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BEST APPROXIMATION FORMULAS FOR
THE DUNKL L2-MULTIPLIER OPERATORS ON R?

FETHI SOLTANI

ABSTRACT. We study the Dunkl L2-multiplier operators
on R4, and we give for them Calderén’s reproducing formulas
and best approximation formulas using the theory of Dunkl
transform and reproducing kernels.

1. Introduction. The Dunkl operators D;; j = 1,...,d, on R¢,
are parameterized differential-difference operators [2], acting on some
Euclidean space. These operators extend the usual partial derivatives
by additional reflection terms and give rise to generalizations of many
multi-variable analytic structures like the exponential function, the
Fourier transform and the standard convolution [3, 4, 7, 15]|. During
the last decade, such operators have found considerable attention in
various areas of mathematics and mathematical physics [3, 4, 7, 9].
They allow the development of Dunkl L?-multiplier operators on R¢
from classical theory of Fourier analysis (see [6, 11, 12, 17]).

The Dunkl analysis, with respect to the multiplicity function k,
concerns the Dunkl operators D;, Dunkl transform Fj and Dunkl
convolution %; on R?. In the limit case k& = 0; Dj, Fr and #3
agree with the partial derivatives 9;, Fourier transform F and standard
convolution *, respectively.

Let m be a function in the Lebesgue space L(RY, wy(z)dzx), where
wy is a positive weight function on R? which will be defined later in
Section 2. We define the Dunkl L?-multiplier operators on RY, for
regular functions f, by

Tiomaf () = F HmaFe(f)l(z), a>0,
where m, is the function given by

me(z) = m(az).
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The purpose of this paper is to study the multiplier operators Ty m q-
Especially, we give Calderén’s reproducing formula using the theory
of Dunkl transform and Dunkl convolution; and we use the theory of
reproducing kernels to give best approximation of these operators and
a Calderdn’s reproducing formula of the associated extremal function.

In the one-dimensional case the Dunkl LP-multiplier operators are
studied by [20] in which the author gives some applications.

The contents of the paper are as follows. In Section 2, we recall some
basic harmonic analysis results related to the Dunkl operators on R%.
In particular, we list some basic properties of the Dunkl transform Fj
and the Dunkl convolution product #; (Plancherel theorem, inversion
formula, etc.).

In Section 3, we study the Dunkl L2-multiplier operators Tk m. a,
and we give for them a Plancherel formula and pointwise reproducing
inversion formula.

Next, we use the theory of Dunkl transform to give Calderén’s
reproducing formula. Let m € L2 N L®°(R%, wy(x)dz) satisfy the
admissibility condition:

i d
/ |m(aw)|2—a =1, ae zecR%
0 al

Then for f € L*(R?% wg(x)dz) and 0 < € < § < oo, the function f: s
given by

5
1 da
f€75(w) = / [Tk,m,af * fk l(ma):| (33) ;, S Rd,
€
belongs to L?(R?, wy(z)dz) and satisfies:

m fos— iz =0.

e—0,0—00
The last section of this paper is devoted to giving best approximation
of the operators Tk .4, for m in L= (R%, w(z) dz).
For p a positive function on R? satisfying the conditions:

p(z) > 1, /R d “;’“((j)) dz < oo,
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we consider the Sobolev type space H,(R?) consisting of functions
f € L*(R%, wy, () dz) such that \/p Fi(f) € L*(R?, wy,(z) dz).

The space H,(R?) is a Hilbert space when endowed with the inner
product

Fuahoi= [ oA FD ()

Using the properties of the Dunkl transform Fj, for m € L>(R¢,
wg () dz), the operators Ty, are bounded from HP(Rd) into L2(R¢,
wi(z) dz).

Next, for A > 0, we define on the space H,(R%), the new inner
product by setting

1
<f7 g>P7/\ = >‘<fa g>p + %<Tk,m,afa Tk,m,ag>Li7
where dj, is the Mehta-type constant which will be defined later in
Section 2. We show that ’HP(Rd) is a Hilbert space when equipped
with the inner product (:,-), , and we exhibit its reproducing kernel

Kﬂ)ﬂ

Building on the ideas of Saitoh, Matsuura and Yamada [10, 16,
19, 23|, and using the theory of reproducing kernels [1], we give
best approximation of the operators T} ,,, and nice estimates of

the associated extremal function. More precisely, for all A > 0,
h € L*(R?, wi(x) dz) and m € L (R?, wi(x) dx), the infimum

1
. 2 _ 2
flenqu {Alfllp + dkllh Tk,m,af”Lg}a

is attained at one function f3 , ,, called the extremal function.

