REFLECTIONS AND A GENERALIZATION OF THE MAZUR-ULAM THEOREM

OSAMU HATORI, KIYOTAKA KOBAYASHI, TAKESHI MIURA AND SIN-EI TAKAHASI

ABSTRACT. In this paper, we will generalize the Mazur-Ulam theorem which states that every bijective isometry between two normed spaces is affine. To do this, we introduce a notion of metricoid spaces, which is a generalization of metric space. Finally, we give a representation of surjections from $C^+(X)$ onto $C^+(Y)$ which preserve certain subdistances.

1. Introduction and preliminaries. Let N_1 and N_2 be two normed linear spaces. It was proved by Mazur and Ulam [2] that every bijective isometry T from N_1 onto N_2 is affine, that is, T((f+g)/2) = (T(f) + T(g))/2 holds for every $f, g \in N_1$. Using the idea of Vogt [6], a simple proof of this result was given by Väisälä [5]. In the proof, reflection played an essential role. In this paper, we will generalize the Mazur-Ulam theorem. To do this, we will introduce a notion of subdistances and metricoid spaces. We will give some examples of (super reflective) metricoid groups. In the final section, we will give representations of surjections from $C^+(X)$ onto $C^+(Y)$ that preserve certain subdistances. Here, $C^+(K)$ denotes the set of all real-valued continuous functions f on a compact Hausdorff space K such that f(x) > 0 for every $x \in K$.

Denote the set of all real numbers by \mathbf{R} . We denote by \mathbf{R}^+ the set of all non-negative real numbers.

Definition 1.1. Let G be a set and $\delta: G \times G \to \mathbf{R}^+$ a map which satisfies that

(1) $\delta(f,g) = 0$ if and only if f = g.

²⁰¹⁰ AMS Mathematics subject classification. Primary 46B04, 46J10. Keywords and phrases. The Mazur-Ulam theorem, isometries, metricoid spaces,

metricoid groups, the Banach-Stone theorem.

The first, third and fourth authors were partly supported by a Grant-in-Aid for

Scientific Research.

Received by the editors on February 17, 2009, and in revised form on June 3, 2009.

 $DOI:10.1216/RMJ-2012-42-1-117 \quad Copyright © 2012 \ Rocky \ Mountain \ Mathematics \ Consortium \ Mathematics \ Consortium \ Mathematics \ Consortium \ Mathematics \ Mat$

A self-map T on G is said to be δ -isometric if $\delta(T(f), T(g)) = \delta(f, g)$ holds for every pair f and $g \in G$. We call δ a subdistance if

(2) for every pair f and $g \in G$, there exists a $K(f,g) \in \mathbf{R}^+$ such that the inequality $\delta(T(f), f) \leq K(f, g)$ holds for every bijective δ -isometry T on G with T(g) = g.

We call the pair (G, δ) a metricoid space.

Every metric space is a metricoid space. In fact, if (G, δ) is a metric space, then by a simple calculation we see that $\delta(T(f), f) \leq 2\delta(f, g)$ holds for every $f, g \in G$ and every δ -isometry T on G with T(g) = g. So, every metric space (G, δ) is a metricoid space.

Example 1.1. Let A be a unital semi-simple commutative Banach algebra with the maximal ideal space M_A , and let A^{-1} be the set of all invertible elements of A. Let us consider a function $\delta: A^{-1} \times A^{-1} \to \mathbf{R}^+$ defined by

$$\delta(f,g) = r\left(\frac{f}{g} - 1\right), \quad (f,g \in A^{-1}),$$

where r(a) denotes the spectral radius of $a \in A$. In this case, it is trivial that δ satisfies (1). To see that δ satisfies (2), let $f, g \in A^{-1}$ and T be a δ -isometry on A^{-1} with T(g) = g. Take a point $\phi_0 \in M_A$ such that

$$r\left(\frac{T(f)}{f} - 1\right) = \left|\frac{\widehat{T(f)}(\phi_0)}{\widehat{f}(\phi_0)} - 1\right|,$$

where \hat{a} denotes the Gelfand transform of $a \in A$. Then we have

$$\delta(T(f), f) = \left| \frac{\widehat{T(f)}(\phi_0)}{\widehat{f}(\phi_0)} - 1 \right| = \left| \frac{\widehat{T(f)}(\phi_0)}{\widehat{f}(\phi_0)} - \frac{\widehat{g}(\phi_0)}{\widehat{f}(\phi_0)} + \frac{\widehat{g}(\phi_0)}{\widehat{f}(\phi_0)} - 1 \right|$$

$$\leq \frac{|\widehat{g}(\phi_0)|}{|\widehat{f}(\phi_0)|} \left| \frac{\widehat{T(f)}(\phi_0)}{\widehat{g}(\phi_0)} - 1 \right| + \left| \frac{\widehat{g}(\phi_0)}{\widehat{f}(\phi_0)} - 1 \right|$$

$$\leq r(g)r(f^{-1})r\left(\frac{T(f)}{g} - 1\right) + r\left(\frac{g}{f} - 1\right)$$

$$= r(g)r(f^{-1})\delta(T(f), T(g)) + \delta(g, f)$$

$$= r(g)r(f^{-1})\delta(f, g) + \delta(g, f)$$

since T is δ -isometric and T(g) = g. By taking

$$K(f,g) = r(g)r(f^{-1})\delta(f,g) + \delta(g,f),$$

we see that δ satisfies (2). On the other hand, δ is not a metric on A^{-1} since δ is not symmetric. Here, we note that surjective maps $S:A^{-1}\to B^{-1}$ that satisfy $\delta(S(f),S(g))=\delta(f,g)$ for all $f,g\in A^{-1}$ are characterized in [1, Theorem 4.1] in terms of homeomorphisms between maximal ideal spaces, where B is another unital semi-simple commutative Banach algebra (cf. [3, Theorem 3.2]).

Definition 1.2. Let (G, δ) be a metricoid space and $h \in G$. A self-map ρ on G is called a *reflection* of G at h if the following conditions (3), (4), (5) and (6) hold.

- (3) $\rho(h) = h$,
- (4) $\rho^2 = \text{Id}$, the identity map,
- (5) ρ is δ -isometric, and
- (6) there is a constant L(h) > 1 such that $\delta(\rho(f), f) \geq L(h)\delta(f, h)$ for every $f \in G$.

Example 1.2. Let N be a normed space. Let $f,g \in N$ be arbitrary, and put h = (f+g)/2. Then the map $\rho: N \to N$ defined by $\rho(u) = 2h - u$ ($u \in N$) is a reflection on N at h that satisfies $\rho(f) = g$ and $\rho(g) = f$.

Remark 1.1. We see that a reflection ρ of G at h is a bijective δ isometry since $\rho^2 = \text{Id}$. Moreover, we see that h is the only fixed point
of ρ . In fact, if $a \in G$ such that $\rho(a) = a$, then putting f = a in (6), $0 \ge L(h)\delta(a,h)$ holds, and so we get a = h.

Definition 1.3. Let (G, δ) be a metricoid space. We denote by R(G; h) the set of all reflections of G at $h \in G$. A metricoid space (G, δ) is said to be *reflective* if $R(G; h) \neq \emptyset$ for every $h \in G$.

Definition 1.4. Let H be a subgroup of the group of all δ -isometries from G onto itself. We call H a bijective δ -isometry group on G. For

 $f \in G$, put

$$\lambda(f; H) = \sup \{ \delta(S(f), f) : S \in H \}.$$

Lemma 1.1. Let (G, δ) be a metricoid space, H a bijective δ -isometry group on G and $h \in G$ with $\lambda(h; H) < \infty$. If there is a $\rho \in R(G; h)$ such that $\rho H \rho \subset H$, then h is a common fixed point of all δ -isometries in H.

Proof. Suppose that there is a $\rho \in R(G;h)$ such that $\rho H \rho \subset H$. Pick $S \in H$ arbitrarily, and set $U = \rho S^{-1} \rho S$. Then $U \in H$ by hypothesis. Note that S is a δ -isometry. Note also that ρ is a δ -isometry with $\rho(h) = h$ since ρ is a reflection on G at h. We now obtain the following inequality.

$$\delta(U(h), h) = \delta(\rho S^{-1} \rho S(h), h) = \delta(\rho S^{-1} \rho S(h), \rho(h))$$

= $\delta(S^{-1} \rho S(h), h) = \delta(\rho S(h), S(h))$
 $\geq L(h) \delta(S(h), h).$

Since $U \in H$, and since $S \in H$ was arbitrary, it follows that $\lambda(h; H) \ge L(h)\lambda(h; H)$. Then $\lambda(h; H) = 0$ since L(h) > 1, which implies that h is a common fixed point of all δ -isometries in H.

Definition 1.5. Let (G, δ) be a metricoid space. We define

$$\frac{f\circ g}{2}=\{h\in G: \text{there exists a }\rho\in R(G;h) \text{ such that }\rho(f)=g\}$$

for each $f, g \in G$.

