. Moreover, it follows from [10, Theorem 4.4 F.(c)] that any
generalized Peano continuum is separable and hence second countable
and o-compact ([10, Theorem 4.1.16] and [10, Theorem 3.8.C(b)]).
The local compactness together with the o-compactness yield that
X is a countable union U2, K, of compact subsets K, C X with
K, C int K,41. Given such a sequence {K,},>1, a Freudenthal end
of X is a sequence ¢ = (C,),>1 of components C,, C X — K,, with
Crt1 C Cy. Let F(X) denote the set of Freudenthal ends of X. The set
X=XUrF (X) admits a compact topology whose base consists of the
open sets of X together with the sets C,, = C,U{e € F(X);C, appears
in €} (n > 1). This topology is called the Freudenthal topology and X
is called the Freudenthal compactification of X. Moreover the subspace
F(X) turns to be homeomorphic to a closed subset of the Cantor set
(see [12] for details). It is well known that any proper map f : X =Y
(i.e., a continuous map such that f~1(K) is compact for any compact
subset K ) between generalized continua extends to a continuous map
f: X — Y which restricts to a map f, : F(X) — F(Y). Namely if
€ = (On)nZh then f( ) = f*( ) = (Dk)kZI where f(Onk) C Dy, for
some increasing subsequence (Cp, )r>1 of €.

A space X is called 2-connected if no point separates X. More
generally, a space X is said to be n-connected' if no set with fewer
or equal than n — 1 points separates X. By an w-connected space we
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mean a space which is n-connected for all n > 1. The corresponding
local version of 2-connectedness is the following. A space X is termed
locally 2-connected if for any x € X and any neighborhood of x, U, there
is another neighborhood V' C U such that V — {z} is connected. The
following lemma shows that local 2-connectedness is in fact a strong
connectivity property.

Lemma 2.1. Any connected open set U C X in a locally 2-
connected generalized Peano continuum X 1s w-connected. Moreover,

if the closure U is locally connected (i.e., U is a generalized Peano
continuum), then U is also w-connected.

Proof. As quoted above, connected open subsets of Peano continua
are arcwise connected; that is, U is 1-connected. Assume inductively
that U is n-connected and, given z, y € U, let A = {ay,...,an} C
U — {z,y} be any set with n points. By the induction hypothesis there
is at least an arc 7y C U joining z to y such that yN A contains at most
{a,}. If a, € 7, then we choose a 2-connected neighborhood of a,,
V C U such that (AU{z,y}) NV = {a,} and we modify v inside V' to
get a new arc 7/ with v N A = @.

Assume that U is locally connected. In order to show that U is
n-connected (n > 1), take z1,2o € U and a set S C U — {1, 2}
consisting of n — 1 points we use local connectedness to find small
arcwise connected open neighborhoods W; and W5 of x; and xs,
respectively, in U with (W;UW5)NS = &. Then we choose y; € UNW;
and yo € U N W5 and apply the first part of the lemma to get an arc
v C U — S joining y; to 3. We easily find an arc in yUW; UW, c U
joining x; to xs and missing S. ]

The following lemma uses the so-called property S, due to Sierpinski,
which characterizes local connectedness. Namely, a non-empty subset
Y C X of a metric space X is said to have property S if, for each € > 0,
there are finitely many connected subsets Aj,..., A, of Y such that
Y =UP , A; with diameter diam (4;) < € for each i =1,... ,n.

Lemma 2.2. Let X be a locally 2-connected generalized Peano
continuum, and let U be any open neighborhood of a continuum C C X.
Then there is a neighborhood V. C U of C which is an w-connected
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Peano continuum, whose interior is connected, and hence a locally 2-
connected generalized Peano continuum.

Proof. 1t is known that X decomposes in an increasing union of
Peano subcontinua X = UL, X; with X; C int X;;q1, see [4]. In
particular, there is a Peano subcontinuum Y C X with C C intY. As
Y has property S [17, 8.4], we use [17, 8.8] to find a connected open
neighborhood W of C' in int Y, and hence in X, satisfying property S
and such that C C W C W C U. The set W = S(C,¢) is constructed
by adding to C all e-chains starting from C' with e small enough to
keep all those chains inside U NintY, see ([17, 8.6]). Moreover, by
[17, 8.5], the closure W also has property S and so V = W is locally
connected (i.e., a Peano continuum) by [17, 8.4] and so it is w-connected
by Lemma 2.1.

Clearly, an open set of X is a locally 2-connected generalized Peano
continuum if and only if it is connected. In particular, for int V' above
we observe that, as W is an open set, we have W Cc itV c V =W
and hence int V' is connected since W is so. O

Henceforth, by an w-neighborhood of a subset A we mean an w-
connected Peano continuum V' whose interior is a connected open set
(i.e., a locally 2-connected generalized Peano continuum) containing A.
The previous lemma yields

Corollary 2.3. Any subcontinuum of a locally 2-connected gener-
alized Peano continuum admits a neighborhood base consisting of w-
neighborhoods.

Concerning n-connectedness, Nobeling and Zippin extended in [18,
26] the classical Menger theorem for graphs to (generalized) continua.
Namely,

Theorem 2.4 [26, Principal theorem, page 96]. Let X be an n-
connected generalized Peano continuum. Given any two points p,q €
X, there exist n independent arcs in X running from p to q (that is,
the arcs are pairwise disjoint except in {p,q}).
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We finish this section with the statement of the following lemma, a
consequence of Nobeling-Zippin’s theorem, proved by Zippin.

Lemma 2.5 [26, page 112]. For anyn > 1, let A = {a1,...,a,}
and B ={by,... ,b,} be two disjoint sets in an w-connected generalized
Peano continuum X. Then there exist n independent arcs Yi,... ,Yn
connecting all points in A with all points in B; that is, the arcs are
pairwise disjoint and their extremes lie in AU B. Moreover, given any
x € X — B there are n independent arcs from x to B.

3. Planarity of 2-connected Peano continua. In this section
we collect some remarks and observations concerning the planarity of
(generalized) Peano continua. We start by pointing out that a recent
result due to Thomassen [23] characterizing the planarity of locally
2-connected Peano continua is an immediate consequence of an old
theorem due to Claytor [7]; compare with [19, 1.2]. Here we show
this fact directly for generalized Peano continua. For this we use the
following extension of Claytor’s theorem.