In particular, for f € H,(R%) and h = T}, o f, the corresponding
extremal function f3 , = f} , , satisfies the following Calderén’s repro-
ducing formula:

lim |[f5, — fll, =0
Jim [ fXa — fllo

Moreover, {f5 ,}a>0 converges uniformly to f as A — 0.

2. The Dunkl harmonic analysis on R?. We consider R? with
the Euclidean inner product (-,-) and norm ||y|| := /{y, y)-
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For a € R%\{0}, let 0, be the reflection in the hyperplane H, C R¢
orthogonal to a:

o 2Aowy)
TV =Y g @

A finite set R C R%\{0} is called a root system, if RNR-a = {—a,a}
and c,R = R for all @ € R. We assume that it is normalized by
|lal|> = 2 for all a € R.

For a root system R, the reflections o, @ € R generate a finite group
G C O(d), the reflection group associated with R. All reflections in G,
correspond to suitable pairs of roots. For a given 3 € R%\ Uyer Ha,
we fix the positive subsystem:

Ry :={acR/ (ap) >0}

Then for each « € R either « € Ry or —a € R;..

Let k : R — C be a multiplicity function on R (i.e., a function which
is constant on the orbits under the action of G). For abbreviation, we
introduce the index:

y=7(k) = k).

aER

Moreover, let wy, denote the weight function:

wi(y) = [] We,p)l, yeR,
aER

which is G-invariant and homogeneous of degree 2+.

We introduce the Mehta-type constant cg, by

o e [/R =101 g () dy}l_

Etingof [5] has recently calculated this integral with a method valid for
all reflection groups.

We denote by dj the modified square of the Mehta-type constant c:

_9—2vy—d 2
dk =277 Cl-
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The Dunkl operators D;, j = 1,...,d, on R¢ associated with the
finite reflection group G and multiplicity function k are given for a
function f of class C! on R%, by

D)= g+ Y k(a)a, I W I (ab)

Oy, el (o)

For y € R4, the initial problem D;u(z, -)(y) = zju(z,y),j =1,... ,d,
with u(0,y) = 1 admits a unique analytic solution on R%, which will
be denoted by Ej(z,y) and called the Dunkl kernel [3, 7].

This kernel has the Laplace-type representation (see [14]):
(1) E(z,z) = / e dl,(y); = eRY, zeCY,
Rd

where (y, z) := 2?21 yiz; and I', is a probability measure on R? such
that
supp () C {y € R? / [ly|l < [}

Therefore, we obtain

(2) |Ex(—iz,y)| <1, for every z,y € RY.
In particular, if d = 1 and G = Z5, we have

By (z2) = % /_1 (1)1 4+ t)dt; z,z€R.

The Dunkl kernel gives rise to an integral transform, called the Dunkl
transform on R?, which was introduced by Dunkl [4], where already
many basic properties were established. Dunkl’s results were completed
and extended later on by de Jeu [7]. The Dunkl transform of a function
f in the Schwartz space S(R?), is given by

Fi(f)(z) :== - Ey(—iz,y) f(y)w(y) dy, ze R

We notice that Fy agrees with the Fourier transform F that is given
by

Fa)= [ ) dy, ae R
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We denote by LP(RY, wg(x)dz), p € [1, 0], the space of measurable
functions f on R%, such that

1/p

Il o= | [ 1@ Pun@)as] < oo pe o,

[fllzge := ess sup |f(z)] < oo,
z€R4

and by L? (R? wg(x) dzr) the subspace of LP(R?, wy(x) dz) consisting

rad
of radial functions.

For the Dunkl transform Fj, , de Jeu [7] proved the following proper-
ties.

Proposition 1. (i) For all f € L*(R%, wy(z)dz), then Fi(f) €
L™ (R4, wy(z) dr), and we have

1Fe()llege < I1fler-

(ii) F(D; f)(z) = iz; Fi(f)(z), for every f € S(RY) and z € R4.
(iii) F is a topological isomorphism from S(R?) onto itself, and

f@) = di [ Buli ) P f)untn) v, € R,

The Dunkl transform enjoys properties similar to those of the classical
Fourier transform.

