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SYMMETRY IN COMPLEX CONTACT GEOMETRY

D.E. BLAIR AND A. MIHAI

ABSTRACT. We first show that a locally symmetric nor-
mal complex contact metric manifold is locally isometric to
the complex projective space with the standard Fubini-Study
metric. We then study reflections in the integral submani-
folds of the vertical subbundle of a regular normal complex
contact metric manifold. If the reflections are isometries, the
manifold fibers over a locally symmetric space. Moreover, if
the normal complex contact metric manifold is K&hler, then
the manifold fibers over a quaternionic symmetric space. On
the other hand, if the complex contact structure is given by
a global holomorphic contact form, then the manifold fibers
over a locally symmetric complex symplectic manifold.

1. Introduction. In real contact geometry the question of locally
symmetric contact metric manifolds has a long history and a short
answer. By 1962 Okumura [11] had proved that a locally symmetric
Sasakian manifold is locally isometric to the sphere S?"*1(1) and in
2006 Boeckx and Cho [3] proved that a locally symmetric contact metric
manifold is locally isometric to S?"*1(1) or to E"*1x S™(4), the tangent
sphere bundle of Euclidean space. Various studies and generalizations
of this question were made in the intervening years. Perhaps most
importantly, since the locally symmetric condition is very restrictive,
Takahashi [13] introduced the notion of a locally ¢-symmetric space for
Sasakian manifolds by restricting the locally symmetric condition to the
contact subbundle and showed that these manifolds locally fiber over
Hermitian symmetric spaces. The first author and Vanhecke [2] showed
that this condition is equivalent to reflections in the integral curves of
the characteristic (Reeb) vector field being isometries. Subsequently, to
extend the notion to contact metric manifolds, Boeckx and Vanhecke
[4] took this reflection idea as the definition of a strongly locally ¢-
symmetric space; a contact metric manifold satisfying the condition of
restricting local symmetric to the contact subbundle is called a weakly
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locally ¢-symmetric space. For a general discussion of these ideas in
real contact geometry we refer the reader to [1].

In this paper we begin the study of these ideas for complex contact
manifolds. We first show that a locally symmetric normal complex
contact metric manifold is locally isometric to the complex projective
space, CP?"*+1(4), with the Fubini-Study metric of constant holomor-
phic curvature +4. We then study reflections in the integral subman-
ifolds of the vertical subbundle of a normal complex contact metric
manifold. In complex contact geometry the vertical subbundle is gen-
erally assumed to be integrable, and we suppose that the induced fo-
liation is regular. When such reflections are isometries, we show that
the manifold fibers locally over a locally symmetric space. Moreover, if
the normal complex contact metric manifold is K&hler, then the mani-
fold fibers over a quaternionic symmetric space. Wolf [14] established
a correspondence between quaternionic symmetric spaces and certain
complex contact manifolds. On the other hand, if the complex contact
structure is given by a global holomorphic contact form, then the man-
ifold fibers over a locally symmetric complex symplectic manifold. See
Foreman [7] for examples and further discussion.

2. Complex contact geometry. A complex contact manifold is a
complex manifold M of odd complex dimension 2n 4+ 1 together with
an open covering {O} of coordinate neighborhoods such that:

1) On each O there is a holomorphic 1-form 6 such that 6 A (df)™ # 0.

2) On O N Q' # & there is a non-vanishing holomorphic function f
such that 6’ = f6.

The complex contact structure determines a non-integrable subbun-
dle H by the equation 8 = 0; H is called the complex contact subbundle
or the horizontal subbundle.

On the other hand, if M is an Hermitian manifold with almost com-
plex structure J, Hermitian metric g and open covering by coordinate
neighborhoods {0}, it is called a complex almost contact metric man-
ifold if it satisfies the following two conditions:

1) In each O there exist 1-forms v and v = woJ with dual unit vector
fields U and V = —JU and (1,1) tensor fields G and H = G.J such
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that
G*=H?’=—-T+u@U+vQ®YV,

GJ=-JG, GU=0, g(X,GY)=—g(GX,Y).
2) On ONO' # @,

u = Au — Bv, v/ = Bu + Av,

G' = AG-BH, H =BG+ AH

where A and B are functions with A2 + B2 = 1.