Lemma 1.2. Let (G_1, δ_1) and (G_2, δ_2) be two metricoid spaces and T a bijective (δ_1, δ_2) -isometry of G_1 onto G_2 , that is,

$$\delta_2(T(f), T(g)) = \delta_1(f, g), \quad (f, g \in G_1).$$

Let $f, g \in G_1$ with

$$(1.1.1) \qquad \qquad \frac{f\circ g}{2} \neq \varnothing \quad \text{and} \qquad \frac{T(f)\circ T(g)}{2} \neq \varnothing.$$

Then both $(f \circ g)/2$ and $(T(f) \circ T(g))/2$ consist of single elements and

$$(1.1.2) T\left(\frac{f\circ g}{2}\right) = \frac{T(f)\circ T(g)}{2}.$$

Proof. Let $f, g \in G_1$ with (1.1.1). Let H denote the set of all bijective δ_1 -isometries S from G_1 onto itself such that S(f) = f and S(g) = g. Then H is a bijective δ_1 -isometry group on G_1 such that both f and g are common fixed points of all δ_1 -isometries in H. Pick $a \in (f \circ g)/2$ arbitrarily. There exists a $\rho \in R(G_1; a)$ such that $\rho(f) = g$. For each $S \in H$, we have

$$\rho S \rho(f) = \rho S g = \rho(g) = f.$$

As in the same way, we see that $\rho S \rho(g) = g$, and so $\rho S \rho \in H$ for every $S \in H$. Note also that $\lambda(a; H) < \infty$. In fact, if $S \in H$, then

$$\delta_1(S(a), a) \leq K(a, f)$$

holds since δ_1 is subdistance, and hence $\lambda(a, H) \leq K(a, f) < \infty$. By Lemma 1.1, we have that a is a common fixed point of all δ_1 -isometries in H.

Finally, pick $b \in (T(f) \circ T(g))/2$ arbitrarily. There exists a $\theta \in R(G_2; b)$ such that $\theta T(f) = T(g)$. Put $U = \rho T^{-1}\theta T$. Then we see that U is a bijective δ_1 -isometry on G_1 . Since $\theta T(f) = T(g)$ and $\rho(g) = f$, we have

$$U(f) = \rho T^{-1}\theta T(f) = \rho T^{-1}T(g) = \rho(g) = f.$$

As in the same way, we also have U(g) = g, and so $U \in H$. Since a is a common fixed point of all δ_1 -isometries in H, it follows that U(a) = a. Since $\rho^2 = \mathrm{Id}$, we have

$$\theta T(a) = T \rho \rho T^{-1} \theta T(a) = T \rho U(a) = T \rho(a) = T(a).$$

Since b is the only fixed point of θ (see Remark 1.1), we obtain T(a) = b. Since $a \in (f \circ g)/2$ and $b \in (T(f) \circ T(g))/2$ were arbitrary, both $(f \circ g)/2$ and $(T(f) \circ T(g))/2$ consist of single points, and (1.1.2) holds.

Corollary 1.3. Let (G, δ) be a metricoid space and $f, g \in G$. Then either $(f \circ g)/2$ is the empty set or a singleton.

Proof. Consider the case where $G_1 = G_2$, $\delta_1 = \delta_2$ and T = Id in Lemma 1.2. Then we see that $(f \circ g)/2$ is the empty set or a singleton. \square

Remark 1.2. Let N be a normed space. Set h = (f+g)/2 for each $f, g \in N$. By Example 1.2, $h \in (f \circ g)/2$. According to Corollary 1.3, we have that $(f \circ g)/2$ is a singleton, that is,

$$\frac{f\circ g}{2}=\{h\}=\{(f+g)/2\}\quad\text{for every }f,g\in N.$$

Thus, we may regard $(f \circ g)/2$ as (f+g)/2.

Let N_1 and N_2 be normed spaces. Recall that a map $T: N_1 \to N_2$ is affine if T((1-t)f + tg) = (1-t)T(f) + tT(g) for all $f, g \in N_1$ and for all $t \in \mathbf{R}$.

Lemma 1.4. Let N_1 and N_2 be normed spaces. A continuous map $T: N_1 \to N_2$ satisfies

(1.1.3)
$$T\left(\frac{f \circ g}{2}\right) = \frac{T(f) \circ T(g)}{2}$$

for every $f, g \in N_1$ if and only if T is affine.

Proof. If T is affine, then T((f+g)/2) = (T(f) + T(g))/2 for all $f, g \in N_1$, and therefore, T satisfies (1.1.3) by Remark 1.2. Conversely, suppose that T satisfies (1.1.3). Set S(f) = T(f) - T(0) for each $f \in N_1$. Identifying $(f \circ g)/2$ with (f+g)/2 (see Remark 1.2), we see that S((f+g)/2) = (S(f) + S(g))/2 holds for all $f, g \in N_1$. We will prove that S is real-linear. To do this, pick $f, g \in N_1$ arbitrarily. Since S(0) = 0, it follows that

$$S(f) = S\left(\frac{2f}{2}\right) = \frac{S(2f) + S(0)}{2} = \frac{S(2f)}{2},$$

which shows that S(2f) = 2S(f). Therefore,

$$S(f+g) = S\left(\frac{2(f+g)}{2}\right) = 2S\left(\frac{f+g}{2}\right) = S(f) + S(g),$$

which proves that S is additive. We next show that $S(mf/2^n) = mS(f)/2^n$ holds for every integer m and natural number n. Since 2S(f) = S(2f), we also have S(f/2) = S(f)/2. Inductively, we can prove that $S(f/2^n) = S(f)/2^n$ for every natural number n. Suppose that S(mf) = mS(f). It follows from the additivity of S that

$$S((m+1)f) = S(mf) + S(f) = mS(f) + S(f) = (m+1)S(f).$$

By induction, we see that S(mf) = mS(f) for every natural number m. Since S is additive, we see that S(-f) = -S(f). It follows that

$$S(-mf) = -S(mf) = (-m)S(f)$$

for every natural number m. From the above, we have that

$$S\left(\frac{mf}{2^n}\right) = \frac{1}{2^n}S(mf) = \frac{m}{2^n}S(f)$$

for every integer m and natural number n. Since S is continuous, we see that S(cf) = cS(f) for every $c \in \mathbf{R}$. Thus, S is real-linear, as claimed. In particular, S((1-t)f+tg)=(1-t)S(f)+tS(g). Since T(f)=S(f)+T(0), we conclude that T is affine. \square

Definition 1.6. For a map T from a metricoid space (G_1, δ_1) into another one (G_2, δ_2) , T is said to be *affine* if

$$T\left(\frac{f\circ g}{2}\right) = \frac{T(f)\circ T(g)}{2}$$

holds for every pair $f, g \in G_1$.

Definition 1.7. A metricoid space (G, δ) is said to be *strongly reflective* if $(f \circ g)/2 \neq \emptyset$ for every $f, g \in G$.

Remark 1.3. If G is strongly reflective, then G is reflective. In fact, suppose that G is strongly reflective and take an element $f \in G$ arbitrarily. Then $(f \circ f)/2 \neq \emptyset$ by hypothesis, and hence there is a $\rho \in R(G;h)$ with $\rho(f) = f$ for some $h \in G$. Since h is the only fixed

point of ρ by Remark 1.1, it follows that f = h. This implies that $R(G; f) \neq \emptyset$, and hence G is reflective.

Definition 1.8. Let (G, δ) be a metricoid space. (G, δ) is said to be internally reflective metricoid group, or metricoid group in short, if G has a group structure such that

- (7) $\delta(hf^{-1}h, hg^{-1}h) = \delta(f, g)$ for every $f, g, h \in G$, and
- (8) for each $h \in G$ there exists a constant L(h) > 1 such that $\delta(hf^{-1}h, f) \geq L(h)\delta(f, h)$ for every $f \in G$.

Remark 1.4. A metricoid group (G, δ) is reflective. In fact, pick $h \in G$ arbitrarily and put $\rho_h(f) = hf^{-1}h$ for every $f \in G$. In this case, we can easily see that ρ_h is a reflection on G at h, and so (G, δ) is reflective.

Definition 1.9. Let (G, δ) be a metricoid group. For each $f, g \in G$, we put

$$M(f,g) = \{ h \in G : \rho_h(f) = g \},\$$

where ρ_h is the reflection on G at $h \in G$ defined by $\rho_h(f) = hf^{-1}h$ for $f \in G$. A metricoid group (G, δ) is said to be super reflective if

(9)
$$M(f,g) \neq \emptyset$$
 for every $f, g \in G$.

Remark 1.5. By definition, we see that $M(f,g) \subseteq (f \circ g)/2$ holds for every $f, g \in G$. Therefore, if a metricoid group (G, δ) is super reflective, then (G, δ) is strongly reflective.

It is possible that the case where $(f \circ g)/2 \neq \emptyset$ and $M(f,g) = \emptyset$ occurs. However, if $M(f,g) \neq \emptyset$, then $(f \circ g)/2 = M(f,g)$ by Corollary 1.3.

2. A generalization of the Mazur-Ulam theorem. Under the definition of the strong reflectivity, Lemma 1.2 immediately implies the following result.

Theorem 2.1. Every bijective (δ_1, δ_2) -isometry between strongly reflective metricoid spaces (G_1, δ_1) and (G_2, δ_2) is affine.

Remark 2.1. If (G, δ) is a strongly reflective metricoid space, then δ must be symmetric, that is to say, $\delta(f, g) = \delta(g, f)$ holds for every $f, g \in G$. To see this, let $f, g \in G$ be arbitrary. By the strong reflectivity of (G, δ) , we can choose a $\rho \in R(G; h)$ with $\rho(f) = g$ for some $h \in G$. Therefore, we have

$$\delta(f,g) = \delta(\rho(f), \rho(g)) = \delta(g,f),$$

and hence δ is symmetric.

As a direct corollary to Theorem 2.1, we obtain the following theorem of Mazur and Ulam.

Corollary 2.2 (the Mazur-Ulam theorem [2]). Every bijective isometry between normed spaces is affine.

Proof. By Remark 1.2, each normed space is strongly reflective. According to Theorem 2.1 and Lemma 1.4, we have the Mazur-Ulam theorem. \Box

It follows from Remark 1.2 that every normed space is a strongly reflective metricoid space. Moreover, we see that every normed space, as an additive group, is a metricoid group. So, the following result, a special case of Theorem 2.1, is a generalization of the Mazur-Ulam theorem [2].