Theorem 1 (see [7]). (i) Plancherel formula: For all f € S(R?),
we have

1£11Z2 = dicl| Fi(£)IIZ2-

(ii) Plancherel theorem: The normalized Dunkl transform /dy, Fy
extends uniquely to an isometric isomorphism of L?(R%, wy(z) dz) onto
itself.
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(iii) Inversion formula: Let f be a function in L'(R%, wy(z)dz),
such that Fi(f) € LY (R4, wy(z) dx). Then

f(z) =dx - Er(iz, ) Fe(f)y)wr(y) dy, a.e. z € R

In [22], Thangavelu and Xu give the following definition of Dunkl
translation operators.

Definition 1. The Dunkl translation operators 7,, z € R, are
defined on L2(RY, wy,(z) dr) by the equation:

Fi(ra F)(y) = Ex(iz, y) Fi(f)(y), ye€R™L

Note that from Theorem 2 (ii) and relation (2), the definition makes
sense, and we have

(3) I7afllz < Ifllzz,  f € L*(RY, wi(z) de).

When the function f is in the Schwartz space S(R?), we obtain

T f(y) = di s Ey(iz, 2) By (iy, 2) Fi () (2)wr(2) dz; @,y € R

In the one-dimensional case, Rosler [13] established an explicit for-
mula for Dunkl translation operators.

Proposition 2 (see [13]). Ifd = 1 and G = Zg, then for [ €
L*(R,|z|*"dz) and z,y € R such that (z,y) # (0,0), we have

_ [ T T r+y v
ri)= [ [f@n0+ wiena T a0
where
v}, (0) := F(JE;FZ?)U — sgn (zy) cos §] sin®’ ! 0 db,

(z,y)o := V22 + y2 — 2|zy]| cos b,
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and

fe(z):W’ fo(z):w_

In paper [15] Rosler proved a modified radial product formula,
involving the ordinary Bessel function, for the Dunkl kernel in d
dimensions, and hence introduced Dunkl translation operators for
radial functions.

Proposition 3 (see [15]). If f € L2 ,(R%, wi(x) dz), then we have

rad

ret) = [ F(VIP+ TP+ 20,2 ) draz), zy € RY,
R
where f(z) = F(||z||) and T is the representing measure given by (1).

Definition 2. The Dunkl convolution product # of two functions f
and g in L2(R%, wy,(z) dz) is defined by

Fro@)i= [ mf(cuotyu) s, o e R

Note that, as 7, f € L*(R%, wg(x) dz), the above convolution is well
defined, and from (3) we have

1f *k gllee < [1flle2llgll L2

When functions f and g are in the Schwartz space S(R?), we obtain
frg@) =di [ Bulie R(N@F0) Dun(z)dz, o€ R
R
Note that %o agrees with the standard convolution * on R%:

frg(z) = /Rd flx—y)g(y)dy, =R

By using the same methods as in [11, page 238|, we show for the
Dunkl convolution #; the following properties.
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Proposition 4. (i) Let f,g € L>(R%, wi(z) dz). Then

ok g(x) = Fp  1Fr(F) Fr(g))-

(ii) Let f,g € L*(R%, wy () dx). Then fxg belongs to L*>(R%, wy,(z) dz)
if and only if Fi(f)Fr(g) belongs to L?(R?, wi(x) dz) and we have

Fi(f #1 9) = Fu(f)Fr(g), in the L*-case.

(iii) Let f,g € L*(R%, wi(z) dz). Then
£ #x glize = dill P (f) Fr(9)IZ2

where both sides are finite or infinite.

3. The Dunkl L2-multiplier operators on R?. In this section, we
study the Dunkl L2-multiplier operators on R® and, for these operators,
we establish Calderén’s reproducing formulas.

Definition 3. Let m be a function in L?(R?, wi(x)dz). The Dunkl
L2-multiplier operator T ., 4, @ > 0, is defined for regular functions f
on R%, by

Tieom,af () i= F7  maFi(f)|(z), z€RY,
where m, is the function given by

me(z) = m(az).