Theorem 3.1 [3, 1.1]. Let X be a generalized Peano continuum.
Then the following statements are equivalent:

(1) X is embeddable in S% (or equivalently in R? if X # S?).

(2) Any subcontinuum K C X embeds in S2.

(3) X contains no set homeomorphic to K5, Ks3, L1, Ls.

(4) The Freudenthal compactification X of X is embeddable in S.
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As remarked upon by Claytor [7, Theorem C], the curves L; and Lo
are redundant in Claytor’s theorem if X is 2-connected. More precisely,
in that case the limit point p; € L; in Figure 1 does not separate L; in
X and one finds an arc v; C X — {p;} from a point z; € ¥; to a point
y; € L; —3;. The unions L; U~y; and Ly U+, contain a copy of K3 3 and
K5, respectively. Indeed, since p; ¢ ; there is a neighborhood U; C L;
of p; with U; Ny; = &. Then the union of a small “block” B; C U; with
the arcs [y;, z;] C L; and ; is either K33 or Ks, see Figure 2.

We have proved as a straightforward consequence of Theorem 3.1 the
following extension of [23, Theorem 4.3]:

Theorem 3.2. A connected, locally 2-connected, locally compact
metrizable space X is embeddable in the 2-sphere if and only if X
contains none of the Kuratowski graphs Ks and K3 3.

It is worth mentioning that, prior to his general theorem, Claytor
gave in [8] a long and somewhat cumbersome proof of the special case
when X is 2-connected. See [16] for a short proof of this special case,
as well as a further alternative proof of Thomassen’s theorem [23, 4.3].

It is well known that the graphs K33 and K5 do not play the same
role in the Kuratowski-Claytor planarity criterion for Peano continua.
Actually any embedding K5 C X in a 3-connected (generalized) Peano
continuum yields an embedding K33 C X [13] and so K33 suffices
to characterize planarity in the realm of 3-connected Peano continua.
Next we prove that the roles of K33 and K5 turn out to be equivalent
under the assumption of local 2-connectedness.

Proposition 3.3. Let X be a locally 2-connected generalized Peano
continuum. The following statements are equivalent:

(a) X is not planar.
(b) There is an embedding K33 C X.
(c) There is an embedding K5 C X.

Proof. (a) = (b) was observed above.

Moreover, (¢) = (a) is obvious.
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It remains to check (b) = (c¢). Let L C X be a bipartite graph
with vertices {a1,as,a3} and {by,b2,b3}. It will suffice to find two
arcs a and [ under the conditions of Lemma 3.4 below. For this we
proceed as follows. Let €,, and €2, be disjoint w-neighborhoods of
a3 and bs, respectively, missing the union U; j—12[a;,b;]. Here we
use Corollary 2.3. Let a} € Q,, and b, € Q (i = 1,2,3) be
the last points in the intersections [as,b;] N Qq, and [a;, bs] N Qp,,
respectively. As int {2,, and int 2, are locally 2-connected, and hence
w-connected (Lemma 2.1), Theorem 2.4 provides circles ¥,, C int Qg
and X, C int Qp,. Then we join the points aj to 3., by three disjoint
arcs '723 C Qq,. Here we apply Lemma 2.5. Similarly the points b% are
joined to ¥y, by three disjoint arcs 7;, C (2;. One readily constructs

a new copy L of K3 in LU (Uiz1,27,) U (Ui=1,275,) U Za, U Ty, such

that L admits two arcs a C Yy, and B C X,, under conditions of
Lemma 3.4, and the proof is complete. ]

Lemma 3.4. Let K33 be a bipartite graph with vertices {a1, a2, a3}
and {b1,ba,b3} in a locally 2-connected generalized Peano continuum
X. Assume that there are two disjoint arcs a,3 C X such that o runs
between py € (a1,bs) and ps € (az,bs) and B runs between q; € (by,as)
and g2 € (b2,a3) and («UB)N K33 = {p1,p2,q1,92}. Then there is an
embedding K5 C X.

Proof. We apply Corollary 2.3 to obtain disjoint w-neighborhoods
Ala A2nBla By Of the arcs [alapl]) [02,}72], [blaql] and [62,(]2], respec-
tively, in X. Let s, s% € A; (1 < j < 3) be the last points in the inter-
sections a N A;, and [a;, b;] N A;, respectively. Similarly, let ¢}, ; € B;
(1 < j < 3) be the last points in SN B;, and [a;, b;]NB;, respectively. As
A; and B; are w-connected we can find by Lemma 2.5 four independent
arcs U;'- C A; (0 <j<3andi=1,2) connecting a point a@; € int 4; to
s; Similarly we choose four independent arcs T; C B, joining a point

b; € int B; to ti.

Again we apply Corollary 2.3 to get an w-neighborhood 2 C X of the
edge [as, bs] avoiding the union aUBU(U; j=1,2(a;, b;]). Let pq,, pp, C Q
(i = 1,2) be four independent arcs joining a point v € int Q to the last
points in the intersections QN J[a;, b;] and QN [b;, as], respectively. Now
it is easy to find a copy of K5, with vertices a;, bi (1 =1,2) and v, in
the union Q U (U?_,(A; UB;))U K3 3. 0
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Remark 3.5. A characterization of the generalized Peano continua
which are embeddable as closed sets in R? (i.e., without accumulation
points) is given in [2] by using the Halin graphs. It seems to be
feasible that a result similar to Proposition 3.3 should hold and locally
2-connected generalized Peano continua which admit a closed planar
embedding may eventually be characterized by any pair of forbidden
graphs consisting of one Kuratowski’s graph together with one Halin’s
graph.

3A. On a statement by Thomassen. Next we point out that
the non-planar curves L; and Ly provided by Claytor’s theorem are
counterexamples to the following theorem suggested in [23] as a by-
product of the proof of Theorem 3.2 given there.

Theorem 3A.1 [23, 4.5]. A connected locally connected compact
metrizable space (i.e., a Peano continuum) X is embeddable in the 2-
sphere if and only if X contains none of the Kuratowski graphs Kz 3
and Ks and no thumbtack with holes.