Theorem 2.3. Every bijective (δ_1, δ_2) -isometry between super reflective metricoid groups (G_1, δ_1) and (G_2, δ_2) is affine.

We give two examples of super reflective metricoid groups.

Notation. In the remainder of this paper, C(K) denotes the set of all real-valued continuous functions f on a compact Hausdorff space K and $C^+(K)$ the subset of all $f \in C(K)$ such that f(x) > 0 for every $x \in K$. We will regard $C^+(K)$ as a multiplicative group. For each $f \in C(K)$, we put $||f|| = \sup\{|f(x)| : x \in K\}$. Since $C^+(K)$ is not a linear space, $||\cdot||$ is not a norm on $C^+(K)$. However, $||\cdot||$ induces a

topology on $C^+(K)$. For each $f, g \in C^+(K)$, we put

$$\delta_+(f,g) = \Delta(f,g) + \Delta(g,f)$$
 and $\delta_\times(f,g) = \Delta(f,g)\Delta(g,f)$,

where

$$\Delta(f,g) = \left\| \frac{f}{g} - 1 \right\|,$$

that is,

$$\delta_+(f,g) = \left\| rac{f}{g} - 1 \right\| + \left\| rac{g}{f} - 1 \right\|$$

and

$$\delta_{ imes}(f,g) = \left\|rac{f}{g} - 1
ight\|\left\|rac{g}{f} - 1
ight\|$$

for $f, g \in C^+(K)$.

Under the above notation, we have the following result.

Theorem 2.4. Let $\delta \in \{\delta_+, \delta_\times\}$. Then $(C^+(X), \delta)$ is a super reflective metricoid group with $(f \circ g)/2 = \sqrt{fg}$ for every $f, g \in C^+(X)$.

Proof. Equations (1) and (7) are obviously true for δ . It is enough to prove that (2), (8) and (9) hold.

First, we prove (2). Let $f, g \in C^+(X)$ and T be a bijective δ -isometry on $C^+(X)$ with T(g) = g. Then we have by a simple calculation that

$$\Delta(T(f), f) = \left\| \frac{T(f)}{f} - 1 \right\| \\
\leq \left(\left\| \frac{T(f)}{T(g)} - 1 \right\| + 1 \right) \left\| \frac{g}{f} \right\| + 1 \\
\leq \left(\left\| \frac{T(f)}{T(g)} - 1 \right\| + \left\| \frac{T(g)}{T(f)} - 1 \right\| + 1 \right) \left\| \frac{g}{f} \right\| + 1 \\
= \left\{ \delta_{+}(T(f), T(g)) + 1 \right\} \left\| \frac{g}{f} \right\| + 1.$$

In a similar way to the above, we have that

(2.2.2)
$$\Delta(f, T(f)) \le \{\delta_+(T(f), T(g)) + 1\} \left\| \frac{f}{g} \right\| + 1.$$

First, we consider the case where $\delta = \delta_+$. By (2.2.1), we see that

(2.2.3)
$$\Delta(T(f), f) \leq \left\{ \delta_{+}(T(f), T(g)) + 1 \right\} \left\| \frac{g}{f} \right\| + 1$$
$$= \left(\delta_{+}(f, g) + 1 \right) \left\| \frac{g}{f} \right\| + 1$$

since T is assumed to be δ_+ -isometry. Similarly to the above, it follows from (2.2.2) that

(2.2.4)
$$\Delta(f, T(f)) \le (\delta_{+}(f, g) + 1) \left\| \frac{f}{g} \right\| + 1.$$

By (2.2.3) and (2.2.4), we conclude that

$$\delta_+(T(f), f) \le (\delta_+(f, g) + 1) \left(\left\| \frac{f}{g} \right\| + \left\| \frac{g}{f} \right\| \right) + 2$$

holds, and so we have proved that (2) holds for $\delta = \delta_+$.

We next consider the case where $\delta = \delta_{\times}$. If $||T(f)T(g)^{-1} - 1|| < 1/2$, then by a simple calculation we see that

$$-\frac{1}{3} < \frac{T(g)(x)}{T(f)(x)} - 1 < 1$$

holds for every $x \in X$, and so we have that

$$\delta_+(T(f),T(g)) = \left\| \frac{T(f)}{T(g)} - 1 \right\| + \left\| \frac{T(g)}{T(f)} - 1 \right\| < \frac{1}{2} + 1 < 2.$$

If $\Delta(T(f),T(g))=\|T(f)T(g)^{-1}-1\|\geq 1/2$, then let $x_0\in X$ be such that

$$\left|\frac{T(f)(x_0)}{T(g)(x_0)} - 1\right| = \left\|\frac{T(f)}{T(g)} - 1\right\|.$$

It follows from an easy calculation that

$$\frac{T(g)(x_0)}{T(f)(x_0)} - 1 \le -\frac{1}{3}$$
 or $1 \le \frac{T(g)(x_0)}{T(f)(x_0)} - 1$,

and so we get $\Delta(T(g), T(f)) = ||T(g)T(f)^{-1} - 1|| \ge 1/3$. Note that if $s \ge 1/2$ and $t \ge 1/3$, then the inequality $s + t \le 5st$ holds. Consequently, we see that

$$\Delta(T(f), T(g)) + \Delta(T(g), T(f)) \le 5\Delta(T(f), T(g))\Delta(T(g), T(f)),$$

which implies that

$$\delta_+(T(f), T(g)) \le 5\delta_\times(T(f), T(g)) = 5\delta_\times(f, g)$$

since T is assumed to be δ_{\times} -isometry. In any case, if we put $\alpha(f,g) = \max\{2, 5\delta_{\times}(f,g)\}$, then we have that

$$(2.2.5) \delta_+(T(f), T(g)) \le \alpha(f, g).$$

It follows from (2.2.1), (2.2.2) and (2.2.5) that

$$\delta_{\times}(T(f), f) = \Delta(T(f), f)\Delta(f, T(f)) \le \left\{ (\alpha(f, g) + 1) \left\| \frac{g}{f} \right\| + 1 \right\}$$

$$\times \left\{ (\alpha(f, g) + 1) \left\| \frac{f}{g} \right\| + 1 \right\}$$

holds, and hence we have proved that (2) holds for $\delta = \delta_{\times}$.

Secondly, we prove that (8) holds. Let $f, h \in C^+(X)$, and pick $x, y \in X$ so that

$$\left\| \frac{f}{h} - 1 \right\| = \left| \frac{f(x)}{h(x)} - 1 \right|$$
 and $\left\| \frac{h}{f} - 1 \right\| = \left| \frac{h(y)}{f(y)} - 1 \right|$.

To prove (8), it is enough to consider the case when $f \neq h$. Thus, we may and do assume that $f(y) \neq h(y)$. Then we have

$$\left| \frac{f(y)}{h(y)} - 1 \right| \le \left| \frac{f(x)}{h(x)} - 1 \right| \quad \text{and} \quad \left| \frac{h(x)}{f(x)} - 1 \right| \le \left| \frac{h(y)}{f(y)} - 1 \right|.$$

Since $f, h \in C^+(X)$, it follows from the above inequalities that

$$|h(x)|f(y) - h(y)| \le h(y)|f(x) - h(x)|$$

and

$$f(y)|h(x) - f(x)| \le f(x)|h(y) - f(y)|$$

hold. We thus obtain

$$|f(y)h(x)|f(y) - h(y)| \le f(y)h(y)|f(x) - h(x)|$$

 $\le h(y)f(x)|h(y) - f(y)|.$

Since $f(y) \neq h(y)$, we see that

(2.2.6)
$$f(y)h(x) \le f(x)h(y)$$
.

We first consider the case where $\delta = \delta_+$. Note that

$$(2.2.7) |a^2 - 1| + \left| \frac{1}{b^2} - 1 \right| \ge \frac{11}{10} \left(|a - 1| + \left| \frac{1}{b} - 1 \right| \right)$$

holds for all positive real numbers a, b with $a \ge b$. In fact, we see by a simple calculation that the inequality is equivalent to

$$(2.2.8) |a-1|(10a-1)+\left|\frac{1}{b}-1\right|\left(\frac{10}{b}-1\right)\geq 0.$$

This is obviously true if $b \le 1 \le a$. If $1 \le b \le a$, then we have that

$$|a-1|(10a-1) + \left|\frac{1}{b} - 1\right| \left(\frac{10}{b} - 1\right)$$

= $\left(a - \frac{1}{b}\right) \left\{10\left(a + \frac{1}{b}\right) - 11\right\} \ge 0.$

If $b \le a \le 1$, then a similar argument shows that (2.2.8) holds. From the above, we have proved that the inequality (2.2.7) holds for $0 < b \le a$. So, it follows from (2.2.6) and (2.2.7) that

$$\frac{11}{10}\delta_{+}(f,h) = \frac{11}{10} \left(\left| \frac{f(x)}{h(x)} - 1 \right| + \left| \frac{h(y)}{f(y)} - 1 \right| \right) \\
\leq \left| \frac{f(x)^{2}}{h(x)^{2}} - 1 \right| + \left| \frac{h(y)^{2}}{f(y)^{2}} - 1 \right| \\
\leq \delta_{+}(hf^{-1}h, f),$$

which shows that $\delta_+(hf^{-1}h, f) \ge 11\delta_+(f, h)/10$. Hence, δ_+ satisfies (8) by taking L(h) = 11/10.

