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ON GENERALIZED COMMUTATIVITY
DEGREE OF A FINITE GROUP

R.K. NATH AND A.K. DAS

ABSTRACT. Commutativity degree of a finite group is the
probability that the commutator of two arbitrarily chosen
group elements equals the identity element of the group. The
object of this paper is to study the probability that the
generalized commutator of an arbitrarily chosen n-tuple of
group elements equals a given group element.

1. Introduction. Throughout this paper G denotes a finite
group, ¢ an element of the commutator subgroup G’, and n > 2 a
positive integer. Recall that the generalized commutator of an n-tuple
(z1,22,... ,&,) € G", the n-fold product of G with itself, is given by

—1, -1 1 y
[T1, T2, ..., Tp] = X122+ Tpr] Ty -2, €G.

In [12], Pournaki et al. have considered the probability Pry(G) that
the commutator of an arbitrarily chosen pair of group elements equals
g and extended the work of Rusin [14]. The main objective of this
paper is to study the ratio

Pr(G) = {(z1,22,...,2,) € C|7'G:n[;c1,;c2,... ,Zn] = g}

g

and further extend the results obtained by Pournaki et al. At the same
time, we obtain some new results as well. It may be mentioned here
that some of the works that have been carried out in [3, 5, 11] are
related to the present problem.

Note that Prz (G) = Pry(G), which coincides with the usual commu-
tativity degree Pr(G) of G if we take g = 1, the identity element of

G. It may be recalled (see, for example, [6]) that Pr(G) = % where

k(G) denotes the number of conjugacy classes of G.
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In [15, Theorem 1], Tambour has generalized a classical result of

Frobenius [4] to prove that the number of n-tuples (z1, 2, ... ,2,) €
G" satisfying [z1,22,...,2,] =g is
|G‘n—1
Y ——X(g)
x€lrr (G) X(l)n :

where €, is 1 or 2 according as n is even or odd; Irr (G) denotes the set
of all irreducible complex characters of G. As such, we have

(1) Prg(G):i > (i‘)(ﬁ

xelrr (G)

It is clear, from the definition of Pry(G), that 0 < Pry(G) < 1,
and Pr{(G) = 1 if and only if G is abelian. Also, from (1), we have
Pry(G) = Pr;H'l(G) if n is even. In view of these facts, we always
assume that G is nonabelian and n is even (whence ¢, = 1).

2. Some preliminaries. In this section we derive some results
which also serve as prerequisites for the forthcoming sections. We
begin by observing that Pry(G) can be thought of as a completely
multiplicative arithmetic function (see [1]) of finite groups in the
following sense.

Proposition 2.1. For any two finite groups H and K with (h,k) €
H' x K',
Pr{}, 1y (H x K) = Pry(H)Prj(K).

Proof. It is enough to note that the n-tuples of pairs ((z1,91),- .,
(Tn,yn)) € (H x K)™ satisfying [((z1,91),--- s (@Zn,yn))] = (h, k) are

in a one-to-one correspondence with the pairs of n-tuples ((z1,. .., 2s),
(Y1,--Yn)) € H™ x K™ satistying [z1,...,zn] = h and [y1,... ,yn] =
k. O

As in [7, page 133], G is said to be isoclinic to a group H if there are
isomorphisms ¢ : G/Z(G) — H/Z(H) and ¢ : G’ — H' such that
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ag o (¢ X ¢) = ¢ o ag where the maps ag : G/Z(G) x G/Z(G) — G
and ag : H/Z(H) x H/Z(H) — H' are induced by the commutator
maps of G and H respectively. The following proposition shows that
Prj(G) is an invariant under isoclinism of finite groups.

Proposition 2.2. Let G be isoclinic to a finite group H. Then, with
notations as above,
Pr(G) = Prz(g)(H).

g

Proof. Note that the generalized commutator map from G" to
G, given by (z1,22,... ,2,) — [21,Z2,...,2,], factors through the
quotient group G™/Z(G™) = (G/Z(G))™. Therefore, it follows that

(2) H(z1,z2,...,24) € G" i [21,22,... ,2s] = g}
= {(z1Z(G), 22Z(G), ... , 2. Z(G)) € (G/Z(G))" :
[@1, @2, ... @] = g}| X |Z(G)[".

