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REFLECTIONS AND A GENERALIZATION
OF THE MAZUR-ULAM THEOREM

OSAMU HATORI, KIYOTAKA KOBAYASHI,
TAKESHI MIURA AND SIN-EI TAKAHASI

ABSTRACT. In this paper, we will generalize the Mazur-
Ulam theorem which states that every bijective isometry be-
tween two normed spaces is affine. To do this, we introduce a
notion of metricoid spaces, which is a generalization of metric
space. Finally, we give a representation of surjections from
C*(X) onto C*T(Y) which preserve certain subdistances.

1. Introduction and preliminaries. Let N; and N be two
normed linear spaces. It was proved by Mazur and Ulam [2] that every
bijective isometry T from N; onto N is affine, that is, T'((f + g)/2) =
(T(f)+T(g))/2 holds for every f, g € N1. Using the idea of Vogt [6],
a simple proof of this result was given by Vaisild [5]. In the proof,
reflection played an essential role. In this paper, we will generalize
the Mazur-Ulam theorem. To do this, we will introduce a notion of
subdistances and metricoid spaces. We will give some examples of
(super reflective) metricoid groups. In the final section, we will give
representations of surjections from C*(X) onto C*(Y) that preserve
certain subdistances. Here, CT(K) denotes the set of all real-valued
continuous functions f on a compact Hausdorff space K such that
f(z) > 0 for every z € K.

Denote the set of all real numbers by R. We denote by R™ the set
of all non-negative real numbers.

Definition 1.1. Let G be a set and §:G x G — RT a map which
satisfies that

(1) 6(f,9) =0 if and only if f = g.
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A self-map T on G is said to be §-isometric if 6(T(f),T(g)) = 6(f,9)
holds for every pair f and g € G. We call § a subdistance if

(2) for every pair f and g € G, there exists a K(f,g) € R™ such that
the inequality 6(T'(f), f) < K(f, g) holds for every bijective d-isometry
T on G with T'(g) = g.

We call the pair (G, §) a metricoid space.

Every metric space is a metricoid space. In fact, if (G, ) is a metric
space, then by a simple calculation we see that 6(T(f), f) < 26(f,9)
holds for every f,g € G and every d-isometry T' on G with T'(g) = g.
So, every metric space (G, §) is a metricoid space.

Example 1.1. Let A be a unital semi-simple commutative Banach
algebra with the maximal ideal space M4, and let A~! be the set of all
invertible elements of A. Let us consider a function §: A=1x A~ — R*
defined by

() =r(L-1). (rgeam

where r(a) denotes the spectral radius of a € A. In this case, it is
trivial that § satisfies (1). To see that J satisfies (2), let f,g € A=! and
T be a é-isometry on A~! with T'(g) = g. Take a point ¢y € M4 such
that

—

(T ) | T
( f 1> ‘ (o) 2l
where @ denotes the Gelfand transform of a € A. Then we have
T(£)(60) T(f)(¢0) (o) , (o)
S(T(f), f) = | =2 — |2 J| 91%0) 4
. -| (60) | (60)  Fldo)  700) |
< |€(¢0)| ‘Tg\f)(%) _1‘ ‘@\(%) 1‘
|F(¢0)] | 9(d0) f(¢0)
-1 T(f) g
s (T2
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since T is -isometric and T'(g) = g. By taking

(f7 )—T‘( ) (f_l)é(f,g)—f—&(g,f),

we see that ¢ satisfies (2). On the other hand, § is not a metric on
A~! since § is not symmetric. Here, we note that surjective maps
S: At — B! that satisfy §(S(f),S(g)) = 6(f,g) for all f,ge A™!
are characterized in [1, Theorem 4.1] in terms of homeomorphisms
between maximal ideal spaces, where B is another unital semi-simple
commutative Banach algebra (cf. [3, Theorem 3.2]).

Definition 1.2. Let (G,d) be a metricoid space and h € G. A self-
map p on G is called a reflection of G at h if the following conditions
(3), (4), (5) and (6) hold.

(3) p(h) =
(4) p? = 1d, the identity map,

)
)

(5) p is d-isometric, and
)

(6) there is a constant L(h) > 1 such that §(p(f), f) > L(h)é(f,h)
for every f € G.

Example 1.2. Let N be a normed space. Let f,g € N be
arbitrary, and put h = (f + g)/2. Then the map p: N — N defined by
p(u) =2h —u (u € N) is a reflection on N at h that satisfies p(f) =g

and p(g) = f.

Remark 1.1. We see that a reflection p of G at h is a bijective ¢-
isometry since p? = Id. Moreover, we see that h is the only fixed point
of p. In fact, if a € G such that p(a) = a, then putting f = a in (6),
0 > L(h)é(a, h) holds, and so we get a = h.

Definition 1.3. Let (G,d) be a metricoid space. We denote by
R(G;h) the set of all reflections of G at h € G. A metricoid space
(G, 6) is said to be reflective if R(G;h) # @ for every h € G.

Definition 1.4. Let H be a subgroup of the group of all -isometries
from G onto itself. We call H a bijective d-isometry group on G. For



120 0. HATORI, K. KOBAYASHI, T. MIURA AND S.-E. TAKAHASI

f € G, put
A(f; H) = sup{6(S(f), f) : S € H}.

Lemma 1.1. Let (G, d) be a metricoid space, H a bijective 6-isometry
group on G and h € G with A(h; H) < oo. If there is a p € R(G;h)
such that pHp C H, then h is a common fized point of all d-isometries
mn H.

Proof. Suppose that there is a p € R(G; h) such that pHp C H. Pick
S € H arbitrarily, and set U = pS~'pS. Then U € H by hypothesis.
Note that S is a J-isometry. Note also that p is a J-isometry with
p(h) = h since p is a reflection on G at h. We now obtain the following
inequality.

5(U(h), h)

8(pS™1pS(h), h) = 6(pS~'pS(h), p(h))
8(S7'pS(h), h) = 5(pS(h), S(h))
> L(h)6(S(h), h).