We next consider the case where $\delta = \delta_{\times}$. It follows from (2.2.6) that

$$(2.2.9) 2f(y)h(x) \le (f(x) + h(x))(f(y) + h(y))$$

holds. Therefore, by (2.2.9), we have that

$$2\delta_{\times}(f,h) = 2\left\|\frac{f}{h} - 1\right\| \left\|\frac{h}{f} - 1\right\|$$

$$= 2\left|\frac{f(x)}{h(x)} - 1\right| \left|\frac{h(y)}{f(y)} - 1\right|$$

$$= 2\left|\frac{(f(x) - h(x))(h(y) - f(y))}{f(y)h(x)}\right|$$

$$= 2\left|\frac{(f(x)^2 - h(x)^2)(h(y)^2 - f(y)^2)}{f(y)h(x)(f(x) + h(x))(f(y) + h(y))}\right|$$

$$\leq \left|\frac{(f(x)^2 - h(x)^2)(h(y)^2 - f(y)^2)}{f(y)^2h(x)^2}\right|$$

$$= \left|\frac{f(x)^2}{h(x)^2} - 1\right| \left|\frac{h(y)^2}{f(y)^2} - 1\right|$$

$$\leq \left\|\frac{f^2}{h^2} - 1\right\| \left\|\frac{h^2}{f^2} - 1\right\|.$$

It follows that $2\delta_{\times}(f,h) \leq \delta_{\times}(hf^{-1}h,f)$ holds. We thus conclude that δ_{\times} satisfies (8) by taking L(h) = 2.

Finally, we prove (9). Pick $f, g \in C^+(X)$ arbitrarily, and put $h = \sqrt{fg}$. Then $h \in M(f,g)$, and so (9) is proved. Therefore, we conclude that $(C^+(X), \delta)$ is a super reflective metricoid group. Recall that $(f \circ g)/2$ is an empty set, or a singleton, by Corollary 1.3. Since $\sqrt{fg} \in M(f,g) \subset (f \circ g)/2$, we have that $(f \circ g)/2 = \sqrt{fg}$, and the proof is complete. \square

3. Surjections on $C^+(X)$ which preserve subdistance. In this section we give representations for certain isometries from $C^+(X)$ onto $C^+(Y)$, which preserve subdistance. Put

$$\delta_{\max}(f,g) = \max\{\Delta(f,g), \Delta(g,f)\}, \quad (f,g \in C^+(K)),$$

that is.

$$\delta_{\max}(f,g) = \max\left\{\left\|\frac{f}{g} - 1\right\|, \left\|\frac{g}{f} - 1\right\|\right\}$$

for $f, g \in C^+(K)$. Here, K denotes a compact Hausdorff space. We first give a representation for δ_{\max} -isometry.

Theorem 3.1. Let T be a surjection from $C^+(X)$ onto $C^+(Y)$ such that the equality

$$\delta_{\max}(T(f), T(g)) = \delta_{\max}(f, g)$$

holds for every $f,g \in C^+(X)$. Then there exist a $w \in C^+(Y)$, and $h \in C^+(Y)$ with $h(Y) \subset \{-1,1\}$ and a homeomorphism $\Phi: Y \to X$ such that $T(f)(y) = \{w(y)f(\Phi(y))\}^{h(y)}$ holds for every $f \in C^+(X)$ and $y \in Y$.

Proof. Put $\widetilde{T} = T/T(1)$. Then we can easily see that $\widetilde{T}: C^+(X) \to C^+(Y)$ is a surjection such that

(3.3.1)
$$\delta_{\max}(\widetilde{T}(f), \widetilde{T}(g)) = \delta_{\max}(f, g), \quad (f, g \in C^+(X)).$$

Note that \widetilde{T} is injective by (3.3.1). It follows that \widetilde{T} is a bijection. Let $S: C(X) \to C(Y)$ be a map defined by

$$(3.3.2) S(u) = \log(\widetilde{T}(\exp u)), \quad (u \in C(X)).$$

We show that ||S(u) - S(v)|| = ||u - v|| holds for every $u, v \in C(X)$. To this end, pick $u, v \in C(X)$ arbitrarily. Since

$$\exp \|u\| - 1 = \max \left\{ \|\exp u - 1\|, \ \left\| \frac{1}{\exp u} - 1 \right\| \right\},$$

we see that

(3.3.3)
$$\delta_{\max}(\exp u, \exp v) = \exp \|u - v\| - 1.$$

A quite similar argument to the above shows that

(3.3.4)
$$\delta_{\max}(\exp S(u), \exp S(v)) = \exp ||S(u) - S(v)|| - 1.$$

Since $\exp S(u) = \exp(\log(\widetilde{T}(\exp u))) = \widetilde{T}(\exp u)$, it follows from (3.3.1), (3.3.3) and (3.3.4) that

$$\exp \|S(u) - S(v)\| - 1 = \delta_{\max}(\widetilde{T}(\exp u), \widetilde{T}(\exp v))$$
$$= \delta_{\max}(\exp u, \exp v) = \exp \|u - v\| - 1,$$

which proves that $\|S(u) - S(v)\| = \|u - v\|$. Thus S is an isometry and it is bijective since \widetilde{T} is. By Corollary 2.2, S is affine. Since S(0) = 0, we have that S is real-linear. Consequently, S is a bijective real-linear isometry. By the Banach-Stone theorem there exist an $h \in C(Y)$ with $h(Y) \subset \{-1,1\}$ and a homeomorphism $\Phi: Y \to X$ such that $S(u)(y) = h(y)u(\Phi(y))$ holds for every $u \in C(X)$ and $y \in Y$. Therefore, for each $f \in C^+(X)$ and $y \in Y$, we have by (3.3.2) that

$$\widetilde{T}(f)(y) = \exp(S(\log f)(y)) = \exp(h(y)\log f(\Phi(y)))$$
$$= \{f(\Phi(y))\}^{h(y)},$$

and hence

$$T(f)(y) = T(1)(y) \{ f(\Phi(y)) \}^{h(y)}$$

holds for every $f \in C^+(X)$ and $y \in Y$. Put $w(y) = \{T(1)(y)\}^{h(y)}$. Then we see that

$$(w(y))^{h(y)} = \{T(1)(y)^{h(y)}\}^{h(y)} = \{T(1)(y)\}^{h(y)^2} = T(1)(y).$$

We thus conclude that

$$(3.3.5) T(f)(y) = (w(y))^{h(y)} \{ f(\Phi(y)) \}^{h(y)} = \{ w(y) f(\Phi(y)) \}^{h(y)}$$

holds for every $f \in C^+(X)$ and $y \in Y$. This completes the proof.

Remark 3.1. Let B(H) be the C^* -algebra of all bounded linear operators on a complex Hilbert space H. We denote by $B(H)_{-1}^+$ the set of all invertible positive operators of B(H). The Thompson metric δ_T on $B(H)_{-1}^+$ is given by

$$\delta_T(A, B) = \|\log A^{-1/2} B A^{-1/2} \|, \quad (A, B \in B(H)_{-1}^+).$$

In [4] Molnár characterized bijective isometries from $B(H)_{-1}^+$ onto itself with respect to the Thompson metric. It seems natural to consider surjections T from $C^+(X)$ onto $C^+(Y)$ that satisfy

$$\|\log T(f) - \log T(g)\| = \|\log f - \log g\|, \quad (f, g \in C^+(X)).$$

If we define $S: C(X) \to C(Y)$ by (3.3.2), then we see that S is a bijective isometry. In the same way as in the proof of Theorem 3.1, we can prove that T is of the form (3.3.5).

Corollary 3.2. Let T be a surjection from $C^+(X)$ onto $C^+(Y)$ such that

$$\Delta(T(f), T(g)) = \Delta(f, g)$$

holds for every $f, g \in C^+(X)$. Then there exist a $w \in C^+(Y)$ and a homeomorphism $\Phi: Y \to X$ such that $T(f) = w(f \circ \Phi)$ holds for every $f \in C^+(X)$.

Proof. Since $\Delta(T(f), T(g)) = \Delta(f, g)$ for $f, g \in C^+(X)$, we see that

$$\delta_{\max}(T(f), T(g)) = \delta_{\max}(f, g), \quad (f, g \in C^+(X))$$

by the definition of δ_{\max} . It follows from Theorem 3.1 that there exist a $w \in C^+(Y)$, an $h \in C^+(Y)$ with $h(Y) \subset \{-1,1\}$ and a homeomorphism $\Phi: Y \to X$ such that $T(f)(y) = \{w(y)f(\Phi(y))\}^{h(y)}$ for every $f \in C^+(X)$ and $y \in Y$. So it is enough to show that h = 1 on Y. Since $T(1)(y) = w(y)^{h(y)}$ and $T(2)(y) = 2^{h(y)}w(y)^{h(y)}$, we have that $T(1)(y)/T(2)(y) = 1/2^{h(y)}$ for all $y \in Y$, and hence

$$\left\| \frac{1}{2^h} - 1 \right\| = \left\| \frac{T(1)}{T(2)} - 1 \right\| = \left\| \frac{1}{2} - 1 \right\| = \frac{1}{2},$$

which implies that h = 1 on Y.

Finally, we give representations for isometries which preserve subdistance δ_+ or δ_{\times} .

Theorem 3.3. Let $\delta \in \{\delta_+, \delta_\times\}$ and T be a surjection from $C^+(X)$ onto $C^+(Y)$ such that the equality

(3.3.6)
$$\delta(T(f), T(g)) = \delta(f, g)$$

holds for every f, $g \in C^+(X)$. Then there exist a $w \in C^+(Y)$ and a homeomorphism $\Phi: Y \to X$ such that T(f) is either of the form

$$T(f) = w(f \circ \Phi), \quad (f \in C^+(X))$$

or of the form

$$T(f) = \frac{1}{w(f \circ \Phi)}, \quad (f \in C^+(X)).$$

To prove this, we fix some notation.