Remark 1. Let a > 0 and m € L?*(R% wi(x)dz). According to
Proposition 4 (i) we can write the operator T}, , as:

(4) Tim,af(x) = F  (ma) 5 f(z), = €RY,

with
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In particular, from Propositions 2 and 3, we obtain the following
results.

Proposition 5. (i) Ifd =1, G = Zy and m € L*(R, |z[*'dz). Then
for f € L*(R, |z|*Ydx), we have

T’y,m,af(x) = T’y,me,af(x) + T’y,mo,af(w)7

where

Tymend@) = i [ |77 om0 (220) a0 s

and

e
o [ L e (20 a0 s

(i) If m € Lrad(R ,w(z)dz) and f € L*(R%, wy(z) dz), then
Tk ,m af

= o / [ (VP T = 26031 ) o) s (2)

where T,;l(m)(ﬂ?) = M(||lz])-

The operators Tj m o satisfy the following Young’s inequalities.

Lemma 1. (i) If m € L2(R%, wi(z)dz) and f € LY (R?, wi(x) dz),
then T m.of € L*(RY, wi(z) dz), and we have

dg,
1 Tmafllez <\ —rgllmllez 1]y

(i) If m € L*(R*%wi(z)dz) and f € L*(R% wi(x)dz), then
Tmaf € L*(RY, wi(x)dz), and we have

[ Thm,afllz < llmllzellfllzz-
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(iii) If m € L*(R%wi(z)dz) and f € L*(RY wi(zx)dz), then
Tem.af € L°(RY, wi(z) dz), and we have

Ty m,of(z) = dy /Rd m(az)Fi(f)(2)Ex(iz, z)wg(2) dz, z € R,

and
||Tk m afHL

Proof. (i) If m € L*(R%, wy(z) dz) and f € L*(RY, wy(z) dz), from
Definition 3, Proposition 1 (i) and Theorem 1 (ii), the function Ty m o f
belongs to L?(R?, wy(z)dz), and we have

Temad ;= de [ (o) £ () dz
Rd

dy,

< 27+de||L2H-7:k( )17
dy,

< el 11

Part (ii) follows from Definition 3 and Theorem 1 (ii), and part (iii)
follows from Definition 3 and Theorem 1 (iii) using Hélder’s inequal-
ity. O

In the following, we give Plancherel and pointwise reproducing inver-
sion formulas for the operators Ty q-

Theorem 2. Let m be a function in L*(R?, wy(z) dx) satisfying the
admissibility condition:

> d
(5) / |m(cm:)|2—a =1, ae zcRL
0 a

(i) Plancherel formula: For f € L*(R%, wy(z) dz), we have

[ @R de = [ 1Tt -
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(ii) First Calderén’s formula: For f € L*(R%, wg(z) dz) such that
Fi(f) € LY (R4, wy(z) dz), we have

f(z) = /0°° [Tk,m,af g fk_l(m_a)} (x)@, a.e. z € R

a

Proof. (i) From (4) and Proposition 4 (iii), we obtain
o da
| ety 5

| L
—d [ 1AN@P] [ mteo)* w0 o

Then, the result follows from (5) and Theorem 1 (ii).

(ii) Let f € L'(R%, wi(z) dz). From Lemma 1 (i), relation (3) and
Theorem 1 (ii) we have

| [Tmat 50 5 ma)] @)

Fi t(ma) #x f(w)rwk(m) dz %a

da
a

a

—a [ [ Bt A @) man) o) | %
Since
/Ooo [/Rd \Ex(iz, y) Fi(£) () [|m(ay) |wi (y) dy:| Ci—a

< [ Fe(H)llpy < oo.
Then, from Fubini’s theorem, we have

da
a

| [Tt 20 750 )] )

—ac [ Buliea)F 0| [ ) | wets) av.

We obtain (ii) from (5) and Theorem 1 (iii). O
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To establish Calderén’s reproducing formula for the operators Tk m q,
we need the following lemma.

Lemma 2. Let m € L? N L™ (R, wy(z) dr) satisfy the admissibility
condition (5). For 0 < e < § < o0, we put

§
K.s(z) = / m(aa)? 2.

Then
K. s € L* N L (R%, wy(z) dz).

Proof. Using Holder’s inequality for the measure da/a we obtain

s
|K.5(x)]* <In (g) / \m(a:p)|4i—a, z € R

Therefore,

<1In(é/e) /j [/Rd Im(z)|*wi (z) dm}%
_ [e=27—d — §—21—d] In (6

g

)l i < .