Since U € H, and since S € H was arbitrary, it follows that A(h; H) >
L(h)A\(h; H). Then A(h; H) = 0 since L(h) > 1, which implies that h
is a common fixed point of all -isometries in H. u]

Definition 1.5. Let (G, d) be a metricoid space. We define

fog

5 = {h € G : there exists a p € R(G; h) such that p(f) = g}

for each f, g € G.

Lemma 1.2. Let (G1,01) and (Gz,062) be two metricoid spaces and
T a bijective (1, 02)-isometry of G1 onto G, that is,

62(T(f),T(g)) = 61(f,9), (f,9€G1).
Let f, g € G1 with

T(f)oT(g)

(1.1.1) 1°9 4o and .

= 2.
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Then both (f og)/2 and (T(f)oT(g))/2 consist of single elements and

(11.2) T<f29> _ T(f);T(g)_

Proof. Let f, g € Gy with (1.1.1). Let H denote the set of all bijective
01-isometries S from Gy onto itself such that S(f) = f and S(g) = g.
Then H is a bijective d;-isometry group on G such that both f and g
are common fixed points of all §;-isometries in H. Pick a € (f o g)/2
arbitrarily. There exists a p € R(G1;a) such that p(f) = g. For each
S € H, we have

pSp(f) = pSg = plg) = .

As in the same way, we see that pSp(g) = g, and so pSp € H for every
S € H. Note also that A(a; H) < co. In fact, if S € H, then

61(S(a),a) < K(a, f)

holds since ¢; is subdistance, and hence A(a, H) < K(a, f) < co. By
Lemma 1.1, we have that a is a common fixed point of all §;-isometries
in H.

Finally, pick b € (T(f) o T'(g))/2 arbitrarily. There exists a § €
R(G2;b) such that 0T (f) = T(g). Put U = pT~10T. Then we see that
U is a bijective d;-isometry on Gy. Since T(f) = T(g) and p(g) = f,
we have

U(f) = pT~'0T(f) = pT~'T(9) = p(g) = -

As in the same way, we also have U(g) = g, and so U € H. Since a is a
common fixed point of all §;-isometries in H, it follows that U(a) = a.
Since p? = Id, we have

0T (a) = TppT 0T (a) = TpU(a) = Tp(a) = T(a).

Since b is the only fixed point of § (see Remark 1.1), we obtain T'(a) = b.
Since a € (fog)/2and b € (T'(f)oT(g))/2 were arbitrary, both (fog)/2
and (T(f)oT(g))/2 consist of single points, and (1.1.2) holds. O

Corollary 1.3. Let (G,d) be a metricoid space and f,g € G. Then
either (f o g)/2 is the empty set or a singleton.
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Proof. Consider the case where G; = G2, §1 = § and T = Id in
Lemma 1.2. Then we see that (fog)/2 is the empty set or a singleton. O

Remark 1.2. Let N be a normed space. Set h = (f + g)/2 for each
f,9 € N. By Example 1.2, h € (f o0 g)/2. According to Corollary 1.3,
we have that (f o ¢)/2 is a singleton, that is,

fog
2

={h} ={(f+g)/2} forevery f,g € N.

Thus, we may regard (fog)/2 as (f +g)/2.

Let Ny and N3 be normed spaces. Recall that a map T: Ny — Ns is
affine if T((L—¢)f +tg) = (1 —t)T(f) +tT(g) for all f,g € Ny and for
all t € R.

Lemma 1.4. Let N7 and Ny be normed spaces. A continuous map
T: N, — Ny satisfies

(1.1.3) T<f;’9) _ T(f);T(g)

for every f,g € N1 if and only if T is affine.

Proof. If T is affine, then T((f + 9)/2) = (T(f) + T(g))/2 for all
f,g9 € N1, and therefore, T satisfies (1.1.3) by Remark 1.2. Conversely,
suppose that T satisfies (1.1.3). Set S(f) = T(f) — T(0) for each
f € Ny. Identifying (f o g)/2 with (f + g)/2 (see Remark 1.2), we see
that S((f +9)/2) = (S(f) + S(g))/2 holds for all f,g € N;. We will
prove that S is real-linear. To do this, pick f,g € Ny arbitrarily. Since
S(0) = 0, it follows that

L g(2) _ SN +50) _ 5e)
st =s( ) =200 SE0,

which shows that S(2f) = 25(f). Therefore,

st +9) = 5(2FD) —as(L28) — () 4 s00)
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which proves that S is additive. We next show that S(mjf/2") =
mS(f)/2™ holds for every integer m and natural number n. Since
25(f) = S(2f), we also have S(f/2) = S(f)/2. Inductively, we can
prove that S(f/2™) = S(f)/2" for every natural number n. Suppose
that S(mf) = mS(f). It follows from the additivity of S that

S((m+1)f) = S(mf) + S(f) =mS(f) + 5(f) = (m + 1)S(f).

By induction, we see that S(mf) = mS(f) for every natural number
m. Since S is additive, we see that S(—f) = —S(f). It follows that

S(=mf) = =S(mf) = (=m)S(f)

for every natural number m. From the above, we have that

5(%2) = g Sm) = pes()

for every integer m and natural number n. Since S is continuous, we
see that S(cf) = ¢S(f) for every ¢ € R. Thus, S is real-linear, as
claimed. In particular, S((1 —¢t)f +tg) = (1 —¢)S(f) + ¢tS(g). Since
T(f) = S(f)+T(0), we conclude that T is affine. O

Definition 1.6. For a map T from a metricoid space (Gy,d;) into
another one (Ga,d2), T is said to be affine if

T(f;g) _ T(f);T(g)

holds for every pair f, g € G;.

Definition 1.7. A metricoid space (G,d) is said to be strongly
reflective if (f o g)/2 # & for every f, g € G.

Remark 1.3. If G is strongly reflective, then G is reflective. In
fact, suppose that G is strongly reflective and take an element f € G
arbitrarily. Then (f o f)/2 # @ by hypothesis, and hence there is a
p € R(G;h) with p(f) = f for some h € G. Since h is the only fixed
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point of p by Remark 1.1, it follows that f = h. This implies that
R(G; f) # @, and hence G is reflective.