In [23] a thumbtack with holes is defined as the union D' = DUT of
a compact, locally connected, essentially 3-connected subspace of the
2-sphere D C S? together with an arc I'. Moreover, the intersection
DI = {q} reduces to one extreme of I and ¢ misses the faces boundary
of D in the sense of [23]. Recall that a 2-connected space D is said to
be essentially 3-connected if for any elements z,y € D the difference
D — {z,y} is either connected or has precisely two components, one of
which is an arc from z to y. Notice that the embedding of D in S? is
unique by [19]; see Remark 4.3 below.

It is readily checked that Claytor’s curves L; contain neither a copy
of K33 or K5 nor a thumbtack with holes, and so Theorem 3A.1,
as stated, does not hold for L;. Indeed, any essentially 3-connected
subspace D C L; is necessarily 2-connected and so, it is contained
in a “block” B C L;. This readily follows from the fact that every
point in the arc lying between two consecutive blocks of L; is a cut-
point of L;. Therefore, D is a graph by [17, 9.10.1]. Hence any union
D'=DUT c BUT of D with an arc T" such that DNT is an extreme
of T is a planar graph. Hence D’ cannot be a thumbtack.
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Remark 3A.2. Incidentally, we mention here that Mardesi¢ and Segal
showed in [15, Theorem 1] that a polyhedron P contains a Claytor’s
curve L; if and only if it contains a copy of the subspace of R3 (called
disk with feeler)

Fy = {(z,9,0);2% +y*> <1} U{(0,0,2);0 < 2 < 1}.

Hence, a polyhedron P is planar if and only if P contains none of the
Kuratowski graphs K3 3, K5 nor disk with feeler. Notice that F; is a
thumbtack without holes.

4. The structure of locally planar, locally 2-connected
generalized Peano continua. This section provides an alternative
proof of Thomassen’s result in [24] stating that a typical neighborhood
in a locally planar, locally 2-connected (generalized) Peano continuum
X is topologically equivalent to a 2-sphere from which the interiors of
a null sequence of pairwise disjoint disks has been removed. This will
allow us to detect inside X a null sequence of pairwise disjoint circles
which will be crucial in the proofs of the main results of the paper in
Section 5.

Recall that a space X is said to be locally planar if each point
z € X admits a planar neighborhood, and hence a neighborhood base
of planar sets. The following lemma is an immediate consequence of
Corollary 2.3.

Lemma 4.1. Let X be a locally planar, locally 2-connected general-
1zed Peano continuum. Each point x € X admits a countable neighbor-
hood base B, consisting of planar w-neighborhoods.

As a consequence of [14, Theorem 4(ii), subsection 61 II], given any
embedding ¢ : Cf — S? of C¥ € B,, each component R C S?—¢(C?) is
an open disk whose frontier Fr R is its boundary circle. This observation
leads to the following

Definition 4.2. A chart of X at z € X is a pair (C?, ¢) where C¥

K2

is a planar w-neighborhood of z and ¢ : C¥ — S? is an embedding. A

point z € X is said to be terminal if there is a chart (C7, o) at some z
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such that z € int C7 and ¢(z) € Fr R lies in the frontier of a component
R C 5% — ¢(C?).

Remark 4.3. We may use a recent theorem by Thomassen [19,
Theorem 2], showing that planar 3-connected Peano continua uniquely
embed in S?, to guarantee that the definition of a terminal point does
not depend on the chart used in its definition. Notwithstanding, for the
sake of completeness, we include an independent proof in Appendix A
below. It is worth pointing out that Thomassen’s result [19, Theorem
2) was already contained in an old paper by Adkisson [1, Theorem II].

As observed in Remark 4.3, we have a well-defined set T C X
consisting of all terminal points in X. We will call T the terminal
set of X. By a terminal (open) arc or circle we mean an (open) arc or
circle contained in 7. We will use later the following basic properties
of the charts.

Lemma 4.4. Given a chart (C?,¢p), the components R,, C S* —

©(C?¥) are countable and diam (R,,) — 0, and hence diam (Fr R,) — 0,
if there are infinitely many distinct components.

Proof. Tt is simply an application of [14, Theorem 6, subsection 49
IT] and [10, Theorem 10, subsection 61 II]. O

Lemma 4.5. Given a chart (C¥,¢), if z € C¥ is the limit point of
a sequence z, € ¢ Y(FrR,) — T of non-terminal points lying in the

frontier of components R, C S? — ¢(CF), then z ¢ int CY.

Proof. Otherwise there exists an ng such that z, € int C¥ if n > ny.
But this means that z,, is a terminal point since it is on the boundary
of a component of S? — p(C¥). O

Lemma 4.6. For any chart (C¥,¢) and components Ry, R C

§% — p(CF), the intersection ¢ 1(Fr Ry N Fr Ry) Nint CF is empty if
Fr R, # Fr Ry.
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Proof. Assume on the contrary that 2 € Fr Ry N Fr Ry and ¢ 1(2) is
an interior point in C¥. Let L; C R; U {z} be an arc such that z € L;.
Here we use that R; U Fr R; is a closed disk.

We consider a closed disk D C S? around z and a subarc L C L{U L,
with 0L = 0D N L. Let E; and E5 be the two components of D — L.
In both components one readily gets sequences of elements of ¢(C¥)
converging to z since otherwise L; and Ls would be joined by arcs that
do not cut the frontiers Fr K7 U Fr K».

As the interior U = int C? is a locally 2-connected neighborhood of
¢ 1(2), we can find a 2-connected neighborhood of 2 W C UN¢ (D)
and points p; € WN¢~!(E;) which can be joined by an arc T ¢ W—{z}.
By the Jordan theorem ¢(U) N L # @& which is a contradiction since
o(U)N (L —{z}) = @ by construction. o

Notice that Lemma 4.6 and the fact that the definition of a terminal
point does not depend on the choice of charts (see Remark 4.3 and also
Proposition A.3) show that given any planar w-neighborhood C¥ and

any terminal point ¢ € T'Nint Cf there is a unique circle St(z’i) cCy
such that t € St(x’i) and go(S’t(w’i)) is the frontier of a component of
S% — o(CF) for any embedding ¢ : CT — S2. We call S{"") the
characteristic circle of ¢t in C¥. Observe that St(z’i) needs not be a
terminal circle.