A complex contact manifold admits a complex almost contact metric
structure for which the local contact form 6 is v — iv to within a
nonvanishing complex-valued function multiple [9]. The local tensor
fields G and H are related to du and dv by

[l
Q)

(X,Y) + (e Av)(X,Y),
(X,Y) - (c Au)(X,Y)

du(X,Y)
dv(X,Y

)

for some 1-form o and where a(X, Y) = g(X,GY) and ﬁ(X, Y) =
g9(X, HY). Moreover, on ON(Q' it is easy to check that U'AV' = UAV
and hence we have a global vertical bundle V orthogonal to ‘H which
is generally assumed to be integrable; in this case, o takes the form
o(X) = g(VxU,V), V being the Levi-Civita connection of g. The
subbundle V can be thought of as the analogue of the characteristic or
Reeb vector field of real contact geometry. We refer to a complex con-
tact manifold with a complex almost contact metric structure satisfying
these conditions as a complex contact metric manifold.

In the case that the complex contact structure is given by a global
holomorphic 1-form 6, w and v may be taken globally such that
0 =u—ivand o = 0.

Ishihara and Konishi [8] introduced a notion of normality for complex
contact structures. Their notion is the vanishing of the two tensor fields
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S and T given by
S(X,Y) = [G,G|(X,Y) +2G(X,Y)U — 2H(X,Y)V
+2w(Y)HX —v(X)HY) +o(GY)HX —o(GX)HY
+0(X)GHY —o(Y)GHX,
T(X,Y) = [H,H|(X,Y)-2G(X,Y)U + 2H(X,Y)V
+2w(Y)GX —u(X)GY)+ o(HX)GY —o(HY)GX
+0(X)GHY —o(Y)GHX,
where [G,G] and [H, H] denote the Nijenhuis tensors of G and H,
respectively. However, this notion seems to be too strong; among its
implications is that the underlying Hermitian manifold (M, g) is K&hler.
Thus, while indeed one of the canonical examples of a complex contact
manifold, the odd-dimensional complex projective space, is normal
in this sense, the complex Heisenberg group, is not. Korkmaz [10]

generalized the notion of normality, and we adopt her definition here.
A complex contact metric structure is normal if

S(X,Y)=T(X,Y)=0, forevery X,Y € H,
S(U,X)=T(V,X)=0, forevery X.
Even though the definition appears to depend upon the special nature
of U and V, it respects the change in overlaps, O N O’, and is a global
notion. With this notion of normality both odd-dimensional complex

projective space and the complex Heisenberg group with their standard
complex contact metric structures are normal.

We now give expressions for the covariant derivatives of the structures
tensors on a normal complex contact metric manifold; for proofs, see
Korkmaz [10].

(2.1) VxU=-GX +o(X)V,

(2.2) VxV =-HX — o(X)U.

A complex contact metric manifold is normal if and only if the covariant
derivatives of G and H have the following forms.

(2.3) 9((VxG)Y, Z)
=o(X)g(HY,Z)+v(X)do(GZ,GY)
—20(X)g(HGY, Z) —u(Y)g(X, Z) —v(Y)g(J X, Z)
+u(2)9(X,Y) +v(Z2)g(JX,Y),
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(24) 9((VxH)Y,Z)
=-—0(X)9(GY,Z) —w(X)do(HZ,HY)
—2u(X)g(GHY, Z) + uw(Y)g9(JX,Z) —v(Y)g9(X, Z)
+u(2)g(X,JY)+v(Z)g(X,Y).

For the underlying Hermitian structure we have

g(VxJ)Y,Z) = u(X)(da(Z, GY) —2g9(HY, Z))

(2.5)
+0(X)(do(Z, HY) + 2g(GY, Z)).

The differential of o enjoys the following properties.

) do(JX,Y) = —do(X,JY),

) do(GY,GX) = dcr( Y)-2uAv(X,Y)do(U,V),
) do(HY,HX)=do(X,Y) - 2uAv(X,Y)d

) do(U,X) =v(X)do(U,V), do(V,X)=—-u(X)de(U,V).