Definition 1.8. Let (G, d) be a metricoid space. (G, d) is said to be
internally reflective metricoid group, or metricoid group in short, if G
has a group structure such that

(7) 6(hf~th,hg=th) = 6(f,g) for every f, g, h € G, and

(8) for each h € G there exists a constant L(h) > 1 such that
S(hf=Yh, f) > L(h)S(f, h) for every f € G.

Remark 1.4. A metricoid group (G, §) is reflective. In fact, pick h € G
arbitrarily and put py(f) = hf~th for every f € G. In this case, we
can easily see that pj, is a reflection on G at h, and so (G, 0) is reflective.

Definition 1.9. Let (G, §) be a metricoid group. For each f, g € G,
we put

M(f,9) ={h € G: pn(f) = g},

where py, is the reflection on G at h € G defined by px(f) = hf1h for
f € G. A metricoid group (G, ¢) is said to be super reflective if

(9) M(f,g) # @ for every f, g € G.

Remark 1.5. By definition, we see that M(f,g) C (f o g)/2 holds
for every f, g € G. Therefore, if a metricoid group (G,d) is super
reflective, then (G, d) is strongly reflective.

It is possible that the case where (f 0 g)/2 # @ and M(f,g9) = @
occurs. However, if M(f,g) # @, then (f o g)/2 = M(f,g) by
Corollary 1.3.

2. A generalization of the Mazur-Ulam theorem. Under the
definition of the strong reflectivity, Lemma 1.2 immediately implies the
following result.

Theorem 2.1. FEvery bijective (1, 02)-isometry between strongly
reflective metricoid spaces (G1,601) and (Ga,0d2) is affine.
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Remark 2.1. If (G,0) is a strongly reflective metricoid space, then
d must be symmetric, that is to say, §(f,g) = (g, f) holds for every
f,g9 € G. Tosee this, let f, g € G be arbitrary. By the strong reflectivity
of (G, ), we can choose a p € R(G;h) with p(f) = g for some h € G.
Therefore, we have

6(f,9) =d(p(f),plg)) = (g, f),

and hence ¢ is symmetric.

As a direct corollary to Theorem 2.1, we obtain the following theorem
of Mazur and Ulam.

Corollary 2.2 (the Mazur-Ulam theorem [2]). Every bijective isom-
etry between normed spaces is affine.

Proof. By Remark 1.2, each normed space is strongly reflective.
According to Theorem 2.1 and Lemma 1.4, we have the Mazur-Ulam
theorem. o

It follows from Remark 1.2 that every normed space is a strongly
reflective metricoid space. Moreover, we see that every normed space,
as an additive group, is a metricoid group. So, the following result,
a special case of Theorem 2.1, is a generalization of the Mazur-Ulam
theorem [2].

Theorem 2.3. Every bijective (01, 62)-isometry between super reflec-
tive metricoid groups (G1,01) and (Ga,02) is affine.

We give two examples of super reflective metricoid groups.

Notation. In the remainder of this paper, C(K) denotes the set of
all real-valued continuous functions f on a compact Hausdorff space K
and CT(K) the subset of all f € C(K) such that f(z) > 0 for every
z € K. We will regard C*(K) as a multiplicative group. For each
f € C(K), we put ||f|| = sup{|f(z)| : z € K}. Since C*(K) is not a
linear space, || - || is not a norm on C*(K). However, | - || induces a
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topology on C*(K). For each f, g € CT(K), we put
5+(fag) = A(fag) + A(gvf) and 5>< (fag) = A(fag)A(gaf)a

where

f
A =|=-1
(f,9) Hg ;
that is,
st = | -1]+ [ -1]
and

o =[] [7-1]
for f,g € CT(K).

Under the above notation, we have the following result.

Theorem 2.4. Let § € {64,0x}. Then (Ct(X),8) is a super
reflective metricoid group with (fog)/2 = +/fg for every f, g € CT(X).

Proof. Equations (1) and (7) are obviously true for §. It is enough to
prove that (2), (8) and (9) hold.

First, we prove (2). Let f,g € CT(X) and T be a bijective d-isometry
on C*(X) with T'(g) = g. Then we have by a simple calculation that

ae(n).n = | -4
< (|7 2|+ +

N T(9)
SRR A N . A T

= {0.(T(f),T(g)) + 1}”% ‘ +1.

In a similar way to the above, we have that

(2.2.2) A(fT(f) < {04(T(f), T(9) + l}' gH o
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First, we consider the case where § = §. By (2.2.1), we see that

AGU%f%ENMTU%T@D+1w§H+1
(2.2.3)

~6u(5.0) + 1§ 41

since T is assumed to be d-isometry. Similarly to the above, it follows
from (2.2.2) that

(2.2.4) AT < G (h) + 1|1 41

By (2.2.3) and (2.2.4), we conclude that
f g
6+(T(f), f) < (64(f,9) +1) gl 17 +2
holds, and so we have proved that (2) holds for § = 4.

We next consider the case where § = 6. If |T(f)T(9) ! — 1| < 1/2,
then by a simple calculation we see that

1 _T()(z)
IR0
holds for every x € X, and so we have that
5w () 1) = [RD —o + |28 - < o<

I;A(T(f),T(g)) =||T(f)T(g)~* — 1|| > 1/2, then let zp € X be such
that

T(@) | _ [T

e =7

T(g)
It follows from an easy calculation that

T@)@) | 1 10

g
T(f) (o) 3 ~ T(f) (o)
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and so we get A(T(9),T(f)) = |T(9)T(f)"*—1|| > 1/3. Note that
if s > 1/2 and t > 1/3, then the inequality s + ¢ < 5st holds.
Consequently, we see that

A(T(£),T(g)) + A(T(9),T(f)) < BA(T(f), T(9)A(T(9),T(f)),

which implies that

5+(T(£),T(9)) <56 (T'(f), T(g)) = 56x(f,9)

since T is assumed to be dy-isometry. In any case, if we put a(f, g) =
max{2, 56« (f,g)}, then we have that

(2.2.5) 51(T(f),T(g9)) < alf,9)-

It follows from (2.2.1), (2.2.2) and (2.2.5) that
ST (1).0) = AT, DAL < {(atho) + 1§ +1]
“Qlatra+u| f +1}

holds, and hence we have proved that (2) holds for § = .