Notation. For $a, b \in \mathbf{R}$, put

$$\gamma_+(a,b) = a+b, \quad \gamma_\times(a,b) = ab.$$

Recall that

$$\delta_+(f,g) = \left\|rac{f}{g}-1
ight\| + \left\|rac{g}{f}-1
ight\|, \quad \delta_ imes(f,g) = \left\|rac{f}{g}-1
ight\| \left\|rac{g}{f}-1
ight\|.$$

So, we can rewrite δ_+ and δ_{\times} as

$$\delta_{+}(f,g) = \gamma_{+}(\Delta(f,g), \Delta(g,f)),$$

$$\delta_{\times}(f,g) = \gamma_{\times}(\Delta(f,g), \Delta(g,f))$$

for $f, g \in C^+(K)$, where K denotes a compact Hausdorff space. Let $(\delta, \gamma) \in \{(\delta_+, \gamma_+), (\delta_\times, \gamma_\times)\}$. From Lemma 3.5 to Lemma 3.11, T denotes a surjection from $C^+(X)$ onto $C^+(Y)$ such that (3.3.6) holds for every $f, g \in C^+(X)$.

Lemma 3.4. No combination of real numbers m, M and n_0 exists such that

$$(3.3.7) (M^n - 1) \left(\frac{1}{m^n} - 1\right) = \frac{1}{3^n} (3^n - 1)^2$$

holds for every natural number $n \geq n_0$.

Proof. Suppose, on the contrary, that there exist real numbers m, M and n_0 satisfying (3.3.7) for all $n \geq n_0$. Pick $n \geq n_0$ arbitrarily. By (3.3.7), we see that

$$(M^{2n} - 1)\left(\frac{1}{m^{2n}} - 1\right) = \frac{1}{3^{2n}}(3^{2n} - 1)^2$$

holds. So we have that

$$(3.3.8) \quad (M^n - 1)(M^n + 1)\left(\frac{1}{m^n} - 1\right)\left(\frac{1}{m^n} + 1\right)$$
$$= \frac{1}{3^n}(3^n - 1)^2 \frac{1}{3^n}(3^n + 1)^2.$$

It follows from (3.3.7) and (3.3.8) that

$$(3.3.9) (M^n+1)\left(\frac{1}{m^n}+1\right) = \frac{1}{3^n}(3^n+1)^2.$$

Subtraction of (3.3.7) from (3.3.9) gives

$$(M^{n}+1)\left(\frac{1}{m^{n}}+1\right)-(M^{n}-1)\left(\frac{1}{m^{n}}-1\right)$$
$$=\frac{1}{3^{n}}\left\{(3^{n}+1)^{2}-(3^{n}-1)^{2}\right\}=4.$$

On the other hand, since

$$(M^n+1)\left(\frac{1}{m^n}+1\right)-(M^n-1)\left(\frac{1}{m^n}-1\right)=2\left(M^n+\frac{1}{m^n}\right),$$

we now get

$$2\left(M^n + \frac{1}{m^n}\right) = 4$$
, and hence $\frac{1}{m^n} = 2 - M^n$.

Since $n \geq n_0$ is arbitrary, we have

$$4 - 4M^n + M^{2n} = (2 - M^n)^2 = \frac{1}{m^{2n}} = 2 - M^{2n}.$$

It follows that $M^{2n} - 2M^n + 1 = 0$. Consequently, $M^n = 1$, which contradicts (3.3.7). This completes the proof. \Box

Lemma 3.5. *T* is a continuous map with respect to the topology induced by $\|\cdot\|$ such that

$$(3.3.10) T((fg)^{1/2}) = T(f)^{1/2}T(g)^{1/2}$$

holds for every $f, g \in C^+(X)$.

Proof. Pick $\{f_n\} \subset C^+(X)$ so that $||f_n - f|| \to 0$ as $n \to \infty$ for some $f \in C^+(X)$. In this case, we have that

$$\Delta(f, f_n) = \left\| \frac{f}{f_n} - 1 \right\| \longrightarrow 0$$

and

$$\Delta(f_n, f) = \left\| \frac{f_n}{f} - 1 \right\| \to 0$$

as $n \to \infty$. Since

$$\delta(T(f_n), T(f)) = \delta(f_n, f) = \gamma(\Delta(f_n, f), \Delta(f, f_n)) \longrightarrow 0$$

as $n \to \infty$, we see that $\Delta(T(f_n), T(f))$ or $\Delta(T(f), T(f_n))$ converges to 0 as $n \to \infty$. In any case, we have that

$$\Delta(T(f_n), T(f)) = \left\| \frac{T(f_n)}{T(f)} - 1 \right\| \longrightarrow 0 \quad (\text{as } n \to \infty).$$

This implies that

$$||T(f_n) - T(f)|| \le ||T(f)|| \left| \frac{T(f_n)}{T(f)} - 1 \right| \longrightarrow 0$$

as $n \to \infty$, and so T is continuous.

We will prove that (3.3.10) holds for every $f, g \in C^+(X)$. Since $\delta(T(f), T(g)) = \delta(f, g)$ for $f, g \in C^+(X)$, we have that T is injective. Recall that for a compact Hausdorff space K, $(C^+(K), \delta)$ is a super reflective metricoid group by Theorem 2.4. It follows from Theorem 2.1 that T is affine, that is,

$$T\left(\frac{f\circ g}{2}\right) = \frac{T(f)\circ T(g)}{2}$$

holds for every $f, g \in C^+(X)$ (cf. Definition 1.6). Note that $(f \circ g)/2 = \sqrt{fg}$ by Theorem 2.4, and so we get

$$T((fg)^{1/2}) = T(f)^{1/2}T(g)^{1/2}$$

for every $f, g \in C^+(X)$. This completes the proof. \square

By Lemma 3.5, T is a surjection from $C^+(X)$ onto $C^+(Y)$ such that

$$T((fg)^{1/2}) = T(f)^{1/2}T(g)^{1/2}$$

holds for every $f, g \in C^+(X)$. From Lemma 3.6 to Lemma 3.8, we will use the above property.

Lemma 3.6. The following equations hold.

- (a) $T(fg) = T(f)T(g)T(1)^{-1}$ for every $f, g \in C^{+}(X)$.
- (b) $T(f^{-1}) = T(f)^{-1}T(1)^2$ for every $f \in C^+(X)$.
- (c) $T(f^m) = T(f)^m T(1)^{1-m}$ for every $f \in C^+(X)$ and integer m.

Proof. (a) By (3.3.10), we have that

$$T(f) = T((f^2 \cdot 1)^{1/2}) = T(f^2)^{1/2}T(1)^{1/2}.$$

This implies that $T(f)^2 = T(f^2)T(1)$, and hence $T(f^2) = T(f)^2T(1)^{-1}$ holds for $f \in C^+(X)$. Then we have that

$$T(fg) = T\Big(\left(f^2g^2\right)^{1/2}\Big) = T(f^2)^{1/2}T(g^2)^{1/2} = T(f)T(g)T(1)^{-1}$$

holds for every $f, g \in C^+(X)$.

(b) It follows from (a) that

$$T(1) = T(ff^{-1}) = T(f)T(f^{-1})T(1)^{-1}$$

for $f \in C^+(X)$, which shows that $T(f^{-1}) = T(1)^2 T(f)^{-1}$ holds for every $f \in C^+(X)$.

(c) By induction, with (a), we see that $T(f^m) = T(f)^m T(1)^{1-m}$ holds for every $f \in C^+(X)$ and nonnegative integer m. Pick an integer $m \le -1$ arbitrarily. Since $T(f^m) = T((f^{-1})^{-m})$, it follows from the equation above and (b) that

$$T(f^{m}) = T(f^{-1})^{-m}T(1)^{1+m}$$

$$= (T(f)^{-1}T(1)^{2})^{-m}T(1)^{1+m}$$

$$= T(f)^{m}T(1)^{1-m}$$

for every $f \in C^+(X)$. Since $m \leq -1$ is arbitrary, this proves (c).

Lemma 3.7. Let n be a positive integer. Then the equation

(3.3.11)
$$T(f^r g^{1-r}) = T(f)^r T(g)^{1-r}$$

holds for every f, $g \in C^+(X)$ and every r of the form $r = m/2^n$, where m is a non-negative integer with $0 \le m \le 2^n$.

Proof. We prove equation (3.3.11) by induction with respect to n. Equation (3.3.11) holds for n=1 by hypothesis. Suppose that (3.3.11) holds for n. Pick an integer m with $0 \le m \le 2^{n+1}$ arbitrarily, and put $r=m/2^{n+1}$. We first consider the case where m is even, say m=2l. Since

$$r = \frac{m}{2^{n+1}} = \frac{l}{2^n}, \quad \text{where} \quad 0 \le l \le 2^n,$$

by the hypothesis of induction, we have that $T(f^rg^{1-r}) = T(f)^rT(g)^{1-r}$.

We next consider the case where m = 2l + 1. Since

$$r = \frac{2l+1}{2^{n+1}} = \left(\frac{l}{2^n} + \frac{l+1}{2^n}\right)\frac{1}{2},$$

we can write

$$f^r = \left(f^{l/2^n} f^{(l+1)/2^n}\right)^{1/2}$$

and

$$g^{1-r} = \left(g^{1-l/2^n}g^{1-(l+1)/2^n}\right)^{1/2}.$$

Note that $l+1 \leq 2^n$ since $2l+1 = m \leq 2^{n+1}$. By hypothesis of induction, we have that

$$\begin{split} T(f^rg^{1-r}) &= T\Big(\left(f^{l/2^n}g^{1-l/2^n}\right)^{1/2}\left(f^{(l+1)/2^n}g^{1-(l+1)/2^n}\right)^{1/2}\Big) \\ &= T\left(f^{l/2^n}g^{1-l/2^n}\right)^{1/2}T\left(f^{(l+1)/2^n}g^{1-(l+1)/2^n}\right)^{1/2} \\ &= \left(T(f)^{l/2^n}T(g)^{1-l/2^n}\right)^{1/2}\!\!\left(T(f)^{(l+1)/2^n}T(g)^{1-(l+1)/2^n}\right)^{1/2} \\ &= T(f)^{(2l+1)/2^{n+1}}T(g)^{1-(2l+1)/2^{n+1}} \\ &= T(f)^rT(g)^{1-r} \end{split}$$

holds. By induction, this completes the proof.