We will also need the basic curvature properties of normal complex
contact metric manifolds which we will list here and again refer to [10]
for their proofs. Our convention for the curvature is

R(X, Y)Z =VxVyZ -VyVxZ — V[X,Y]Zv

First of all, we have R(U,V)V = —2do(U,V)U and a similar ex-
pression for R(V,U)U, either of which gives the sectional curvature
R(U,V,V,U) = —2do(U, V). Now for X and Y horizontal we have the
following (see [10] for details).

R
R

U)U =X, R(X,V)V=X,
YU = 2(g9(X,JY) + do(X,Y))V,
Y)V = —2(g(X, JY) + do(X,Y))U,
U)
V)

)

’

=

V =0(U)GX + (VyH)X — JX,
U

)

—~ ~ —~ —~
[\
—_
[\

—_— — — ~— —

(X
(X
(X
(X
(X

=

—o(V)HX + (VvG)X + JX,

b

(2.15)  R(X,U)Z = —g(X, Z)U — g(J X, Z)V + do(HZ, HX)V.
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For a general discussion of complex contact manifolds we refer to [1,
Chapter 12].

3. Locally symmetric normal complex contact manifolds. In
this section we give a characterization in complex contact geometry

of complex projective space of constant holomorphic curvature +4,
CPntl(4).

Theorem 1. Let M?"*! be a locally symmetric normal complex con-
tact metric manifold. Then M*" 1 is locally isometric to CP*"*1(4).
Thus, in the complete, simply connected case the manifold is globally
isometric to CP?"+1(4).

Proof. We begin with the observation that, since our manifold is
locally symmetric it is semi-symmetric, i.e., R- R = 0, so that

R(R(X,Y)X1, X2, X3, X4) + R(X1, R(X,Y)Xa, X3, X4)
+ R(X1, Xo, R(X,Y) X3, Xy) + R(X1, X2, X3, R(X,Y)Xy) = 0.

Taking Xy = U, X3 = X3 =Y =V, X5 and X horizontal and using
(2.10), we have

+ R(X2,V,U,X) — R(X,V,U, X5) =0.

Using R(U,V)V = —2do(U,V)U and (2.14) in the second term and
applying the first Bianchi identity to the fourth term we have

2R(X., X, U, V) —2do(U,V)g(—c(V)HX + (Vv G)X + JX, X5) = 0.
Then (2.3) and (2.11) give

2(9(X2, JX) + do(X3, X))
— do(U, V)(do(GXa, GX) — 29(HGX, X3) + g(Xa, JX)) = 0.

Finally, using (2.7), we have

24 do(U,V)][g(X2, JX) + do(X2, X)] = 0.
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This gives us two cases to consider:
24+do(U,V)=0
and
9(X2,JX) + do(X2,X) =0.

In the first case first note that, since R(U,V)V = —2do(U,V)U,
do(U,V) = —2 implies that

R(U,V,V,U) = 4.

Also, from R(U,V)V = —2do(U,V)U, we have R(U,V,V,Y) = 0 for
a horizontal unit vector field Y. From the local symmetry condition,
VR = 0, differentiation with respect to X gives

R(-GX,V,V,Y) + R(U,—HX,V,Y) + R(U,V,-HX — ¢(X)U,Y)
+ R(U,V,V,VxY) =0.

By using (2.10), (2.13) and that R(U, V)V and R(V,U)U are vertical,

we obtain

— 9(GX,Y) + g(c(U)GHX + (VyH)HX — JHX,Y)
+R(Y,HX,U,V) — 2do(U,V)g(U,VxY) =0,

which, by (2.4), (2.9) and (2.11), is equivalent to

— g(GX,Y) — do(HY, —X) + 29(HGHX,Y) — g(JHX,Y)
+29(Y, JHX) + 2do(Y, HX) — 2do(U, V)g(GX,Y) = 0.

Then it follows that
—29(GY, X)+do(HY, X)+2do(Y,HX)+2do(U,V)g(GY, X)=0.
Setting X = GY, recalling that H = GJ and using (2.7), we obtain

(3.1) ~2 4 3do(Y, JY) + 2do(U, V) = 0.
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Since in this first case we have do(U,V) = —2, (3.1) yields
do(Y,JY) =2 = —29(Y, J?Y) = —2Q(Y, JY),

where Q(X,Y) = ¢(X,JY) denotes the fundamental 2-form of the
almost Hermitian structure. Similarly, do(U,V) = —2 immediately
gives do(U,JU) = 2¢(U,U) and do(V,JV) = 2g(V,V). Now, for a
general vector field, write X = X' 4+ u(X)U + v(X)V and compute
do(X,JX), giving us do(X,JX) = 2¢(X,X) for all X. Linearizing
using (2.6) then gives us that

(3.2) do = —20.