Secondly, we prove that (8) holds. Let f, h € CT(X), and pick z,
y € X so that

=l e 7=l

To prove (8), it is enough to consider the case when f # h. Thus, we
may and do assume that f(y) # h(y). Then we have

%-1‘4%—1 and %—1‘§ %—1‘-

Since f, h € CT(X), it follows from the above inequalities that

h(@)|f(y) — h(y)| < h(Y)lf(z) — h(z)]

and

f) (@) = f(2)| < f(@)|h(y) — f(y)]
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hold. We thus obtain
F@h(@)|f(y) — h(y)| < fF(W)h()|f(z) — h(z)]

Since f(y) # h(y), we see that
(2.2.6) Fh(z) < f(2)h(y).
We first consider the case where § = d4. Note that
1 11 1
— 1> (la—1+]7 -1
R G

holds for all positive real numbers a, b with a > b. In fact, we see by a
simple calculation that the inequality is equivalent to

(2.2.7) a® — 1|+

(2.2.8) |a1|(10a1)+%1<%1> > 0.

This is obviously true if b <1 < a. If 1 < b < a, then we have that

|a1|(10a1)+%1<%1>

o)) o

If b < a < 1, then a similar argument shows that (2.2.8) holds. From the
above, we have proved that the inequality (2.2.7) holds for 0 < b < a.
So, it follows from (2.2.6) and (2.2.7) that

%M(f,h)* 11<‘M_1‘+ 0 _1D

~ 10 ,f(””) fz(y)
<[ -+ 7 -

S 6+(hf71h7 f)a

which shows that 8, (hf~th, f) > 116, (f,h)/10. Hence, . satisfies
(8) by taking L(h) = 11/10.
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We next consider the case where § = 0. It follows from (2.2.6) that

(2.2.9) 2f(y)h(z) < (f(z) + h(2))(f(y) + hy))
holds. Therefore, by (2.2.9), we have that

wan-af- -
g
_ o (f(2) = h(z))(h(y) — (y))‘
f(y)h(w)
_ o] ((@)? = h(@)*)(h(y)* - f(v)*)
Fy)h(x)(f(x) + h(z))(f(y) + h(y)) ‘
< | (@) = h(@)*)(h(y)* — f(1)*)
- f(y)?h(x)?

IN

i

It follows that 28, (f, h) < 8« (hf~th, f) holds. We thus conclude that
0« satisfies (8) by taking L(h) = 2.

Finally, we prove (9). Pick f, ¢ € C*(X) arbitrarily, and put
h = \/fg. Then h € M(f,g), and so (9) is proved. Therefore, we
conclude that (C*(X),d) is a super reflective metricoid group. Recall
that (f o g)/2 is an empty set, or a singleton, by Corollary 1.3. Since

Vfg € M(f,g) C (f og)/2, we have that (f o g)/2 = \/fg, and the

proof is complete. ]

3. Surjections on C*(X) which preserve subdistance. In this
section we give representations for certain isometries from C'*(X) onto
C*(Y), which preserve subdistance. Put

Omax(f,9) = max{A(f,9), Alg, )}, (f,9 € CT(K)),

that is,
Omax(f,9) = maX{H——l %—1”}
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for f, g € CT(K). Here, K denotes a compact Hausdorff space. We
first give a representation for d,,.x-isometry.

Theorem 3.1. Let T be a surjection from C+(X) onto C*(Y) such
that the equality

max(T(f 7T( )) = 6max(f7 g)

)
holds for every f,g € CT(X). Then there erist a w € CT(Y), an
h € CH(Y) with h(Y) C {—1,1} and a homeomorphism ®:Y — X
such that T(f)(y) = {w(y)f(®(y))}"¥) holds for every f € CH(X)
andy €Y.

Proof. Put T = T/T(1). Then we can easily see that T: CT(X) —
C*(Y) is a surjection such that

(3.3.1) Omax(T(£), T(9)) = Sumax(£>9), (fr9 € CT(X)).

Note that T is injective by (3.3.1). It follows that T is a bijection. Let
S:C(X) — C(Y) be a map defined by

(3.3.2) S(u) = log(T(expu)), (ue C(X)).

We show that ||S(u) — S(v)|| = ||u — v|| holds for every u, v € C(X).
To this end, pick u, v € C'(X) arbitrarily. Since

T it
exp u

(3.3.3) Omax(exp u,expv) = exp |lu — v|| — 1.

exp ||lul]| — 1 = max {||expu =1,

we see that

A quite similar argument to the above shows that
(3.3.4) Omax (exp S(u),exp S(v)) = exp ||S(u) — S(v)|| — 1.

Since expS(u) = exp(log(T(expu))) = T(expu), it follows from
(3.3.1), (3.3.3) and (3.3.4) that

exp||S(u) — S(v)|| ~ 1 = Smax(T(expu), T(expv))
= Omax(expu,expv) = exp |lu —v|| — 1,
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which proves that ||S(u) — S(v)|| = ||u — v||. Thus S is an isometry and

it is bijective since T is. By Corollary 2.2, S is affine. Since S(0) =0,
we have that S is real-linear. Consequently, S is a bijective real-linear
isometry. By the Banach-Stone theorem there exist an A € C(Y)
with A(Y) C {-1,1} and a homeomorphism ®:Y — X such that
S(u)(y) = h(y)u(®(y)) holds for every u € C(X) and y € Y. Therefore,
for each f € CT(X) and y € Y, we have by (3.3.2) that

T(f)(y) = exp(S(log f)(y)) = exp(h(y) log f(P(y))
= {f(@))}",

and hence
T(f)(y) = T(1)){f(2(y))}"¥

holds for every f € CT(X) and y € Y. Put w(y) = {T'(1)(y)}"®.
Then we see that

(w(y))" @ ={T1)(y)" @} = {T(1)(E) = T1)(y).