Lemma 3.8. The equation

$$T(f^p g^{1-p}) = T(f)^p T(g)^{1-p}$$

holds for every $f, g \in C^+(X)$ and $p \in \mathbf{R}$.

Proof. We first consider the case where $0 \leq p \leq 1$. There exists a sequence of dyadic rational numbers p_n such that p_n converges to p as $n \to \infty$. Note that T is continuous by Lemma 3.5. It follows from Lemma 3.7 that $T(f^pg^{1-p}) = T(f)^pT(g)^{1-p}$ holds for every f, $g \in C^+(X)$.

Next we consider the general case. Pick $p \in \mathbf{R}$ arbitrarily, and put p=m+r, where m is an integer and $0 \le r < 1$. It follows from (a) of Lemma 3.6 that

$$\begin{split} T(f^pg^{1-p}) &= T(f^mf^rg^{1-r}g^{-m}) \\ &= T(f^mg^{-m})T(f^rg^{1-r})T(1)^{-1} \\ &= T(f^m)T(g^{-m})T(1)^{-1}T(f^rg^{1-r})T(1)^{-1} \\ &= T(f^m)T(g^{-m})T(f)^rT(g)^{1-r}T(1)^{-2} \end{split}$$

since $0 \le r < 1$. By (c) of Lemma 3.6, we obtain that

$$T(f^m) = T(f)^m T(1)^{1-m}$$

and

$$T(g^{-m}) = T(g)^{-m}T(1)^{1+m},$$

and consequently, $T(f^m)T(g^{-m}) = T(f)^mT(g)^{-m}T(1)^2$. It follows that

$$T(f^p g^{1-p}) = T(f)^m T(g)^{-m} T(1)^2 T(f)^r T(g)^{1-r} T(1)^{-2}$$
$$= T(f)^{m+r} T(g)^{1-(m+r)} = T(f)^p T(g)^{1-p}$$

holds for every $f, g \in C^+(X)$.

Notation. Let K be a compact Hausdorff space. For $u \in C^+(K)$, put

$$m_u = \min\{u(x) : x \in K\}$$
 and $M_u = \max\{u(x) : x \in K\}.$

Lemma 3.9. Suppose that T(1) = 1 and T(fg) = T(f)T(g) holds for every f, $g \in C^+(X)$. Let $\phi \in C^+(X)$ and $\varphi \in C^+(Y)$ be such that $T(\phi) = \varphi$.

(a) If
$$1\leq\phi\leq 3$$
 with $\|\phi\|=3$, then
$$m_{\varphi}=\frac{1}{3}\leq\varphi\leq 1,\quad or\quad 1\leq\varphi\leq 3=M_{\varphi}.$$

(b) If
$$1 \le \varphi \le 3$$
 with $\|\varphi\|=3$, then
$$m_\phi=\frac{1}{3}\le \phi \le 1, \quad or \quad 1\le \phi \le 3=M_\phi.$$

Proof. Since T(1) = 1, it follows from (3.3.6) that $\delta(T(f), 1) = \delta(f, 1)$ holds for every $f \in C^+(X)$. This implies that

$$\delta(\varphi, 1) = \delta(T(\phi), 1) = \delta(\phi, 1).$$

(a) If $1 \le \phi \le 3$ with $\|\phi\| = 3$, then we see that

$$\Delta(\phi, 1) = \|\phi - 1\| = 2$$
 and $\Delta(1, \phi) = \left\|\frac{1}{\phi} - 1\right\| = \frac{2}{3}$.

It follows that

$$\begin{split} \gamma(\Delta(\varphi,1),\Delta(1,\varphi)) &= \delta(\varphi,1) = \delta(\phi,1) \\ &= \gamma(\Delta(\phi,1),\Delta(1,\phi)) \\ &= \gamma\left(2,\frac{2}{3}\right), \end{split}$$

and so

(3.3.12)
$$\gamma(\Delta(\varphi,1),\Delta(1,\varphi)) = \gamma\left(2,\frac{2}{3}\right).$$

If $\gamma = \gamma_+$, then we have

$$\|\varphi - 1\| + \left\| \frac{1}{\varphi} - 1 \right\| = \gamma_+(\Delta(\varphi, 1), \Delta(1, \varphi))$$
$$= \gamma_+\left(2, \frac{2}{3}\right) = \frac{8}{3}.$$

If $\gamma = \gamma_{\times}$, then we have

$$\|\varphi - 1\| \left\| \frac{1}{\varphi} - 1 \right\| = \gamma_{\times} (\Delta(\varphi, 1), \Delta(1, \varphi))$$
$$= \gamma_{\times} \left(2, \frac{2}{3} \right) = \frac{4}{3}.$$

In any case, we see that $1/3 \le \varphi \le 3$.

Secondly, we prove that $m_{\varphi} < 1$ implies $M_{\varphi} \leq 1$. Suppose, on the contrary, that $m_{\varphi} < 1 < M_{\varphi}$. Let n be a positive integer. Since T is assumed to preserve multiplication, $T(\phi^n) = \varphi^n$ holds. So, for a sufficiently large n with $M_{\varphi}^n > 2$ and $1/m_{\varphi}^n > 2$, we have that

$$M_{\varphi}^{n} - 1 = \|\varphi^{n} - 1\| = \Delta(\varphi^{n}, 1)$$

and

$$\frac{1}{m_{\varphi}^{n}} - 1 = \left\| \frac{1}{\varphi^{n}} - 1 \right\| = \Delta(1, \varphi^{n}).$$

This implies that

$$\gamma\left(M_{\varphi}^{n}-1, \frac{1}{m_{\varphi}^{n}}-1\right) = \gamma(\Delta(\varphi^{n}, 1), \Delta(1, \varphi^{n}))$$

$$= \delta(\varphi^{n}, 1) = \delta(T(\phi^{n}), 1) = \delta(\phi^{n}, 1)$$

$$= \gamma\left(\|\phi^{n}-1\|, \left\|\frac{1}{\phi^{n}}-1\right\|\right).$$

Since $1 \le \phi \le 3$ with $\|\phi\| = 3$, we see that

$$\|\phi^n - 1\| = 3^n - 1$$
 and $\left\| \frac{1}{\phi^n} - 1 \right\| = 1 - \frac{1}{3^n}$.

It follows that

$$(3.3.13) \gamma \left(M_{\varphi}^{n} - 1, \frac{1}{m_{\varphi}^{n}} - 1 \right) = \gamma \left(3^{n} - 1, 1 - \frac{1}{3^{n}} \right).$$

If $\gamma = \gamma_+$, then we have

$$(M_{\varphi}^{n}-1)+\left(\frac{1}{m_{\varphi}^{n}}-1\right)=(3^{n}-1)+\left(1-\frac{1}{3^{n}}\right)$$

that is,

(3.3.14)
$$\left(\frac{M_{\varphi}}{3}\right)^n + \left(\frac{1}{3m_{\varphi}}\right)^n - \frac{2}{3^n} = 1 - \frac{1}{9^n}.$$

Letting $n \to \infty$, we have that $M_{\varphi} = 3$, or $m_{\varphi} = 1/3$. If $M_{\varphi} = 3$, it would follow from (3.3.14) that

$$\frac{1}{m_{\omega}{}^n}-2=-\frac{1}{3^n},$$

which would be a contradiction since $1/m_{\varphi}^{n} > 2$. Therefore, we have $m_{\varphi} = 1/3$. From (3.3.14), we obtain

$$M_{\varphi}^{n}-2=-\frac{1}{3^{n}},$$

which is also impossible since $M_{\varphi}^{n} > 2$. We now arrive at a contradiction. This proves that $m_{\varphi} < 1$ implies $M_{\varphi} \leq 1$ if $\gamma = \gamma_{+}$.

If $\gamma = \gamma_{\times}$, then it follows from (3.3.13) that

$$(M_{\varphi}^{n}-1)\left(\frac{1}{m_{\varphi}^{n}}-1\right)=(3^{n}-1)\left(1-\frac{1}{3^{n}}\right)=\frac{1}{3^{n}}(3^{n}-1)^{2}$$

for every $n \geq 1$. This is a contradiction by Lemma 3.4. We thus conclude that $m_{\varphi} < 1$ implies $M_{\varphi} \leq 1$ even if $\gamma = \gamma_{\times}$.

Since $1/3 \le \varphi \le 3$, we now get that

$$\frac{1}{3} \leq m_{\varphi} \leq \varphi \leq M_{\varphi} \leq 1, \quad \text{or} \quad 1 \leq m_{\varphi} \leq \varphi \leq M_{\varphi} \leq 3.$$

Finally, we prove that $m_{\varphi}=1/3$ if $m_{\varphi}<1$, and that $M_{\varphi}=3$ if $1\leq m_{\varphi}$. In fact, if $m_{\varphi}<1$, then $m_{\varphi}\leq M_{\varphi}\leq 1$ as proved above. So, we obtain

$$\Delta(\varphi, 1) = \|\varphi - 1\| = 1 - m_{\omega}$$

and

$$\Delta(1,arphi) = \left\|rac{1}{arphi} - 1
ight\| = rac{1}{m_{arphi}} - 1.$$

It follows from (3.3.12) that

$$\gamma\bigg(1-m_\varphi,\frac{1}{m_\varphi}-1\bigg)=\gamma(\varDelta(\varphi,1),\varDelta(1,\varphi))=\gamma\bigg(2,\frac{2}{3}\bigg).$$

If $\gamma = \gamma_+$, then we have that

$$\frac{1}{m_{\varphi}} - m_{\varphi} = 1 - m_{\varphi} + \left(\frac{1}{m_{\varphi}} - 1\right) = 2 + \frac{2}{3} = \frac{8}{3}.$$

Since $0 < m_{\varphi}$, we have that $m_{\varphi} = 1/3$.