Equation (2.5) now implies that M2+ is Kéhler.
On the other hand, from formula (2.11), we have

R(HX,GX,U,HX) = 2[—g(HX, HX) + do(HX,GX)]g(V, HX) = 0,

where X is a unit horizontal vector field. We now do a computation
differentiating this with respect to X without using (3.2) so that (3.3)
below will be available to us in treating the second case as well. Using
(2.11) and (2.12) along with (2.2), it follows that

0=Ru(VxHX)U +v(VxHX)V,GX,U, HX)
+ R(HX,u(VxGX)U + v(VxGX)V,U, HX)
— R(HX,GX,GX,HX)
+2[g(HX,—HX) + do(HX,GX)|g(V,VxHX)
= R(V,GX,U,HX) + R(HX,U,U, HX)
— R(HX,GX,GX,HX) — 2 + 2do(HX,GX).

Continuing the computation using (2.14) and (2.3), we have
0=do(JX,X)+2— R(HX,GX,GX, HX) + 2do(HX,GX).
Moreover, for X = GY, this formula gives

—do(HY,GY) 42— R(JY,Y,Y,JY) — 2do(JY,Y) = 0.
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Therefore, by virtue of (3.1), we have

R(Y,JY,JY,Y)=2+2do(Y,JY) — do(HY,GY)
= 4do (Y, JY) + 2do (U, V).

However, we know that R(U,V,V,U) = —2do(U, V), and hence

(3.3) R(Y,JY,JY,Y) = 4do(Y,JY) — R(U,V, V,U).

Returning to the first case, substituting (3.2) into (3.3), we have
R(Y,JY,JY,Y) =4.

Of course, R(Y,JY,JY,Y) = 4 for Y horizontal and R(U,V,V,U) = 4
do not in general imply that the manifold has constant holomorphic
curvature +4. Thus, we must compute the holomorphic sectional
curvature for a general vector X = X' + u(X)U + v(X)V. Suppose
both the horizontal and vertical holomorphic sectional curvatures have
value . Then a long computation using normality gives

R(X,JX,JX, X) = p(IX"]* + (u(X)? +v(X)*)?)
— 41X (u(X)? +v(X)?)
+ 6(u(X)? + v(X)?) do(X', JX"),
but for us 4 = 4 and do = —2Q giving R(X,JX,JX,X) = 4 for all

X. Thus, the complex contact metric manifold M is locally isometric
to CP?"+1(4).

To eliminate the second case, note that R(Z,U, V,U) = 0 for horizon-
tal Z. Differentiating with respect to X in the same manner as above
we obtain

(34) 2do(U,V)g(Z, HX) — 2do(GX, Z)
+do(JX,HZ) - 29(JZ,GX) = 0.

However, we now have g(Xs3, JX) + do(X2,X) = 0, giving
(2do(U, V) + 1)g(X, HZ) = 0.

Therefore, do(U,V) = —1/2, and hence R(U,V,V,U) = 1.
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We now return againto R-R=0and set X, =Y =U, X; = X and
Xy = X35 = JX. Then computing using (2.15) and our other relations,
we have

—4—do(GX,HX) + do(HX,GX)
—do(HX,GX)?* - 2do(GX,HX)
+2do(X,JX) +2do(X,JX)do(GX, HX)
+R(X,JX,JX,X)=0.

Using (2.7) and the condition for the second case we have
R(X,JX,JX,X)=1.
As noted above, equation (3.3) is available and now gives
1=4do(Y,JY) -1,
but g(Xa,JX) + do(X2,X) = 0 which then would imply
1=4(—g(Y,J?Y)) -1 or 2=4,

a contradiction.