Lemma 4.7. Any z € T Nint C¥ lies in an open arc contained in
TN S, Moreover any (open) arc T' C T Nint C¥ is part of the
characteristic circle ng) of some z € T.

Proof. Each z € int C¥ NT is an interior point in the characteristic

circle ng’i), and hence there is an open arc z € I' C int C¥ N ng), and
all points in I' are terminal by definition.

Any arc I' € T NintCy can be expressed as a disjoint union
I' = Uper(S5? NT). Then there is only one S\ with T ¢ S{*%
since otherwise I' is the disjoint union of a countable family of closed
sets and we reach a contradiction with [14, Theorem 6, subsection 47
ITI]. If T is an open arc we argue as we did previously for each arc in
an increasing sequence of arcs I'y C --- C I'; C -+ covering T a
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Recall that a triod is the union of three arcs [a, ], [a, c], [a, d] which
have pairwise only the point a in common.

Proposition 4.8. The terminal set T does not contain a triod.

Proof. If A = [a,b]U [a,c]U]a,d] C T is a triod, then any planar
w-neighborhood C{ contains a triod A’ C A in its interior and, by

Lemma 4.7, A’ is contained in the characteristic circle S(SZ’” which is a
contradiction. m|

The previous proposition will allow us to determine the topological
nature of the terminal set 7. Namely,

Proposition 4.9. FEach arcwise component of C C T is either a
terminal circle or a terminal open arc which is a closed set of X.

Proof. Let C' C T be an arcwise component of 7. Lemma 4.7 implies
that if z € C Nint C?, then C contains an open arc ', with z € T',.

In particular C' # {z}. Moreover, the arc T', C ISR part of the
characteristic circle of z in C¥, and the intersection Iz(.z’i) =CnNn ng’i)
is an open subset of S$*). Indeed, any y € I*" is a terminal point in
ng,i) C CF, and then y € C'Nint CF. As for z, there exists an open arc
r, c I,gm’i) since S,ﬁ“') is also the terminal circle of y in Cf. In fact,
we will check below

(1) I*) = O Nint OF

which proves that I S”’“ is also an open subset of C; that is, C' is locally
the Euclidean line and, by the classification of 1-manifolds, C is a
terminal circle or a terminal open arc.

Next we see equality (1). If p € Iéz’i), then p is a terminal point
and p € C' Nint C¥. Conversely, any point ¢ € C Nint C¥ is in s,
otherwise, there exists an arc from g to I', C ng’z) which only cuts T',

in its final point, and hence T contains a triod which is a contradiction
to Proposition 4.8.
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Finally we prove that any open terminal arc C' = (a,b) is a closed
subset in X. Indeed, otherwise there exists a sequence {wy, }n>1 C (a,b)
that converges to some w € X — C. Then, given any planar w-
neighborhood C}" of w we find ng with w, € intC}" if n > ny.
In addition the characteristic circles S,(Jﬁ’l) in C} are not terminal
(othervvlse Sw (w D c C (a,b) which is impossible), and we can find points

)
T, € Sw T.

U)’L

If there exists an n; such that Sw .,  contains infinitely many ws,’s,

’LUZ

then w € Sw oy

by Lemma 4.7, there exists an open arc I' C S(w )AT with w € T and
so I' contains infinitely many w,. In particular w elcC asw, € C
this is not the case and necessarily there exist infinitely many circles

Sgﬁ ). Hence diam (S(w 1)) — 0 by the first part of Lemma 4.4 and

n

and necessarily w € T because w € int C}’. Moreover,

the sequence z,, € Sw — T converges to w due to w, — w. This
contradicts Lemma 4.5 and the proof concludes. O

Corollary 4.10. If X is compact then all arcwise components of T
are circles.

Let /1 denote the family of all arcwise components of T'. In addition
to Proposition 4.9 we have that the family o/} C 2/ consisting of
all terminal circles is a null sequence. Recall that a collection A of
subsets of a locally compact, second countable metric space (X, d) with
diameter diam (A) # 0 for all A € A is said to form a null sequence if
for any compact K and any € > 0 only finitely many of the sets A € A
with AN K # @ have diameter diam (A) > € greater than e.?

Proposition 4.11. The family oF is a null sequence of pairwise
disjoint circles.

Proof. Assume that there are €y, a compact set Ky and a sequence
Sp-+-Sp - of terminal circles such that diam (S,,) > €y and S, N K, #
@ for all n > 1. The compactness of Ky allows us to assume that a
sequence z, € S, N K, converges to a point zy € Ky. Let (C]°, ¢) be
a chart at ¢ such that diam (C}°) < ¢y/4, whence S,, — C° # @ for
all n > 1. The convergence of {x,},>1 implies the existence of some
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no that z, € int C7° if n > ng. By Lemma 4.7 each characteristic

(z0,7) 0,1)

circle S, must contain non-terminal pomts Zn € Sz — T since
Sn # S(EO’Z) for all n because diam (Sg(ffbo’ ) < diam (C°), and this
contradicts Lemma 4.5 since ¢ € int C}°. a

Proposition 4.12. The family oy — oy = {As} of terminal open
arcs is locally finite in X and hence countable.

Proof. If {A,} is not locally finite at z € X then there exists a
sequence as € Ay, (s > 1) of points in distinct A,, such that {as}s>1
converges to . Fixed a planar w-neighborhood of z, CY, we have
that there exists an sq with as € CF for s > sg and each as (s > sp)
determines a characteristic circle Sq. (o) C C¥. Moreover, in each one
of the latter we can find z; € S,S’” i — T # &, otherwise S’((lf’i) C A,,
which is impossible. In addition, there can only exist finitely many such
circles because otherwise diam (S( )) — 0 Lemma 4.4 and as {as}s>1

converges to « € int C7, the sequence {z;}s>1 also converges to « and
this is a contradiction with Lemma 4.5.