If $\gamma = \gamma_{\times}$, then we have that

$$(1 - m_{\varphi}) \left(\frac{1}{m_{\varphi}} - 1 \right) = 2 \times \frac{2}{3} = \frac{4}{3}.$$

Since $m_{\varphi} < 1$, we obtain $m_{\varphi} = 1/3$. This proves that $m_{\varphi} = 1/3$ if $m_{\varphi} < 1$.

Suppose that $1 \leq m_{\varphi}$. Then we have $1 \leq m_{\varphi} \leq M_{\varphi} \leq 3$ as proved above. It follows that

$$\Delta(arphi,1) = \|arphi - 1\| = M_{arphi} - 1 \quad ext{and} \quad \Delta(1,arphi) = \left\| rac{1}{arphi} - 1
ight\| = 1 - rac{1}{M_{arphi}}.$$

In a way similar to the above, we see that $M_{\varphi} = 3$ if $1 \leq m_{\varphi}$.

(b) Suppose that $1 \le \varphi \le 3$ with $\|\varphi\| = 3$. By interchanging ϕ with φ , we see that the proof of (a) works well. So, we get

$$m_{\phi} = \frac{1}{3} \le \phi \le 1$$
, or $1 \le \phi \le 3 = M_{\phi}$.

This completes the proof. \Box

Lemma 3.10. Suppose that T(1) = 1 and T(fg) = T(f)T(g) holds for every $f, g \in C^+(X)$.

- (a) If $1 \le m_{T(3)}$, then T(3) = 3 on Y.
- (b) If $m_{T(3)} < 1$, then T(3) = 1/3 on Y.

Proof. Put $T(3) = \varphi \in C^+(Y)$. By (a) of Lemma 3.9 we see that

$$(3.3.15) m_{\varphi} = \frac{1}{3} \le \varphi \le 1, \quad \text{or} \quad 1 \le \varphi \le 3 = M_{\varphi}.$$

(a) We show that $\varphi=3$ on Y whenever $1\leq m_{\varphi}$. Suppose, on the contrary, that $\varphi(y_0)\neq 3$ for some $y_0\in Y$, while $1\leq m_{\varphi}$. Set $\varepsilon_0=\varphi(y_0)$ and $\varepsilon_0{}'=1/(3-\varepsilon_0)$. Then $1\leq \varepsilon_0<3$ and $1/2\leq \varepsilon_0{}'$ since $1\leq \varphi\leq 3=M_{\varphi}$. If we define $\zeta\colon [1,3]\to [1,3]$ by

$$\zeta(t) = \begin{cases} 3\,\varepsilon_0^{\,-1}\,t & \text{if } 1 \le t \le \varepsilon_0 \\ 2\,\varepsilon_0{}'(t-3) + 1 & \text{if } \varepsilon_0 < t \le 3 \end{cases},$$

then ζ is onto. Set $\widetilde{\varphi} = \zeta \circ \varphi \in C^+(Y)$. By a simple calculation we see that $1 \leq \widetilde{\varphi} \leq 3 = M_{\widetilde{\varphi}}$, $\|\varphi/\widetilde{\varphi}\| = 3$ and $\|\widetilde{\varphi}/\varphi\| = 3\varepsilon_0'$. Therefore, we have that

$$\Delta(\varphi^n, \widetilde{\varphi}^n) = \left\| \frac{\varphi^n}{\widetilde{\varphi}^n} - 1 \right\| = 3^n - 1$$

and that

$$\Delta(\widetilde{\varphi}^n, \varphi^n) = \left\| \frac{\widetilde{\varphi}^n}{\varphi^n} - 1 \right\| = (3\varepsilon_0')^n - 1$$

holds for a sufficiently large n, and hence

(3.3.16)
$$\delta(\varphi^n, \widetilde{\varphi}^n) = \gamma(\Delta(\varphi^n, \widetilde{\varphi}^n), \Delta(\widetilde{\varphi}^n, \varphi^n))$$
$$= \gamma(3^n - 1, (3\varepsilon_0)^n - 1)$$

holds for a sufficiently large n.

Since T is surjective, there exists a $\phi \in C^+(X)$ such that $T(\phi) = \widetilde{\varphi}$. By (b) of Lemma 3.9, we see that

$$\frac{1}{3} = m_{\phi} \le \phi \le 1$$
, or $1 \le \phi \le 3 = M_{\phi}$.

Since T preserves multiplication, it follows from (3.3.16) that

(3.3.17)
$$\delta(3^n, \phi^n) = \delta(T(3^n), T(\phi^n))$$
$$= \delta(T(3)^n, T(\phi)^n) = \delta(\varphi^n, \tilde{\varphi}^n)$$
$$= \gamma (3^n - 1, (3\varepsilon_0')^n - 1)$$

holds for sufficiently large n. Suppose that $1/3 = m_{\phi} \le \phi \le 1$. In this case, we have that

(3.3.18)
$$\Delta(3^n, \phi^n) = \left\| \frac{3^n}{\phi^n} - 1 \right\| = 9^n - 1$$

and

(3.3.19)
$$\Delta(\phi^n, 3^n) = \left\| \frac{\phi^n}{3^n} - 1 \right\| = 1 - \frac{1}{9^n}$$

for every n.

We first consider the case where $\gamma = \gamma_+$. Recall that

$$\delta(3^n, \phi^n) = \gamma(\Delta(3^n, \phi^n), \Delta(\phi^n, 3^n))$$

for every n. Since $\gamma = \gamma_+$, it follows from (3.3.18) and (3.3.19) that

(3.3.20)
$$\begin{split} \delta(3^n, \phi^n) &= \gamma_+(\Delta(3^n, \phi^n), \Delta(\phi^n, 3^n)) \\ &= (9^n - 1) + \left(1 - \frac{1}{9^n}\right) \\ &= 9^n - \frac{1}{9^n} \end{split}$$

for every n. By (3.3.17) and (3.3.20), we get

$$9^{n} - \frac{1}{9^{n}} = \delta(3^{n}, \phi^{n})$$

$$= \gamma_{+} (3^{n} - 1, (3\varepsilon_{0}')^{n} - 1)$$

$$= (3^{n} - 1) + (3\varepsilon_{0}')^{n} - 1$$

$$= 3^{n} + (3\varepsilon_{0}')^{n} - 2,$$

and hence

$$1 - \frac{1}{9^{2n}} = \frac{1}{3^n} + \left(\frac{{\varepsilon_0}'}{3}\right)^n - \frac{2}{9^n}$$

for a sufficiently large n, which is impossible since $\varepsilon_0' \geq 1/2$. This shows that $1 \leq \phi \leq 3 = M_{\phi}$. In this case, we have that

(3.3.21)
$$\Delta(3^n, \phi^n) = \left\| \frac{3^n}{\phi^n} - 1 \right\| = 3^n - 1$$

and that

(3.3.22)
$$\Delta(\phi^n, 3^n) = \left\| \frac{\phi^n}{3^n} - 1 \right\| < 1$$

for every n. It follows from (3.3.17)-(3.3.19) that

$$(3^{n} - 1) + 1 > \gamma_{+}(\Delta(3^{n}, \phi^{n}), \Delta(\phi^{n}, 3^{n}))$$

$$= \delta_{+}(3^{n}, \phi^{n}) = \gamma_{+}(3^{n} - 1, (3\varepsilon_{0}')^{n} - 1)$$

$$= 3^{n} + (3\varepsilon_{0}')^{n} - 2,$$

which implies that $3^n > 3^n + (3{\varepsilon_0}')^n - 2$ for a sufficiently large n. This is also impossible since ${\varepsilon_0}' \ge 1/2$. We now arrived at a contradiction. This proves that if $\gamma = \gamma_+$, then $\varphi = 3$ on Y whenever $1 \le m_{\varphi}$.

Next, we consider the case where $\gamma = \gamma_{\times}$. Recall that

$$\frac{1}{3} = m_{\phi} \le \phi \le 1$$
, or $1 \le \phi \le 3 = M_{\phi}$.

Suppose that $1/3 = m_{\phi} \le \phi \le 1$. It follows from (3.3.17)–(3.3.19) that

$$(9^{n} - 1)\left(1 - \frac{1}{9^{n}}\right) = \gamma_{\times}(\Delta(3^{n}, \phi^{n}), \Delta(\phi^{n}, 3^{n}))$$

$$= \delta_{\times}(3^{n}, \phi^{n}) = \gamma_{\times}(3^{n} - 1, (3\varepsilon_{0}')^{n} - 1)$$

$$= (3^{n} - 1)\{(3\varepsilon_{0}')^{n} - 1\},$$

which proves that

$$\left(1 + \frac{1}{3^n}\right)\left(1 - \frac{1}{9^n}\right) = (\varepsilon_0')^n - \frac{1}{3^n}$$

holds for sufficiently large n. Letting $n \to \infty$, we have $\varepsilon_0' = 1$. By simple calculation, we see that this is impossible. So, we must have $1 \le \phi \le 3 = M_{\phi}$. In this case, we have that

(3.3.23)
$$\delta_{\times}(3^n, \phi^n) = \left\| \frac{3^n}{\phi^n} - 1 \right\| \left\| \frac{\phi^n}{3^n} - 1 \right\| \le 3^n - 1.$$

It follows from (3.3.17) and (3.3.23) that

$$(3^{n}-1)\{(3\varepsilon_{0}')^{n}-1\} \leq 3^{n}-1$$
, and so $(3\varepsilon_{0}')^{n}-1 \leq 1$

for sufficiently large n, which is impossible since $\varepsilon_0' \geq 1/2$. We now arrive at a contradiction. So, we have proved that if $\gamma = \gamma_{\times}$, then $\varphi = 3$ on Y whenever $1 \leq m_{\varphi}$.