4. Reflections in the vertical foliation. As we have seen,
the condition of local symmetry for a normal complex contact metric
manifold is extremely strong. We therefore consider a weaker condition
in terms of local reflections in the integral submanifolds of the vertical
subbundle of a normal complex contact metric manifold. To do this,
we first recall the notion of a local reflection in a submanifold. Given
a Riemannian manifold (M,g) and a submanifold N, local reflection
in N, ¢y, is defined as follows. For m € M, consider the minimal
geodesic from m to N meeting N orthogonally at p. Let X be the unit
vector at p tangent to the geodesic in the direction toward m. Then
¢on maps m = exp,(tX) — exp,(—tX). In [6] Chen and Vanhecke
gave the following necessary and sufficient conditions for a reflection to
be isometric.

Theorem. Let (M, g) be a Riemannian manifold and N a submani-
fold. Then the reflection pn is a local isometry if and only if
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1. N is totally geodesic;

2. a) (V¥ +R)(X,Y)X is normal to N,
b) (VE¥TLR)(X,Y)X is tangent to N and
¢) (V2L R)(X,V)X is normal to N

for all vectors X, Y normal to N and vectors V tangent to N and all
ke N.

In regard to reflections it is worth noting that, on a normal complex
contact metric manifold, a geodesic that is initially orthogonal to V
remains orthogonal to V; without normality this is not true.

Proposition. Let v be a geodesic on a normal complexr contact
metric manifold. If v'(0) is a horizontal vector, then '(s) is horizontal
for all s.

Proof. We have immediately

Yg(y,U) =g(v',=G¥ + a(v')V) = o (" )v("),
Y9(y, V) =9(,—HY — (v )U) = = (7" )u(y').

Multiplying the first equation by u(v'), the second by v(v') and adding,
we see that u(y')? 4+ v(v)? is constant along the geodesic; but at s = 0
this is zero giving g(7'(s),U) = g(v/(s), V) = 0, completing the proof.

Let M?"*! be a normal complex contact metric manifold. Since the
vertical subbundle V is integrable, we will suppose that this is a regular
foliation, i.e., each point has a neighborhood such that any integral
submanifold of V passing through the neighborhood passes through
only once. Then M?"**! fibers over a manifold M’ of real dimension
4n. An easy computation shows that the horizontal parts of the Lie
derivatives £yg and £y g vanish. Thus the metric is projectable and
we denote by ¢’ the metric on the base, V' its Levi-Civita connection
and R’ its curvature. For vectors fields X, Y, etc., on the base we
denote by X*, Y*, etc., their horizontal lifts to M.

Theorem 2. Let M?™t! be a normal complex contact metric mani-
fold, and suppose that the foliation induced by wvertical subbundle is
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reqular. If reflections in the integral submanifolds of the vertical sub-
bundle are isometries, then the manifold fibers over a locally symmetric
space.

Proof. By a result of Cartan [5, pages 257-258] it is sufficient to show
that ¢'((VxR')(X,Y)X,Y) = 0 for orthonormal pairs {X,Y} on the
base manifold M’. First note that from the fundamental equations of
a Riemannian submersion, see e.g. [12],

Vx-Y* = (VY +u(Vx YU + 0(Vx YV

Consequently, from the equations for the curvature of a Riemannian
submersion,

R(X*,Y*, Z* W)
- R’(X Y, Z,W)
£ 2(u(V - YUV 2 W) + o( V- Y )o(V 7 W)
—u(Vy-Z")u(Vx-W*) +v(Vy-Z*)o(Vx-W")
+u(Vx« Z)u(Vy-W*) —0o(Vx« Z*)u(Vy-W*).

From this, using the normality, we have

R(X*,Y*)X* = (R'(X,Y)X)*

4.1
(4.1 +3(g(GX*, Y*)GX* + g(HX*,Y*)HX™).

Now, since the reflections in the integral submanifolds of V are isome-
tries, we have by the above theorem of Chen and Vanhecke that

9(Vx+R)(X*,Y")X*Y*) =0
and our task is to expand this using (4.1).