2v+d
On the other hand, from (5) we have
| Kesllzee <1,
which completes the proof of the lemma. i

The previous pointwise reproducing inversion formula can be inter-
preted in the L2-sense as follows.

Theorem 3 (second Calderén’s formula).  Let m € L?N
L= (R4, wy(z) dx) satisfy the admissibility condition (5). Then, for
f € L2A(RY wy(z)dz) and 0 < e < § < oo, the function f- 5 given by

da

4
fes(z) == / |:Tk:,m,af * ]-'k—l(m—a) (m);, T € Rd,
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belongs to L?(R%, wy,(z)dz) and satisfies

(6) i [|fes = fllzz = 0.

d—00

Proof. From Lemma 1 (ii), relation (3) and Theorem 1 (ii) we have

fes(@) = /j [/R Tinad (0)7 1 Fy " (ma) (0 we(v) dy] da
= [ [ Butie. ) B @) ants) ]

o
But from Fubini-Tonnelli’s theorem, Holder’s inequality and Lemma, 2
we have

5
|| 1B ) FD @ lim(an) P an e
< [ AN s dy
Rd

1
< \/—d—k”fHLiHKs,énLi < o0.

Then, from Fubini’s theorem and Theorem 1 (iii), we get

o) =do [ Buirn) B0 [ a2 2] )

= dy, - Ey(iz,y) Fr(f)(y) Ke s (y)wr(y) dy

= F, [ Fe(f) K. 5] ().

Thus, using the fact that K.s € L°° (R wy(x)dz) we prove that
fes € L*(R?, wi(z) d), and by Proposition 4 (ii) we obtain

fk(fs,&) = fk(f)Ks,é-

From this relation and Theorem 1 (ii), we obtain

Ios— F3; =i [ IADGPL - Kesw)Pwn(w) dy.
Rd
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On the other hand, (5) leads to

lim K. 5(y) =1, ae ye€ RY,
e—0

d—00
and
IFe(H)@)IP[L = Kes()]* < |FR(H @)
Hence, (6) follows from the dominated convergence theorem. O

As an application, we give the following example.

Example 1. The function my, t > 0, defined by
my(z) = \/§t||a:||26_t”z“2, r € RY,

belongs to L? N L (R, wy,(z) dz), and satisfies the admissibility con-
dition (5). Then the associated operator Ty ,,,., given by

Tk,mtﬂf(m) = _% /Rd % [Fk <§a y7t>:| f(y)wk(y) dya

a a

where 'y (z,y,t) is the Dunkl-type heat kernel [15, 21] given by

Vi (elP+ilyli?) /4t Ty
L (,y,t) := (@t © By Nk

satisfies Calderén’s reproducing formula (6).

Note that, for a = 1, the operator T, 1f(z) is

T f(2) = V85 (Lo ()]

where
7 Lisf(@) = [ Do) f0)wn(o) o,

is the Dunkl-type Weierstrass transform studied in [21].
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4. The extremal function related to Dunkl L2-multiplier
operators. This section contains the second main result of this paper,
that is, the existence and unicity of the extremal function related to
Dunkl L?-multiplier operators on R? studied in the previous section.

Definition 4. Let p be a positive function on R? satisfying the
conditions:

8) p(z) > 1, z€eRY,
= w(2) z < 00
9) /oy = [ i <o

We define the space H,(R?) by

H,(RY) = {f € L*(R%, wy(z) dz) : /p Fr(f) € L*(RY, wy () d:c)}.
The space H,(R?) provided with inner product

(k= [ p@FNHF@E()
and the norm || f||, = v/(f, f)», is a Hilbert space.