Since {S( ’ )}S>1 is finite, then infinitely many a,’s lie in the same
characteristic circle S( (’)). In particular, z € S((lf(’f), and z € T is
necessarlly a terminal point. Now, Lemma 4.7 provides us an open arc

rcrn Sas containing x and hence almost all of the as’s appearing in

S Bug then, I' C A, for infinitely many «;’s, and this contradicts

aSO

that the A,’s are dlS_]Olnt. O

5. Proofs of the main results. We are ready to prove Theorems
A, B and C in the Introduction. We start with the null sequence
o/ of terminal circles of X in Proposition 4.11, and we form the set
Mx = X U{cS; S € o7} consisting of the union of X and pairwise
disjoint cones ¢S =S x [0,1]/S x {1}, where S € 7. We consider the
topological space obtained by endowing the set Mx with the topology
for which the family of sets {U}};>1 defined in (a)-(c) below form a
neighborhood base of every z € Mx.

(a) If z € ¢S — X, then {U?};>1 is a neighborhood base of z in the
open cone ¢S — S.
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(b) If 2 € X — T, then UF = CF U{cS; S C CF} where {CF};>1 is a
neighborhood base of = consisting of planar w-neighborhoods.

(c) If ¢ € T and its arcwise component E, C T is an open arc,
then UF = C7 U {cS; S C C?}. Otherwise, if E, is a circle, then
Uz = C*U{cS; S C €2, 8 # S&IYUWE x [0,(1/i +1)] where
{Wf}izl is a neighborhood base of x in the characteristic circle S,(f’i)
and W7 x [0, (1/i 4+ 1)] denotes the obvious subset of the cone s,

Proof of Theorem A. Given any chart (C¥,¢) we can assume that
the frontier of each component R,, C S? — ¢(CF) contains at least one
terminal point (and hence it is a characteristic circle); indeed, otherwise
z € int CY¥ is the limit of a sequence z; € ¢ !(FrR,,) — T which

contradicts Lemma 4.5.

Moreover, if © € int Cf is terminal, then we can assume in addition
that its characteristic circle Sg(f’i) is the only one in C¥ that contains a
terminal point; since, otherwise one can find a sequence of characteristic
circles S?S:’i) C C¥ with points z,, € S’éi’i) — T and such that {y, }n>1
converges to z. Then diam (S?Si’i)) — 0 by Lemma 4.4 and hence the
sequence of non-terminal points {z, },>1 converges to « € int C¥. This
contradicts Lemmad4.5.

Under the above conditions we extend the embedding ¢ : C¥ — S?
to an embedding ¢ : U — S? as follows. For each terminal circle
S € o with S C CF (S # S it ¢ s terminal) @ is the cone
extension carrying ¢S (S # Sg(;z’z)) onto the component of S? — o(C¥)
bounded by ¢(S). If, in addition, z is terminal, then @ is defined
as the cylindrical extension of p|y» mapping W x [0, (1/i + 1)] into

the component bounded by ga(Sg(f’i)); that is, ¢(z,t) = (¢(x),t) if we

identify that component with the disk.

This way, unless £ € X is on an open terminal arc, U} is homeo-
morphic by @ to an Euclidean neighborhood of ¢(z) in S2. Otherwise,
U? is homeomorphic to a neighborhood of ¢(z) in the complement
S? —int B? of an open disk with ¢(z) € OB2. Hence, all points in Mx
have 2-dimensional Euclidean neighborhoods and then Mx is a surface
whose boundary coincides with the locally finite family of terminal open
arcs in ofp — o/, see Proposition 4.12.
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It is an immediate consequence of the definition of Mx that the
family of cones {¢S; S € o/} is a null sequence and so Corollary B.2
in Appendix B yields that the inclusion i : X C My induces a
homeomorphism F(X) = F(Mx). O

Remark 5.1. Notice that Mx is a closed surface (i.e., compact and
without boundary) whenever X is compact.

Next we proceed to prove Theorem B. For this, recall that an S-curve
in a surface M is a curve X whose complement M — X = U2 ,int Dy, is
the union of the interiors of a sequence of pairwise disjoint closed disks
Dy, ¢ M —0M (k > 1). Notice that 9M C X. The following lemma is
essentially well-known.

Lemma 5.2. Let D = {D;};>1 be a null sequence (possibly empty)
of pairwise disjoint closed disks in the interior of the surface M. Then
there is an S-curve C C M — U;>1int D;. In particular, any surface
contains an S-curve.

Proof. We will extend D to a null sequence of pairwise disjoint closed
disks B = {B;}i>1 such that the union U2, B; is dense in M. This
is equivalent to saying that C = M — U2, int B; is an S-curve (see
Appendix B).

In order to construct the sequence B we consider the closed set
F =U;>1D;UOM. If F = M, there is nothing to proof. Otherwise, let
D= {dn}n21 be a countable dense subset in the open subspace M — F'.
Then we define inductively a sequence B’ = {Bj};>1 such that B} is
a closed disk of center dnj and radius €; where dnj is the first element
in {dn}n>n,_, such that d, ¢ UI_t By and €; < (1/4) is chosen to get
B;- N (Ufc;ich UF) = . We start with ny = 1, and choose ¢; <1
with BN F =@.

It is clear that all disks in B’ are pairwise disjoint. Moreover
M—-FC U?';1B§; indeed, given z ¢ F and any open neighborhood
of z,let d, € DNQ. If n # n; for all j, then n;, < n < nj,41 for some
Jjo and d,, € By, for some k < jo. Thus z € U‘J?';IB;-. We set B=DUB’
andso M =(M —-F)UF CcU{B; BeB}. O
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A theorem due to Borsuk [5, Theorem 7.4] states that any two S-
curves in a closed surface M are homeomorphic. The same arguments,
based on Moore’s surface decomposition theorem, also work to show
the same result for S-curves in an arbitrary surface with boundary,
compact or not. Namely,

Theorem 5.3. The inclusion i : A C M of any S-curve in a surface
M induces a homeomorphism i, : F(A) = F(M). Moreover, given
another inclusion ¢’ : A’ C M of an S-curve, there is a homeomorphism
Y : A— A’ such that the diagram of homeomorphisms

R|E

F(A) F(AY)

commutes.

In Appendix B we give a detailed proof of Theorem 5.3. Recall that
a subspace U C M is said to be universal for a class P of subspaces of
M if any P € P can be embedded as a subspace of U. The following
proposition is an immediate consequence of Theorem 5.3.