(Vx+R)(X*,Y")X* =Vx-(R'(X,Y)X)*
— 3V x-(g(GX*, Y*)GX* + g(HX* Y*)HX")
— R(VxX)*, Y*)X* — R(X*,(VxY)* + g(GX*,Y*)U
Fg(HX*, Y )V)X* — R(X*, Y*)(ViX) .
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Terms in R(X*,U)X* and R(X*,V)X* are vertical by (2.11) and
(2.12). Expanding the remaining terms, using (2.3) and (2.4) where
necessary, we obtain

0= g((VX*R)(X*’Y*)X*7Y*) = gl((V’XR’)(X, Y)X’ Y)

and hence that the base manifold M’ is locally symmetric.

Theorem 3. Let M?*t! be a normal complex contact metric mani-
fold whose vertical foliation is reqular and whose underlying Hermitian
structure is Kdahler. If reflections in the integral submanifolds of the ver-
tical subbundle are isometries, then M*"t1 fibers over a quaternionic
symmetric space.

Proof. Since M?"*! is Kihler, taking X = U in equation (2.5)
we have that do(Z,GY) = 2¢(HY,Z), and hence replacing Y by
—GY with Y horizontal we see that do is equal to minus twice the
fundamental 2-form when restricted to horizontal vectors. Thus, for X
and Y horizontal, we have do(X,Y) = —2Q(X,Y), and hence taking
X and Y to be basic with respect to the fibration (see, e.g., [12]) we
readily have the following Lie derivatives.

(£uG)(X,Y) =Ug(X,GY) = o(U)H(X,Y),
(£vH)(X,Y)=Ug(X,HY) = —0(U)G(X,Y) — do(HX, HY)
= —o(U)G(X,Y) — 2Q(X,Y),
(£0Q)(X,Y) =Ug(X,JY) = do(X,GY) = 2H(X,Y)
and similar expressions for Lie derivatives with respect to V. Then, it
follows that

(£u(G
(Lu(H

N(X,Y, Z,W) =20U)(H AG)(X,Y, Z,W),

N(X,Y,Z,W) = —20(U)(GAH)X,Y,Z,W)
—4(Q A H)(X,Y, Z,W),

(£u(QAD)X,Y, Z,W) =4(H AQ)(X,Y, Z,W).

AG
AH

Adding, we see that

Lu(GANG+HANH+QAQ) =0
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and similarly for the Lie derivative with respect to V. Therefore,
the 4form A = GAG+ HAH + QA Q is projectable giving an
almost quaternionic structure A’ on the base manifold M’. It remains
to show that A’ is parallel. For this, it is enough to show that
(VxA)(Y1,Ys,Ys,Y,) = 0 for horizontal vector fields X,Y7,...,Y,.
From (2.3), we have for horizontal vector fields

(VxG)(Y, 2) = 9(Y,(VxG)2) = o(X)g(HZ,Y) = o(X)H(Y, 2).
Similarly, from (2.4) and (2.5), we have
(VxH)(Y,Z) = —o(X)G(Y, Z), (VxQ)(Y,Z)=0.
Then
(VxA)(Y1,Ys,Y3,Yy) = 20(X)(HAG — G A H)(Y1,Ya,Y3,Ys) = 0.

That the base manifold is symmetric follows from Theorem 2.

Theorem 4. Let M?*™t! be a normal complex contact metric
manifold whose vertical foliation is regular and whose complex contact
structure is given by a global holomorphic contact form. If reflections in
the integral submanifolds of the vertical subbundle are isometries, then
M? L fibers over a locally symmetric complex symplectic manifold.

Proof. We noted in Section 2 that, when the complex contact
structure is given by a global, holomorphic 1-form, v and v may be
taken globally such that # = v —iv and ¢ = 0. Thus, G and H
are closed 2-forms, and the Lie derivatives of G and H, with respect
to U and V, vanish. Also, computing as in the preceding proof, we
have £y€) = £y = 0. Therefore, each of the 2-forms G, H and (2,
projects to a closed 2-form on M’', say G’, H' and ', respectively.
The projectability of Q and g from the complex manifold M?"*! gives
M’ a complex structure for which ¢’ is an Hermitian metric. Let
¥ = G’ —iH'. Now, since ¥ is the projection of df = du — idv,
it is a closed holomorphic 2-form and, from the ranks of G’ and H' ,
P™ £ (), giving us a complex symplectic structure on M’. Again, the
rest of the result follows from Theorem 2.
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