Remark 2. The function 1/,/p belongs to L*(R%, wy(z) dz). Hence,
for all f € H,(R?), the function Fj(f) belongs to L'(R?, wy(z) dz),

and we have

f(z) =dp e Ey(iz, y) Fe(f) (y)wi(y) dy, ae. z € R

Proposition 6. Let m € L®(R% wi(z)dz). The operators Tk m.q
given by Definition 3 are bounded linear operators from HP(Rd) mto
L*(R%, wy () dz), and we have

T afllzz < Vdelmlizg £l € HpRT.
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Proof. Let f € H,(R?). By Lemma 1 (ii), the operator T m of
belongs to L?(R?, wy(z) dzr), and
1Tkm.afllzz < llmllzellflize-

But, by condition (8), we have ||f|,2 < Vdi|fll,, which gives the
result. O

Definition 5. Let A > 0, and let m € L= (R% wy(z) dz). We denote
by (-,-)p,x the inner product defined on the space H,(R?) by

(10)  (f,9)px = /Rd(AP(Z) + Im(az)|*) Fi(£)(2) Fi(g) (2)wi (2) dz,
and the norm ||f||, x := /{f, [)pr-

Proposition 7. Let m € L (R%, wy(z) dz), and let f € H,(RY).
(i) The norm || -

|p,\ satisfies:
17120 = ALFI2 + [T af |12
A P dk ,m,a Lk.

(i) The two norms || - ||,,x and || - ||, are equivalent, and

VMl < Wl < A+ Iml1F e 11

Proof. (i) follows from Definition 3 and Theorem 1 (ii), and (ii) follows
from assertion (i) and Proposition 6. O

Lemma 3. Let m € L®(R% wy(x)dz). Then the Hilbert space
(H,(R?), (-,-).n) possesses the following reproducing kernel:

1) Kpala,y) = (de)? / By (i, 2) By (~iy, 2)

ra  Ap(2) +|m(az)? wi(2) dz,

that is,
(i) For ally € RY, the function x — K, x(z,y) belongs to H,(R?).
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(ii) The reproducing property: for all f € H,(R%) and y € RY,

(F a5 9) px = f(Y)-

Proof. (i) Let y € R?%. From (2), (8) and (9), the function ®, : z —
di(Ex(—iy, 2))/(Ap(2) + |m(az)|?) belongs to L' N L*(RY, wy(2) dz).
Then, the function K, » is well defined and by Theorem 1 (iii), we have

Koa(z,y) = F, 1 (®,)(z), =R

From Theorem 1 (ii), it follows that K, A (-, y) belongs to L(R%, wy(z)
dz), and we have

Ey(—iy, 2)
Ap(z) + |m(az)[?’

(12) FilKpa(9)](2) = di z € RY.

Then by (2), we obtain

Al Cula)] < 5

and
de \?
Kool < (%) /el <

This proves that, for all y € R%, the function K, (-,y) belongs to
H,(RY).
(ii) Let f € H,(R?) and y € R%. From (10) and (12), we have

a6 = do | Bulin, () () (2)
and from Remark 2, we obtain the reproducing property:

(F a5 9) pr = f(1)-

This completes the proof of the lemma. ]

If m =0 and A = 1, we obtain the following remark.
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Remark 3. The Hilbert space (H,(R%), (-, -),) possesses the following
reproducing kernel:

Ek(im, Z)Ek(_iyv Z)
Rd p(z)

Ko(z,y) = (di)? w(2)dz;  z,y € R%

The main result of this section can then be stated as follows.

Theorem 4. Let m € L*®°(R% wg(z)dz) and a > 0. For any
h € L*(R%, wy,(z) dz) and for any X > 0, there exists a unique function
f3 h.a» where the infimum

1
. 2 2
(13 Jut NS4 = T |

1s attained. Moreover, the extremal function f;7h7a s given by

(19) Fona®) = [ h@Vgune) do,

where

m(az)Ex(—iy, z)
ra Ap(2) + |m(az)]?

Vor(z,y) = di E.(iz, 2)w () dz.

Proof. 'The existence and unicity of the extremal function f3, ,
satisfying (13) is given by [8, 10, 18]. On the other hand, from
Lemma 3 we have

. 1
fA,h,a(y) = —<h,Tk,m,a[le,,\(-,y)]>Lz,
dp, k
where IC, 5 is the kernel given by (11).
From Lemma 1 (iii) and (12), we obtain

V(1) = dika,m,a[ch,A-,y)](w)

= m(az) Bi(~iy, 2) iz, 2)wy(z) dz
= o R e ()

This clearly yields the result. u]
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Some properties of the extremal function f3 , , are checked in the
following.