Proposition 5.4. Any S-curve U in a surface M is universal for
the family P of 1-dimensional closed sets of M. Moreover, given a 1-
dimensional closed set C C M, there is a (closed) embedding p: C — U
for which the homeomorphism i, : F(U) = F(M) induced by the
inclusion U C M in Corollary B.2 restricts to a homeomorphism
p(C) N F(U) = C N F(M). Here the closures are taken in the
corresponding Freudenthal compactifications.

Proof. f C € P and F = CUJM then int F = & by [11, 1.8.12] and
hence M — F = M. Let {D;};>1 be a null sequence of pairwise disjoint
closed disks contained in the open set M — F and M — F C U;>1D; as
in the proof of Lemma 5.2. Then M = U;>1D; since M — F' is dense in
M. This suffices to show that Z = M — U;>1int D; is an S-curve (see
Appendix B). Theorem 5.3 yields a homeomorphism % : Z — U and
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hence a (closed) embedding p: C C F C Z % U for which one readily
checks i, (p(C)NF(U)) = CNF(M) for the inclusion i : U C M. O

Proof of Theorem B. We use Lemma 5.2 to extend the null sequence
of pairwise disjoint cones ¢S C Mx —0Mx over terminal circles S € o7}
to a null sequence B = {B,};>1 such that M% = Mx — U;>int B; is
an S-curve in Mx. Moreover, given a closed embedding ¢ : Y — Mx
of a 1-dimensional metric space we use Proposition 5.4 to get a new
embedding p : ¢¥(Y) — M C X, for which the inclusion i : M} — M
induces a homeomorphism py)(Y)NF(My) = (Y )NF(M). It is easily
checked that the embedding ¢ = py : ¥ — X satisfies the equality
ix(p(Y) N F(X)) = %(Y) N F(Mx). Here we use the commutative
diagram of homeomorphisms

4

F(Mx)

F(Mx)

R
14

F(X)

induced by the corresponding inclusions. O

Remark 5.5. It is clear that the surface Mx can be enlarged to a
surface Mx without boundary by attaching a copy of the half-plane
Ri to each component of OMx = U;c;R. However, easy examples

show that not all curves A in Mx can be topologically embedded as
a closed set in X. For instance, this happens for X = Mx = Rﬁ_,

MX—R2 and A the lattice A = ZXRURXZCMX

Next we use Theorem B to prove Theorem C independently of
Thomassen’s theorem [24, Theorem 4.6]. For this we will need the
following lemma; compare with [26, Theorem 4.2].

Lemma 5.6. Let X be a locally 2-connected generalized Peano
continuum. If {xn}n>1 C X is a sequence converging to xy € X, then
there is an arc [a,b] C X which contains x¢ in its interior and such
that a subsequence of {x,}n>1 lies in one of the subarcs determined by
Zo-
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B

By

Bs

R>o

FIGURE 3. The graph Lj.

Proof. As X is w-connected (Lemma 2.1) given two points a, b €
X — {zo} there are two independent arcs from zy to a and b by
Lemma 2.5, and hence there is an arc I = [a, b] C X containing z in its
interior. Assume that I' N {z, },>1 reduces to a finite number of points
so that we can assume without loss of generality that I‘ﬂ{xn}nzl =dJ.
We use Corollary 2.3 to pick an w-neighborhood Wi of zy. There is
also no loss of generality in assuming that {z,},>1 C Wi. We consider
three points yi, y2, y3 € Wi N [z, b] in the interior of the subarc
[0, b]. By using Lemma 2.5 there are three disjoint (except at z;) arcs
Y, va, ¥4 C Wy from x; to y1, ¥, s, respectively, avoiding zo. Let z;
be the first point in the intersection v} NT'. At least two out of the three
points {z1, 22, 23} lie in one of the subarcs of [a, b] determined by zg.
Again by Corollary 2.3 we choose a small w-neighborhood Wy C W,
of zy avoiding the union 77 U 52 U754 where 31 C 4} is the subarc
running from z; to z;. We pick z,, € W5 and obtain three arcs from
Zn, to the arc I' such that two of them hit I' at the same subarc. By
proceeding inductively in this way we obtain an embedded sequence of
w-neighborhoods of xy {Wj}r>1 and a subsequence {z,, } C {z,} with
Tn, € Wi such that for all k& > 1 there are two arcs pj, and p? from
Ty, to the same subarc of I, say [zg, b], verifying p} N p% = {z,, } and
pi N pi, = & if k # k’. Then it is easy to change the subarc [zg, b] to
get anew arc IV C T'U {p"};;ll’z from a to b passing through z¢ and for
which the subsequence {fﬂnk}kzl is part of the subarc of IV from z( to
b. i
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Proof of Theorem C. We will prove (a) <= (b). Similarly, by the use
of Proposition 3.3 the same proof with the obvious changes proves (a)
<= (c). Assume that there is a connected open neighborhood U of p
such that W = U — {p} is locally planar. Then W is a locally planar,
locally 2-connected generalized Peano continuum, and hence there is a
surface My, satisfying Theorem A. Moreover the point p corresponds,
via the homeomorphism F(W) = F(Myw ) in Theorem A, to an isolated
Freudenthal end® e € F(My,) which cannot be planar since otherwise U
is locally planar at p. Hence, there is a sequence of handles or crosscaps
in My converging to ¢, and it is not hard to find in the surface My, a
closed embedding v{ : L| — My of the non-connected infinite graph in
Figure 3 in such a way that the ends co and oo’ are mapped to ¢, each
block B; lies in a handle or a crosscap, and R misses all handles and
crosscaps. Then we apply Theorem B to obtain a closed embedding
¥} + Ly — W for which the inclusion i : W — My, satisfies i.(p) = ¢
if p is regarded as a Freudenthal end of W. Therefore ¢] induces an
embedding v : Ly = L) U {p1} = U = W U {p} with ¢1(p1) = p, and
the theorem is proved if p is an isolated non-planar point.