We thus conclude that

(33.5)  T(f)y) = (w(y)"V{f (@)Y = {w(y) f(2(y)}" ¥

holds for every f € C*(X) and y € Y. This completes the proof. O

Remark 3.1. Let B(H) be the C*-algebra of all bounded linear
operators on a complex Hilbert space H. We denote by B(H)T, the
set of all invertible positive operators of B(H). The Thompson metric
67 on B(H)T, is given by

or(4,B) = |[log A™/*BATY||, (4,B € B(H)1)).

In [4] Molnér characterized bijective isometries from B(H)*, onto itself
with respect to the Thompson metric. It seems natural to consider
surjections T from C*(X) onto C*(Y) that satisfy

llog T'(f) —log T'(g)|| = [[log f —loggll, (f,g € CT(X)).

If we define S: C(X) — C(Y) by (3.3.2), then we see that S is a bijective
isometry. In the same way as in the proof of Theorem 3.1, we can prove
that T is of the form (3.3.5).
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Corollary 3.2. Let T be a surjection from C*(X) onto CT(Y) such
that

A(T(f), T(9)) = A(f,9)
holds for every f,g € CT(X). Then there exist a w € CT(Y) and a

homeomorphism ® : Y — X such that T(f) = w(f o ®) holds for every
felCt(X).

Proof. Since A(T(f),T(g)) = A(f,g) for f, g € CT(X), we see that

Omax(T(f), T(9)) = max(f9), (f,9 € CT(X))

by the definition of §y.x. It follows from Theorem 3.1 that there
exist a w € CT(Y), an h € CT(Y) with A(Y) C {-1,1} and a
homeomorphism ®:Y — X such that T(f)(y) = {w(y)f(®(y))}"®
for every f € CT(X) and y € Y. So it is enough to show that h = 1
on Y. Since T(1)(y) = w(y)"® and T(2)(y) = 2" ¥ w(y)"¥), we have
that T(1)(y)/T(2)(y) = 1/2"®) for all y € Y, and hence

- -3

T(2 2 2
which implies that h=1on Y. u]

1
S

Finally, we give representations for isometries which preserve subdis-
tance 64 or dx.

Theorem 3.3. Let § € {64,0x} and T be a surjection from C*(X)
onto Ct(Y) such that the equality

(3.3.6) 8(T(f),T(g)) =6(f,9)

holds for every f, g € C*(X). Then there exist a w € CT(Y) and a
homeomorphism ®:Y — X such that T(f) is either of the form

T(f)=w(fo®), (feC"(X))

or of the form

(f € CT(X)).
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To prove this, we fix some notation.

Notation. For a, b € R, put
v4+(a,b) =a+b, 7x(a,b) =ab.
Recall that

st =[]« 7

f g
;0 f,QZH——l = — 1.
So, we can rewrite 4 and 6y as

(5+(f,g) = 7+(A(fag)a A(ga f))a
ox(f,9) = vx(A(f,9), Alg, f))

for f, g € CT(K), where K denotes a compact Hausdorff space. Let
(6,7) € {(6+,7+),(0x,¥x)}- From Lemma 3.5 to Lemma 3.11, T
denotes a surjection from C*(X) onto C*(Y) such that (3.3.6) holds
for every f, g € C*(X).

Lemma 3.4. No combination of real numbers m, M and ng exists
such that

(3.3.7) (M™-1) (i - 1) = i(3" —1)2

mn 3n
holds for every natural number n > ng.
Proof. Suppose, on the contrary, that there exist real numbers m, M

and ng satisfying (3.3.7) for all n > ng. Pick n > ng arbitrarily. By
(3.3.7), we see that

(M2”—1)< ! —1>_3%(32"—1)2

m2n

holds. So we have that

(33.8) (M™ —1)(M"+1) (in - 1) <i + 1)

m mn
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It follows from (3.3.7) and (3.3.8) that

(3.3.9) (M + 1) (% + 1) _ gin(a" +1)2.

Subtraction of (3.3.7) from (3.3.9) gives
(M"+1)<in+1> —(mm 1)(% _ 1)
m m
= 3% (3" +1)* - (3"~ 1)°} =4
On the other hand, since

1 1 1
(M"+1)<— +1> - (M™ - 1)(— — l) = 2<M” + —),
m" m" m"
we now get
1 1
2| M"+ — ) =4, and hence — =2-M".
m" m"
Since n > ny is arbitrary, we have

1
4—4M™ + M*" = (2— M")? = =2 - M.

m2n

It follows that M?2" — 2M™ + 1 = 0. Consequently, M™ = 1, which
contradicts (3.3.7). This completes the proof. o

Lemma 3.5. T is a continuous map with respect to the topology
induced by ||-|| such that
(3.3.10) T((f9)"?) = T(f)"*T(9)"/?
holds for every f, g € CT(X).

Proof. Pick {f,} C C*T(X) so that ||f, — f|| = 0 as n — oo for some
f € CT(X). In this case, we have that

f

——1H—>0

At g = |
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and

Alf ) =|

f7n—1H—>0

as n — o0o. Since

§(T(fn), T(f)) = 6(fn, ) = Y(A(fn, ), A(f; fn)) — 0

as n — 0o, we see that A(T(f,,),T(f)) or A(T(f),T(f.)) converges to
0 as n — oo. In any case, we have that

T(fn)
T(f)

AT, 7)) = |

l‘—)O (as n — 00).

This implies that

T(fn)
T(f)

I7) = T < 17| 1| —o

as n — 0o, and so 7T is continuous.

We will prove that (3.3.10) holds for every f, g € C*(X). Since
5(T(f),T(9)) = 6(f,g) for f, g € C*T(X), we have that T is injective.
Recall that for a compact Hausdorff space K, (C*(K),d) is a super
reflective metricoid group by Theorem 2.4. It follows from Theorem 2.1
that T is affine, that is,

r(£58) - 10216)

2 2

holds for every f, g € C*(X) (cf. Definition 1.6). Note that (fog)/2 =
v/ fg by Theorem 2.4, and so we get

T((f9)**) = T(f)/*T(g)"*
for every f, g € C*(X). This completes the proof. o
By Lemma 3.5, T is a surjection from C*(X) onto C*(Y') such that

T((f9)*/?) = T(f)"/*T(g)"/?
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holds for every f, g € C*(X). From Lemma 3.6 to Lemma 3.8, we will
use the above property.