From the above, we have proved that $\varphi = 3$ on Y whenever $1 \leq m_{\phi}$.

(b) We need to prove that $\varphi=1/3$ on Y whenever $m_{\varphi}<1$. To prove this, suppose that $m_{\varphi}<1$. Put S=1/T. Then we see that S is a surjection from $C^+(X)$ onto $C^+(Y)$ such that S(1)=1, S(fg)=S(f)S(g) and $\delta(S(f),S(g))=\delta(f,g)$ holds for every $f,g\in C^+(X)$. Since $m_{\varphi}=1/3\leq \varphi=T(3)\leq 1$ by (3.3.15), we see that $1\leq S(3)\leq 3$, and so $1\leq m_{S(3)}$. It follows from (a) of Lemma 3.10 that S(3)=3 on Y, which proves that $\varphi=T(3)=1/3$ on Y whenever $m_{\varphi}<1$.

Lemma 3.11. Suppose that $T(\alpha) = \alpha$ holds for every $\alpha \in \mathbf{R}^+$. If T(fg) = T(f)T(g) holds for every $f, g \in C^+(X)$, then

$$\Delta(f,g) = \Delta(T(f),T(f))$$

for all $f, g \in C^+(X)$.

Proof. We first prove that $\Delta(h,1) = \Delta(T(h),1)$, that is, ||h-1|| = ||T(h)-1|| holds for every $h \in C^+(X)$. Suppose, on the contrary, that there exists an $h_0 \in C^+(X)$ such that $||h_0-1|| \neq ||T(h_0)-1||$. Then we see that $m_{h_0} \neq m_{T(h_0)}$, or $M_{h_0} \neq M_{T(h_0)}$. If $m_{h_0} \neq m_{T(h_0)}$, then pick $\alpha_0 > 0$ so that $\alpha_0 h_0 \leq 1$ and $\alpha_0 T(h_0) \leq 1$. Without loss of generality, we may assume $m_{h_0} < m_{T(h_0)}$. In this case, we have that

$$\Delta(\alpha_0 h_0, 1) = \|\alpha_0 h_0 - 1\| = 1 - \alpha_0 m_{h_0}$$

$$> 1 - \alpha_0 m_{T(h_0)} = \|\alpha_0 T(h_0) - 1\|$$

$$= \Delta(\alpha_0 T(h_0), 1)$$

and that

$$\Delta(1, \alpha_0 h_0) = \left\| \frac{1}{\alpha_0 h_0} - 1 \right\| = \frac{1}{\alpha_0 m_{h_0}} - 1$$

$$> \frac{1}{\alpha_0 m_{T(h_0)}} - 1 = \left\| \frac{1}{\alpha_0 T(h_0)} - 1 \right\|$$

$$= \Delta(1, \alpha_0 T(h_0)).$$

This implies that

$$\delta(\alpha_0 h_0, 1) = \gamma(\Delta(\alpha_0 h_0, 1), \Delta(1, \alpha_0 h_0))
> \gamma(\Delta(\alpha_0 T(h_0), 1), \Delta(1, \alpha_0 T(h_0)))
= \delta(\alpha_0 T(h_0), 1).$$

On the other hand, since T preserves multiplication and since $T(\alpha) = \alpha$ for every $\alpha \in \mathbf{R}^+$, we get that

$$\delta(\alpha_0 h_0, 1) = \delta(T(\alpha_0 h_0), T(1)) = \delta(\alpha_0 T(h_0), 1),$$

a contradiction.

If $M_{h_0} \neq M_{T(h_0)}$, then pick $\alpha_1 > 0$ so that $1 \leq \alpha_1 h_0$ and $1 \leq \alpha_1 T(h_0)$. By a quite similar argument to the above, we will arrive at a contradiction. We thus conclude that ||h-1|| = ||T(h)-1|| for every $h \in C^+(X)$.

Finally, we will prove that $\Delta(f,g) = \Delta(T(f),T(g))$ for every f, $g \in C^+(X)$. Since T preserves multiplication with T(1) = 1, we see that T(1/g) = 1/T(g). It now follows that

$$\Delta(f,g) = \left\| \frac{f}{g} - 1 \right\| = \left\| T \left(\frac{f}{g} \right) - 1 \right\|$$
$$= \left\| \frac{T(f)}{T(g)} - 1 \right\| = \Delta(T(f), T(g))$$

holds for every $f, g \in C^+(X)$, and the proof is complete. \square

Lemma 3.12. Let T be a map from $C^+(X)$ into $C^+(Y)$ such that T(3) = 3 and $T(f^p) = T(f)^p$ holds for every $f \in C^+(X)$ and $p \in \mathbf{R}$. Then $T(\alpha) = \alpha$ for every $\alpha \in \mathbf{R}^+$.

Proof. Since $\alpha = 3^{\log_3 \alpha}$, we have that $T(\alpha) = T(3)^{\log_3 \alpha} = 3^{\log_3 \alpha} = \alpha$, and the proof is complete. \square

Proof of Theorem 3.3. Put $\widetilde{T} = T/T(1)$. We see that $\widetilde{T}: C^+(X) \to C^+(Y)$ is a surjection such that

$$\delta(f,g) = \delta(\widetilde{T}(f), \widetilde{T}(g))$$

holds for every $f, g \in C^+(X)$. By Lemma 3.8, we have that

$$\widetilde{T}(f^p g^{1-p}) = \widetilde{T}(f)^p \ \widetilde{T}(g)^{1-p}$$

holds for every $f, g \in C^+(X)$ and $p \in \mathbf{R}$. In particular, since $\widetilde{T}(1) = 1$, we have

$$\widetilde{T}(f^p) = \widetilde{T}(f)^p$$

holds for every $f \in C^+(X)$ and $p \in \mathbf{R}$, and hence

$$\widetilde{T}(fg) = \widetilde{T}((f^2)^{1/2}(g^2)^{1/2}) = \widetilde{T}(f^2)^{1/2} \ \widetilde{T}(g^2)^{1/2} = \widetilde{T}(f) \ \widetilde{T}(g)$$

holds for every $f, g \in C^+(X)$. By Lemma 3.10, we see that $\widetilde{T}(3) = 3$, or 1/3. Suppose that $\widetilde{T}(3) = 3$. By Lemma 3.12, $\widetilde{T}(\alpha) = \alpha$ holds for every $\alpha \in \mathbf{R}^+$. By Lemma 3.11,

$$\Delta(f,g) = \Delta(\widetilde{T}(f),\widetilde{T}(g)) = \Delta(T(f),T(g))$$

holds for every $f, g \in C^+(X)$. It follows from Corollary 3.2 that there exist a $w \in C^+(Y)$ and a homeomorphism $\Phi: Y \to X$ such that $T(f) = w(f \circ \Phi)$ holds for every $f \in C^+(X)$.

Suppose that $\widetilde{T}(3)=1/3$. Put S=1/T and $\widetilde{S}=S/S(1)$. Then \widetilde{S} is a surjection from $C^+(X)$ onto $C^+(Y)$ such that $\delta(\widetilde{S}(f),\widetilde{S}(g))=\delta(f,g)$ for every $f,g\in C^+(X)$. Since $\widetilde{S}(3)=T(1)/T(3)=1/\widetilde{T}(3)=3$, it follows from the above argument that there exist a $w\in C^+(Y)$ and a homeomorphism $\Phi\colon Y\to X$ such that $1/T(f)=S(f)=w(f\circ\Phi)$ holds for every $f\in C^+(X)$. This completes the proof.

Acknowledgments. The authors would like to thank the referees for their valuable suggestions and comments to improve the manuscript.

REFERENCES

- 1. O. Hatori, T. Miura, R. Shindo and H. Takagi, Generalizations of spectrally multiplicative surjections between uniform algebras, Rend. Circ. Mat. Palermo 59 (2010), 161–183.
- 2. S. Mazur and S. Ulam, Sur les transformationes isometrique d'espaces vectoriels norms, C.R. Acad. Sci. Paris 194 (1932), 946-948.
- 3. T. Miura, D. Honma and R. Shindo, Divisibly norm-preserving maps between commutative Banach algebras, Rocky Mountain J. Math. 41 (2011), 1677–1699.
- 4. L. Molnár, Thompson isometries of the space of invertible positive operators, Proc. Amer. Math. Soc. 137 (2009), 3849–3859.
- 5. J. Väisälä, A proof of the Mazur-Ulam theorem, Amer. Math. Monthly 110-7 (2003), 633-635.
- A. Vogt, Maps which preserve equality of distance, Stud. Math, 45 (1973), 43-48.

Department of Mathematics, Faculty of Science, Niigata University, Niigata $950\text{-}2181~\mathrm{Japan}$

Email address: hatori@m.sc.niigata-u.ac.jp

YOYOGI SEMINAR, SHIBUYA 151-8559, JAPAN Email address: top-of-the-pops@cronos.ocn.ne.jp

DEPARTMENT OF APPLIED MATHEMATICS AND PHYSICS, GRADUATE SCHOOL OF SCIENCE AND ENGINEERING, YAMAGATA UNIVERSITY, YONEZAWA 992-8510 JAPAN Email address: miura@yz.yamagata-u.ac.jp

TOHO UNIVERSITY, YAMAGATA UNIVERSITY (PROFESSOR EMERITUS), FUNABASHI 273-0866 JAPAN

Email address: sin-ei@emperor.yz.yamagata-u.ac.jp