Next we prove the theorem under the assumption that there is a
sequence {pn}n>1 converging to p such that X is not locally planar
at each p,. By use of Lemma 5.6 there is an arc I' = [a,b] C X
with p € (a,b) and a subsequence of {p,},>1 in one of the subarcs
of T defined by p, say [p,b]. In fact we can assume without loss of
generality that {p,}n>1 C [p,b] for the whole sequence. Now we use
Corollary 2.3 to find a null sequence C1, ... ,C;,... of w-neighborhoods
of p1,...,ps ..., respectively. As each int C; is a non-planar locally 2-
connected generalized Peano continuum, it contains a copy K; C int C;
of the graph K3 3, see Proposition 3.3. For each i > 1 we consider the
points r;, s; € C; defined as the first and last points in the intersection
C; NT, respectively. As the complement C; — V; of the vertex set of K;
remains w-connected, we get disjoint arcs p; and o; in C; — V; joining
r; and s; to K;, respectively. Here we use Lemma 2.5. Then one
observes after the inspection of the cases originated by the (essentially
three) possible positions of the intersections points p; N K; and o; N K;
that the graph G; in Figure 4 is embedded in K; U p; Uo; C C; with
G;NFrC; = {s;,r;}. Now one readily finds a copy of the Claytor curve
Ly in the union I U (U;>1G;) with p in the place of p;. This finishes
the proof. O
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Ti J J S
FIGURE 4. The graph G;.

Remark 5.7. As pointed out at the end of Section 1, Thomassen [24,
Theorem 4.6] characterized the failure of the local planarity of at p € X
by the existence of an infinite complete graph K., C X containing p.
It is readily checked that Ly (analogously, L2) can be embedded into
the complete graph K., whose vertices are the thick points of L; in
Figure 1. Hence, Thomassen’s characterization implies Theorem C.
Nevertheless, it seems interesting to highlight, as Theorem C does,
that the existence of an embedded copy of Ly (or, equivalently, Lo) is
enough to determine the non-planarity of X at p, avoiding the far more
complicated graph K.

APPENDIX

A. The definition of terminal point. We include here a proof
of the fact that terminal points in Definition 4.2 are well defined. We
start with the following:

Lemma A.1. Let U C S? be a locally 2-connected subspace for which
there is a circle ¥ such that UNY = (s,t) is an open arc and U misses
one of the components of S?> —X. Then U — X is connected.

Proof. Given a, b € U — X let p C U be an arc running from a to b,
and let ag, by € U be the first and last points in pNY # & (if empty,
there is nothing to prove). We choose an arc [p,q] C (s,t) containing
in its interior the arc [ag,bp] (possibly ag = bg). Let W C U be a
connected open set such that [p,q] C W and a,b ¢ W. By Lemma 2.1,
W is w-connected and so is W —{w} for any point w € (ag, by) (possibly
w = ag = by if ag = by). By Theorem 2.4 we find two independent arcs
1,72 C W from p to ¢ (i.e., 1 Ny2 = {p,q}) avoiding w. Let =t € ;
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be the last point of 4; in the open arc (s,w) and z% € 7; the first
point after zi in (w,t). A straightforward check shows that the Jordan
theorem rules out the cases z}, 27 € (p,w) and z3, z3 € (w,q). Hence,
i > por xb > g for some i = 1,2. Let I' C v; C W be the subarc
running from z} to z4. As a,b ¢ W one uses again the Jordan theorem
to guarantee that p N I' # @ and readily finds an arc in pUT C U
joining a to b outside X. o

1
planar, locally 2-connected generalized Peano continuum. Assume that

z € int C¥ Nint C’;’ is a point such that ¢(2) € Fr R for some component
R C 5% — ¢(C¥). Then there is a component R’ C S% — ¢(CY) with
P(z) eFr R

Lemma A.2. Let (C?,¢) and (C;!,z/J) be two charts in a locally

Proof. Let C} C int Cf Nint C} be a planar w-neighborhood of z.
As §% — p(CF) C S? — p(CF), let R' C S? — ¢(CF) be the component
containing R. Therefore p(z2) € R C R, and so p(z) e FrR'.

Next we pick a connected open neighborhood U C C} of z such that
U NS is an open arc where S = ¢~ ' (Fr R'). By Lemma A.1 U — S is
connected, and hence ¥(U) —1(S) is also connected and it is contained
in a component of S? — ¥(S) = R; U Ry, say ¥(U — S) C R;.

We next show that 1(z) belongs to the closure of a component
Ry C S% — ¢(CY) with Ry C Ry; hence, ¢(z) € FrRy, and the
lemma is proved. To find the component Ry, we observe that, as
¥(z) € ¥(S) = Fr Ry, there is a sequence z,, € Ry converging to 1(z).
This sequence lies eventually outside w(CJy) since otherwise, as U is
a neighborhood of z, there is a subsequence of {z,},>1 contained in
(U —S) C Ry. Thus, z, € Ry —¢(CY) for n large enough as claimed.
Then we consider the components R;, C S —4(CY) C S§% — ¢(S)
with =, € R),. Notice that R), C Ry since z, € Ry. If the family
R ={R] }n>1 is infinite, we use Lemma 4.4 to get diam (R},) — 0 and
so diam (Fr R],) — 0. As U is a neighborhood of z there is some ng such
that Fr R!, C ¢(U) if n > ng. Therefore Fr R, C %(U)N Ry C 9(S) for
all n > no which is a contradiction since each Fr R), as well as ¢(S) are
circles. Thus R is necessarily finite and there is an Ry € R containing
a subsequence of {z,, },>1. Hence ¥(z) € Ry. u|
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As an immediate consequence of Lemma A.2, one gets

Proposition A.3. The definition of a terminal point does not depend
on the choice of charts.

B. Proof of Theorem 5.3. In this appendix we prove Theorem 5.3
which extends a result due to Borsuk [5] stating the uniqueness of S-
curves in a closed surface. Essentially the proof is the same as Borsuk’s
proof. We give it here for the sake of completeness. We start by
recalling that, given a sequence D = {Dj},>1 of disjoint closed disks
Dy, C M — 0M, the difference A = M — U>;int Dy, is an S-curve in
the surface M (possibly non-compact and with boundary) if and only
if D is a null sequence and the union U2 ; Dy, is dense in M (see [12,
5.5A] for a detailed proof).