Lemma 3.6. The following equations hold.

(a) T(f9) = T(H)T(9)T(1) " for every f, g € C+(X),

(b) T(f~1) =T(f) T (1)? for every f € C*(X).

(c) T(f™) =T(f)™T(1)}=™ for every f € C(X) and integer m.

Proof. (a) By (3.3.10), we have that
T(f) = T((f*- D)%) = T(F2)*T (1)
This implies that T'(f)? = T(f?)T(1), and hence T(f?) = T(f)?>T(1)~!
holds for f € C*(X). Then we have that
T(fg) =T((1*6*)"*) = T T2 = T(NT(9)T(1)

holds for every f, g € CT(X).
(b) It follows from (a) that

T =71 =T(HT(f L)
for f € CT(X), which shows that T(f~1) = T(1)>T(f)"! holds for
every f € CT(X).

(c) By induction, with (a), we see that T'(f™) = T(f)™T(1)*—™
holds for every f € C*(X) and nonnegative integer m. Pick an integer
m < —1 arbitrarily. Since T'(f™) = T((f~')~™), it follows from the
equation above and (b) that

T(f™) =T ™1(
= (T()~'T(1)?) " T
=T(H)"T)

1)1+m

for every f € CT(X). Since m < —1 is arbitrary, this proves (c). u]

Lemma 3.7. Let n be a positive integer. Then the equation

(3.3.11) T(frgl—?“) — T(f)rT(g)l—r
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holds for every f, g € CT(X) and every r of the form r = m/2"™, where
m s a non-negative integer with 0 < m < 27,

Proof. We prove equation (3.3.11) by induction with respect to n.
Equation (3.3.11) holds for n = 1 by hypothesis. Suppose that (3.3.11)
holds for n. Pick an integer m with 0 < m < 2"*! arbitrarily, and put
r = m/2"T!. We first consider the case where m is even, say m = 2I.

Since

m l .
7‘:2n+1:2—n, where 0 <17 <27

by the hypothesis of induction, we have that T(f"g'~") = T(f)"T(g)'~".

We next consider the case where m = 2] + 1. Since

r_21+1_ L+l+11
Toondl T\ 2m on )9’

we can write
1/2
fr — (fl/Z"f(l+1)/2">

and

1/2
gt = <gl—l/2 g1—(1+1)/2 > )

Note that [ + 1 < 2" since 21 + 1 = m < 2"T!. By hypothesis of
induction, we have that

T(f'g"™") = T( (fl/z”gl—’/?">1/2 (f(l+1)/2"gl—(l+1)/2”)1/2)
(fz/z"gkl/%) 1/2 T <f(l+1)/2"gl—(l+1)/2n>1/2

T(f)l/znT(g)kl/ﬂ) 1/2<T(f)(lJrl)/Z"T(g)1—(l+1)/2") !
(f)(21+1)/2"+1T(g)17(21+1)/2"+1
(f)'T(g)t~"

holds. By induction, this completes the proof. a

I
N

/2

I
/N

NS



MAZUR-ULAM THEOREM 139

Lemma 3.8. The equation
T(frg' ™) =T(f)*T(9)' "
holds for every f, g€ CT(X) and p € R.

Proof. We first consider the case where 0 < p < 1. There exists
a sequence of dyadic rational numbers p,, such that p, converges to
p as n — oo. Note that T is continuous by Lemma 3.5. It follows
from Lemma 3.7 that T(fPg'~?) = T(f)?T(g)'~P holds for every f,
g€ CT(X).

Next we consider the general case. Pick p € R arbitrarily, and put
p=m-+r, where m is an integer and 0 < r < 1. It follows from (a) of

Lemma 3.6 that
T(fPg' ") =T(f"f"g"""g™™)

(f™g ™I (f g"")T(1)""

( 1

(

fMTg™T) T(f7gt )T () '
FMT(g™™)T(f) T () " T (1)~

since 0 < r < 1. By (c¢) of Lemma 3.6, we obtain that

T(f™) =T(f)"TQ)'~

T
T
T

and
T(g~™)=T(g) ™T(1)"*™,

and consequently, T(f™)T(g~™) = T(f)™T(g)"™T(1)%. It follows
that

T(frg" ") =T(f)"T(9) "T()*T(f) T(9)" "T(1)~"
=T(f)™ " T(g)' =" = T(f)PT(9)" "

holds for every f, g € CT(X). ]

Notation. Let K be a compact Hausdorff space. For u € C*(K),
put

m,, =min{u(z) :z € K} and M, =max{u(z):z € K}.
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Lemma 3.9. Suppose that T(1) = 1 and T(fg) = T(f)T(g) holds
for every f, g € CT(X). Let ¢ € CH(X) and p € CT(Y) be such that

1(9) = ¢
(a) If 1 < ¢ < 3 with ||@]| = 3, then

1
me,=-<¢e<1, or 1<p<3=DM,.

(b) If 1 < o < 3 with ||¢|| = 3, then
1
m¢:§§¢§1, or 1< ¢<3=M,.

Proof. Since T(1) = 1, it follows from (3.3.6) that 6(T'(f),1) = 6(f,1)
holds for every f € C*(X). This implies that

5(p,1) = 6(T(¢),1) = 6(,1).
(a) If 1 < ¢ < 3 with ||¢]| = 3, then we see that
A, D) =ll¢—1=2 and A(l,¢)= Hl - 1H _2

It follows that

’Y(A(SD, 1)? A(la ‘P)) = 5(‘107 1) = 5(¢7 l)
= 'Y(A((ﬁv 1)7 A(lv ¢))
2
-(23)
and so
(33.12) (A1, AL ) = (25).

If v = 74, then we have

o =1+ |3 -1 =7 a0, 40,6
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If v = 4, then we have

o1 - 1 =t 10, A01,6)

2 4
= 2 —_ = -
’YX( 73> 3

In any case, we see that 1/3 < ¢ < 3.