Theorem 5. Let m € L*®°(R%, wy(z) dz) and h € L*(R%, wy(z) dz).
The extremal function f5 ,, ,, given by (14), satisfies:

(1)

m(az)

d
Ap(z) + |m(az)‘2fk(h)(z)7 z € R"

Fellina)(2) =

1
* 2 < 2 .
I5mall2 < g Al

Proof. (i) Let y € R%. The function U, : 2 — (m(az)Ex(—iy,z))/
(Ap(2) +|m(az)|?) belongs to L' N L2(R%, wy,(z) dz). Then by Theorem
1 (iii), we have

Vor(z,y) = F 1 (¥y)(z), zeRL

From Theorem 1 (ii), it follows that V), x (-, y) belongs to L*(R%,wy (z)dz),
and

Fna(y) = di e Fi(h)(2)¥y (2)w(2) dz

Fi(h)(z)m(az)
Rre Ap(2) + |m(az)?

=d, Ey(iy, z)wg (2) dz.

The function F : z — (Fr(h)(2)m(az))/(Ap(z) + |m(az)|?) belongs to
L' N L?(R%, wy(z) dz). Then by Theorem 1 (iii), we have
Fona®) = FH(F)()-

From Theorem 1 (ii), it follows that f , , belongs to L2(R%, wy(y) dy),
and

m(az)
+ |m(az)?

Fr(fana)(z) = o(2) Fr(h)(z), zeRL
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(ii) From assertion (i) and using the inequality (z + y)? > 4zy, we
obtain

* 2 1 2
PENFR(fRna) D) < S 1F(R) ()]

Thus, from Theorem 1 (ii), we obtain

1
1£5nally < 75

1
2 2
2 < 4)\||.7:k(h)||Li < —4/\dk”h”Li' o

If we take h = T ,of in (14), where f € ’HP(Rd), we obtain the
following Calderén’s reproducing formula.

Theorem 6 (third Calderén’s formula). Let m € L= (R4, wy,(z)
dz) and f € H,(R?). The extremal function fX . given by

Fa®) = [ Temad @Vorevun(a) da
satisfies
(15) i 75,0 = Sl =0.

Moreover, {f5 ,}x>0 converges uniformly to f as A — 0.

Proof. Let f € H,(R?), h = Ty maf and fXa = fXpa From
Proposition 6, function h belongs to L?(R?, wy,(z) dz).

Applying Definition 3 and Theorem 5 (i), we obtain
m(az)|?
Ap(2) +[m(az)]?

Fr(fRa)(2) = Fr(f)(2)-

Thus, it follows that

—Ap(2)
(2) +[m(a2)[?

(16) Fr(fRa— H2) = Y Fr(f)(z), z€R.

Consequently,

el [ NPRIRDEP
e =715 = [ T oy

wi(z) dz.
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Using the dominated convergence theorem and the fact that

NP3 ()| Fi(£)(2) P
[Ao(2) + [m(az)]?]?

we deduce that

< p(2)|Fr(f)(2)]%

. * 2 —
)\llg)l‘*' ||f)\,a f“p 0.

On the other hand, from Remark 2, the function F3(f) € L' N
L*(R%, wg(2) dz). Then by (16) and Theorem 1 (iii), we get

—Ap(2)Fi(£)(2)
re Ap(2) + [m(az)|?

o) = fly) = dy Ey(iy, z)wi(2) dz.

So

Ap(2)|Fi(f)(2)]
a Ap(2) + [m(az)[?

sup |f5.(v) — F()| < da A

yeR?

w(2) dz.

Again, by the dominated convergence theorem and the fact that

Ap(2)| Fi(f)(2)|
Ap(2) + |m(az)[?

< [Fe(H) )],

we deduce that

li * _ — 0’
Jlim, sup fXa(®) = f()]

which ends the proof. o
As an application, we give the following example.

Example 2. If p(z) = (1 + ||z]|?)%, s > v+ d/2 and my, t > 0 the
function is defined by

me(z) == e~tI=* 2 e R4

Then, the extremal function f§ , given by

Fa®) = [ T @) Vol plun(a) da,
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where

—ta?llz* By (=

(& k Zy,Z)
= d

Vor(z,y) k/Rd A1+ ||2]|2) + e—2ta?ll=II2

Bi(iz, 2)wi(2) dz,

satisfies Calderén’s reproducing formula (15).

Note that, for a = 1, the operator T} ,,,1f(z) is the Dunkl-type
Weierstrass transform L,  f(x) given by (7).
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