In the proof of Theorem 5.3 we apply some deep results on surface
decompositions. Namely, given a null sequence of closed disks D =
{Dy}r>1 in a surface M, the quotient map 7 : M — M /D induced
by shrinking each Dy to a point *j is a cell-like upper semicontinuous
decomposition ([9, Section 2, Proposition 9]) and so the celebrated
Moore theorem on cell-like decomposition of surfaces yields:

Theorem B.1 [9, Section 25, Theorem 1]. The quotient m : M —
M/D is a strongly shrinkable decomposition of M, and so for any open
set U C M with Ug>1Dy, C U there is a homeomorphism f : M — M /D
such that f = 7 outside U.

Corollary B.2. Let {D;};>1 be a null sequence of pairwise disjoint
closed disks in a surface M. Then the inclusion M —U;> int D; = M C
M induces a homeomorphism F(M) = F(M).

Proof. By Theorem B.1, M/D is a surface and [9, Section 21, The-
orem 4] applied to {*; = m(Dg)}r>1 shows that there is a triangula-
tion M/D = |K| such that the 1-skeleton K' misses the set {}x>1.
Hence, 7~ *(K') is a closed set in M avoiding Ug>1Dyg. Moreover,
Theorem B.1 applied to the open set U = M — 7 !(K!) yields a
homeomorphism f : M — M/D such that f = 7 on 77!(K') and so
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m:m }(K') — K'is a homeomorphism. In particular, f ! : |K| — M
is a triangulation of M such that each disk of D lies in the interior
of a triangle of K. Therefore, for each triangle 0 € K the family
D, = {Dy, D;, C into} is a null sequence in ¢ missing do. Hence
each difference & = o — U{int Dy; Dy, € D, } = Np,ep, (0 — int Dy) is
a compact connected set.

Let {N;};>1 be an increasing sequence of polyhedra N; = |Kj|
triangulated by finite subcomplexes K; C K such that N; C int N;i1
and the intersections E; = N; N (M — N;) are 1-dimensional. For each

j, let Nj C Nj be the subset N; = N; — U{int Dy; Dy, € D,, o € K;}.

This way {NJ }j>1 is an increasing sequence of compact sets in M and,
moreover, since K C M , it is readily checked that there is a one-to-one
correspondence between the components of M —int IV; and M —int IN;
which carries the component C' C M — int N; to the component
C = C —U{Dy € Dy; 0 C C}. From this it easily follows that the
inclusion M C M induces a homeomorphism F (M )= F(M). o

We are ready to prove Theorem 5.3.

Proof of Theorem 5.3. Let D = {Dy}r>1 and D' = {D} }r>1 be
two null sequences of pairwise disjoint closed disks in the interior of M
defining the S-curves A = M — Ug>1int Dy, and A’ = M — Ug>1int Dy,
respectively. As the decomposition spaces M /D and M /D’ are surfaces
(in fact homeomorphic to M) by Theorem B.1, the natural projections
m: M — M/D and ' : M — M/D' are properly homotopic to
homeomorphisms f : M — M/D and f' : M — M/D'; see [16,
Theorem 5.3]. In particular, for the composite h = f' o f~! we have a
commutative diagram

F(M)

* =T x fl=mn
(1) ! / N

F(M/D) F(M/D)

Recall that proper homotopic maps induce the same map between
spaces of Freudenthal ends [6, Theorem 1.3].
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Next, as was done in the proof of Corollary B.2, we can find a
triangulation K of M/D such that its 1-skeleton K' misses the set
{m(D)}k>1 U {h~ 7' (D})}k>1- Let L denote the triangulation of
M/D’ induced by K via h. Moreover, by Theorem B.1 there exist
homeomorphisms ¢ : M — M/D and ¢ : M — M/D' which
coincide with 7 and 7’ outside the open sets U = M — 7 1(K?)
and U' = M — n'~1(L'), respectively. In particular, K and L lift
to triangulations K and L of M with 1-skeletons K' = 7~ !(K!) and
L' = 7'~1(LY), respectively, and such that h = ¢’ ohog: K — L is
a simplicial isomorphism.

Notice that for each triangle o € K the families Dy = {Dy; Dy, C
intc} and D = {Dj;D; C int h(o)} are null sequences in ¢ and
h(o) missing o and Oh(c) = h(do), respectively. This way, A N o
and A’ N h(o) are S-curves in ¢ and h(c) containing do and k(o).
Then we apply to each o a theorem due to Whyburn [25] to obtain a
homeomorphism ¢, : ANo — A’ N h(o) extending h : do — h(do).
Therefore, ¢ = Uyckps : A — A’ is a homeomorphism extending h on
K.

Concerning the spaces of Freudenthal ends we have the following
diagram where all arrows, except ¢, and h,, are induced by inclusions.
Moreover, i, and i/, are homeomorphisms by Corollary B.2. In addition,
we use the well-known fact that the Freudenthal ends of a polyhedron
are determined by the 1-skeleton of any triangulation to get that k.,
and k! are homeomorphisms.

Clearly the inner rectangle is commutative, and it remains to check
that the inner triangle also is commutative to readily derive the equal-
ity i’ o p, = i, to complete the proof. The required commutativity is

~F(4) = F(A) ~

j*T% %Tji

i |= F(K) F(LY) =|«

1%
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an immediate consequence of the fact that the 7} in diagram (1) is a

homeomorphism and the sequence of equalities

mokoh =L o(g | L")soh. =h.olio(g| K').
=hyomyok, =7, ok,

where ¢ : K! € M/D and ¢' : L' C M/D’ are inclusions and (#) is the

commutativity of diagram (1). Recall that g | K' =7 | K' : K' — K

and ¢’ | L' =7' | L' : L' — L. o

(#)

ENDNOTES

1. This terminology is used here as the natural extension of the well-
established notion of n-connectivity in graph theory, far apart from its
meaning in algebraic topology as the vanishing of homotopy groups in
dimensions < n.

2. In case d is the restriction of a distance on the one-point compact-
ification X1, the role of the compact set K is irrelevant.

Notice also that A = Up2; U2, {A € A; ANK,, # @ and diam (A) >
1/} is indeed a sequence. Here {K,},>1 is an exhaustiveg sequence
of X.

3. Indeed, if {K,},>1 is an exhaustive sequence of U and {Up}n>1
is a nested neighborhood base of p consisting of 2-connected open sets,
then {K,,—U, },>1 is an exhaustive sequence for W = U —{p} for which
p is identified with the end € € F(W) given by € = (U,, — {p})n>1.
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