Secondly, we prove that m, < 1 implies M, < 1. Suppose, on the
contrary, that m, < 1 < M,. Let n be a positive integer. Since T’
is assumed to preserve multiplication, T'(¢"™) = ¢™ holds. So, for a
sufficiently large n with M," > 2 and 1/m,"™ > 2, we have that

M," —1 =" — 1] = A(p", 1)

and
1 1
1= 1 = aaen
m(pn (,0"
This implies that
n 1 n n
Y My" =1, —— — 1] =v(A(¢", 1), A(1, "))
My

= 56", 1) = BT, 1) = 8(6" 1)
— (e -1 -1 ):

Since 1 < ¢ < 3 with ||¢|| = 3, we see that

1 1
6" —1]=3"—1 and Hq&—n—luzl—?n.

It follows that

1
3.3.13 M,"—1,— —1) = 3" —-1,1— — |.
( ) 7( @ mePn > 'Y( , 3n>
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If v = 74, then we have

that is,

M N\" 1 " 2 1
3.3.14 i - =1—-—.
(3.3.14) < 3 > - <3mw> 3" o

Letting n — oo, we have that M, = 3, or m, = 1/3. If M, = 3, it
would follow from (3.3.14) that

1 1

— T o
my," 3"

which would be a contradiction since 1/m," > 2. Therefore, we have
m, = 1/3. From (3.3.14), we obtain

1

M, —2=——
® 3n’

which is also impossible since M,," > 2. We now arrive at a contradic-
tion. This proves that m, < 1 implies M, <1 if v =,.

If v = 7, then it follows from (3.3.13) that

n
My

for every n > 1. This is a contradiction by Lemma 3.4. We thus
conclude that m, < 1 implies M, <1 even if y = 7.

Since 1/3 < ¢ < 3, we now get that

<Sme<p<My,<1 or 1<m,<p<M,<3.

W =

Finally, we prove that m, = 1/3 if m,, < 1, and that M, = 3if1 < m,,.
In fact, if my, < 1, then m, < M, <1 as proved above. So, we obtain

Alp, 1) = lle =1 =1 -my
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and

It follows from (3.3.12) that

1 2
7(1 — My — — 1) =7(A(p,1), A(L,¢)) = 7(2, —)-
My 3
If v = 74, then we have that

1 1 2 8

me

Since 0 < m,,, we have that m, = 1/3.

If v = v«, then we have that

toma( 1) —an2 ot

©

w

Since m, < 1, we obtain m, = 1/3. This proves that m, = 1/3 if
m, < 1.
Suppose that 1 < m,. Then we have 1 < m, < M, < 3 as proved
above. It follows that
1

Alp)=llg - U= M, 1 and Allg)= |21 =1

1
2 M,

In a way similar to the above, we see that M, = 3 if 1 < m,,.

(b) Suppose that 1 < p < 3 with ||¢|| = 3. By interchanging ¢ with
¢, we see that the proof of (a) works well. So, we get

meg=-<¢<1, or 1<¢<3=DM,.

W =

This completes the proof. ]

Lemma 3.10. Suppose that T(1) =1 and T(fg) = T(f)T(g) holds
for every f, g € CT(X).
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(a) If 1 < myp(g), then T(3) =3 on Y.
(b) If mps) <1, then T(3) =1/3 on'Y.
Proof. Put T(3) = ¢ € CT(Y). By (a) of Lemma 3.9 we see that

(3.3.15) my =

IN

<1, or 1<p<3=DM,.

(a) We show that ¢ = 3 on Y whenever 1 < m,. Suppose, on
the contrary, that ¢(yo) # 3 for some yo € Y, while 1 < m,. Set
g0 = ¢(yo) and g9’ =1/(3 —&p). Then 1 < ey < 3 and 1/2 < gy’ since
1< ¢ < 3= M,. If we define (:[1,3] — [1, 3] by

c _{350115 if1<t<egg
ol 2e0/(t—-3)+1 ifegg<t<3’

then ¢ is onto. Set $ = (o € CT(Y). By a simple calculation we see

that 1 < ¢ <3 = M, lle/@ll = 3 and ||@/¢|| = 3eo’. Therefore, we
have that

a7 = |5 1] =o 1
and that

A(p™, ") = H— - IH = (3g")" -1
holds for a sufficiently large n, and hence

5(p", ") = (A", "), A", 9™))

(33.16) =7(3" - 1,(3e0/)" - 1)

holds for a sufficiently large n.

Since T is surjective, there exists a ¢ € CT(X) such that T(¢) = 4.
By (b) of Lemma 3.9, we see that

1
§:m¢§¢7§1, or 1<¢<3=Mjy.
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Since T preserves multiplication, it follows from (3.3.16) that

§(T(3"),T(9"))
§(T(3)",T(¢)") =d(¢™, ")
v (3™ —1,(3g" )" — 1)

5(3",9")
(3.3.17)

holds for sufficiently large n. Suppose that 1/3 = my < ¢ < 1. In this
case, we have that

(3.3.18) A3", ™) = ‘ 27 - 1H _gn_1
and
(3.3.19) A(gm,37) = ‘ ﬁ—n - 1H —1- gin

for every n.

We first consider the case where v = v;. Recall that
6(3",0") =v(A(3", ¢"), A(¢",3"))
for every n. Since v = 74, it follows from (3.3.18) and (3.3.19) that

5(3n7 ¢7n) = ’Y+(A(3n7 ¢n)7 A(qﬁn, Sn))

(3.3.20) =" -1+ (1 - gin>
1
="~ o

for every n. By (3.3.17) and (3.3.20), we get

=74+ (3" = 1,(3)" — 1)
= (3n - l) + (350’)" -1

=3"+ (380’)” -2,



146  O. HATORI, K. KOBAYASHI, T. MIURA AND S.-E. TAKAHASI

and hence .
1 1 e’ \" 2
11— —=— — ] - =
for a sufficiently large n, which is impossible since ¢y’ > 1/2. This
shows that 1 < ¢ < 3 = My. In this case, we have that

(3.3.21) A(3", ¢™) = ‘ 27 - 1H _gn 1
and that
(3.3.22) A(gn, 37 = ‘ ‘g—n _ 1H <1

for every n. It follows from (3.3.17)—(3.3.19) that

(3n - 1) +1> 7+(A(3na ¢n), A(¢na 3n))
=04(3",¢") =7+ (3" —1,(3e0")" — 1)
=3"+ (350’)” -2,

which implies that 3™ > 3™ + (3¢¢’)"™ — 2 for a sufficiently large n. This
is also impossible since ¢’ > 1/2. We now arrived at a contradiction.
This proves that if v = vy, then ¢ = 3 on Y whenever 1 < m,,.

Next, we consider the case where 7 = 4. Recall that

1
§:m¢,§¢§1, or 1<¢<3= M.

Suppose that 1/3 = mg < ¢ < 1. It follows from (3.3.17)—(3.3.19) that

0 - 1)(1- g7 ) = 9w(4E" 87, A", 37)
= 5(3%,6%) = 7 (8" — 1, (8e1))" — 1)
=3 (B 1),

which proves that

(o) -3) e
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holds for sufficiently large n. Letting n — oo, we have gy’ = 1. By
simple calculation, we see that this is impossible. So, we must have
1< ¢ <3 = M;y. In this case, we have that

|5

It follows from (3.3.17) and (3.3.23) that
(3" —1){(3g¢")" —1} <3" -1, andso (3g)"—-1<1

(3.3.23) 5y (3", ") = '

<5~

for sufficiently large m, which is impossible since gy’ > 1/2. We now
arrive at a contradiction. So, we have proved that if v = 74, then
@ =3 on Y whenever 1 < m,,.

From the above, we have proved that ¢ = 3 on Y whenever 1 < my.

(b) We need to prove that ¢ = 1/3 on Y whenever m, < 1. To
prove this, suppose that m, < 1. Put S = 1/T. Then we see
that S is a surjection from C*(X) onto C*(Y) such that S(1) = 1,

S(fg) = S(f)S(g) and 8(S(),5(s)) = 5(f,g) holds for every f,
g € CT(X). Since my, =1/3 < ¢ =T(3) <1 by (3.3.15), we see that
1 <8(3) <3, and so 1 < mgg). It follows from (a) of Lemma 3.10
that S(3) = 3 on Y, which proves that ¢ = T(3) = 1/3 on Y whenever
m, < 1. O

Lemma 3.11. Suppose that T'(c)) = « holds for every a« € R*. If
T(fg) =T(f)T(g) holds for every f, g € C*(X), then

A(f,9) = A(T(f),T(f))
for all f, g € C*(X).

Proof. We first prove that A(h,1) = A(T'(h),1), that is, ||h — 1| =
|T(h) — 1|| holds for every h € C*(X). Suppose, on the contrary, that
there exists an hg € C1(X) such that ||hg — 1|| # [|T(ho) — 1||. Then
we see that mp, # mq(hy), or Mpy # Mrpng). If mp, # mp(n,), then
pick o > 0 so that aphy < 1 and apT'(ho) < 1. Without loss of
generality, we may assume mp, < My(4,). In this case, we have that

A(Oéoho, ].) = HOéoho — 1“ =1- QoMp,
> 1— agmy(n,) = |l (ho) — 1|
= A(OéoT(h(]), 1)
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and that
1 1
( 0 0) Oéoho H QpMp,,
S |t 1H
QM (hy) 0T (ho)

= A(l, Oon(ho)).
This implies that

6(0[0h0, 1) = ’Y(A(Oloho, 1), A(]., aoho))
> y(A(aoT (ho), 1), A(1, T (ho)))
= (5(0&0T(h0), ].)

On the other hand, since T preserves multiplication and since T'(a) = «
for every a € R™, we get that

(S(Oloh(), 1) = (5(T(010h0),T(1)) = (5(0&0T(h0), ].),

a contradiction.

If My, # Mrp(n,), then pick ay > 0 so that 1 < aijhg and 1 <
a1T(hp). By a quite similar argument to the above, we will arrive at a
contradiction. We thus conclude that ||h — 1|| = ||T'(k) — 1|| for every
h € CT(X).

Finally, we will prove that A(f,g9) = A(T(f),T(g)) for every f,
g € CT(X). Since T preserves multiplication with 7T'(1) = 1, we see
that T'(1/g) = 1/T(g). It now follows that

s [ -r(2)
_ ‘ % _1H — A(T(£),T(g))

holds for every f, g € C*(X), and the proof is complete. ]

Lemma 3.12. Let T be a map from CT(X) into CT(Y) such that
T(3) = 3 and T(f?) = T(f)? holds for every f € CT(X) and p € R.
Then T(a) = « for every a € RT.
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Proof. Since a = 3!°8:% we have that T'(a) = T(3)°8: @ = 3loga @ =
a, and the proof is complete. ]

Proof of Theorem 3.3. Put T = T/T(1). We see that T: C*T(X) —
CT(Y) is a surjection such that

5(f,9) = 8(T(£),T(9))

holds for every f, g € C*T(X). By Lemma 3.8, we have that
T(frg'7) = T(f)? T(9)'™?

holds for every f, g € CT(X) and p € R.. In particular, since T(l) =1,
we have B B

T(f7) =T(f)"
holds for every f € C*(X) and p € R, and hence

T(fg) = T((fH*(g*)"?) = T(f*)* T(¢*)'* = T(f) T(9)

holds for every f,g € CT(X). By Lemma 3.10, we see that T(B) =3,
or 1/3. Suppose that T'(3) = 3. By Lemma 3.12, T(a) = a holds for
every o € RT. By Lemma 3.11,

A(f,9) = AT(f),T(9)) = AT(f), T(9))

holds for every f, g € C*(X). It follows from Corollary 3.2 that
there exist a w € C*(Y) and a homeomorphism ®:Y — X such that
T(f) = w(f o ®) holds for every f € CT(X).

Suppose that 7(3) = 1/3. Put § = 1/T and § = §/S(1). Then S is
a surjection from C*(X) onto C*(Y) such that 8(5(f),S(9)) = 6(f, 9)
for every f, g € CT(X). Since S(3) = T(1)/T(3) = 1/T(3) = 3, it
follows from the above argument that there exist a w € C*(Y) and a
homeomorphism ®:Y — X such that 1/T(f) = S(f) = w(f o ®) holds
for every f € C*(X). This completes the proof. mi
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