Consider now an n-tuple (z1Z(G), 22 Z(G), ... ,2,Z(Q)) € (G/Z(G))"
such that [zq,23,...,2,] = g. It is a routine matter to see that

(3) [xlaxZa"' 7xn] = [xla m2"'11;n][3727 x.’i"'xn]"'[l‘nfla xn]

where the right hand side is a product of commutators. Therefore, from
the definition of isoclinism, we have

P(g) = ¢([wr, 22 zp])Y([22, T3+ 20]) - Y ([Bn—1, Tn])

= [y1, y2- - Ynlly2, Y- Ynl - [Yn—1, Yn]

= [yla Y2, .. 7y’n]7 (as in (3))7
where y1, 2, ... ,yn € H are given by ¢(2;Z(G)) = y; Z(H),1 < i <n.
Since ¢ : G/Z(G) — H/Z(H) and ¢ : G' — H' are isomor-
phisms, it follows that there is a one-to-one correspondence between
the n-tuples (z1Z(Q),22Z(Q),...,z.Z(G)) € (G/Z(G))™ satisfying
[z1,29,... ,2,] = g and the n-tuples (y1 Z(H),y2Z(H),... ,ynZ(H)) €
(H/Z(H))™ satisfying [y1,y2,--. ,Yn] = ¥(g). Hence, by (2) and the
corresponding equation for H, we have

Pry(G) = Pry,, (H),

noting that |G/Z(G)| = |H/Z(H)|. O
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It has also been observed in [7, page 136] that up to isoclinism, there
exists precisely one nonabelian group of order p3, and the groups which
are isoclinic to a group of order p® are characterized by the property
that their center has index p2. As such, we have

Lemma 2.3. Given a prime p, |G : Z(G)| = p? if and only if G is
isoclinic to the group presented as

(@,y|a” =1=yP, y oy = 27*).

We know that finite nilpotent groups are the direct product of their
Sylow subgroups. Therefore, it follows that if G' = Z(G) and |G'| = p,
a prime, then G is an extra-special p-group, and so, by [13, page 146],
|G| = p***! for some positive integer k. In [7, page 135], it has been
proved that every group is isoclinic to a group whose center is contained
in the commutator subgroup. Hence, we have

Lemma 2.4. Let G' C Z(G) and |G'| = p, a prime. Then G is
isoclinic to an extra-special p-group of order p***1 with k = %logp |G :

2(G)|.

Finally, in this section, we have the following lemma which is used
extensively in this paper.

n
Lemma 2.5. Let Y ri(a; —1) = 0 where r;’s are positive rational

=1
numbers, and a; € C, |a;| <1 for alli=1,2,... ,n. Then a; =1 for
alli=1,2,...,n

Proof. Note that

n

Ozzn: Re (ri(a; — Zrl (Re (a;) — 1) Zr, la;] — 1) <0.
i=1 i=1

Hence, for all = 1,2,...,n, we have Re (a;) = |a;] = 1 which means
that a; = 1. ]
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3. Some nontrivial bounds for Pry(G). Since G’ C ker(X) for all
X € Irr (G) with x(1) = 1, and also since |G : G'| equals the number of
linear characters of G, (1) can be rewritten as

1 1 X(9)
4 Pr™(G) = — + — X9
W O =Gt e 2 Xy
x(1)#1

In particular, putting g = 1, we have

(5) ﬁ < Pr7(G) < Pr3(G) = Px(G),

noting that G has at least one nonlinear irreducible character. From
(4), since |X(g)| < x(1), we also have

(6) Pry(G) < Pri(G),
and
. 1 1 1
(7) Prg(G)—@ g@ > OGS

x€lrr (G)
X(1)#1

Let m = min{x(1) : X € Irr (G),x(1) # 1}. Let p be the smallest
prime divisor of |G|. Clearly,

X(1)>m>p>2 foral Xxe€Irr(G) with x(1) # 1.

Throughout this paper we write d to denote any one of 2, m and p.
Then, from (7), we have

1 1 1

(8) Pry(G) — el < P [PT(G) - m}’

noting that the number of nonlinear irreducible characters of G is given
by k(G) - |G : G|, and Px(G) = &1

Since

(9) Gl= Y x(1)*>|G: G|+ dKG)-|G: G|,
x€lrr (G)
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we have

1 d? -1

Therefore, from (8), it follows that

1
led

(11) Pr(G) —

1 1
<—|1- :
<o ol

In particular, putting d = 2 and noting that |G’| > 2, we have

. on 41

As an immediate consequence of (11), we also have

(13) lim Prl(G) =

n—oo 9

G

If G is a simple group then G’ = G, Pr(G) < & (see [2]), and also

m > 3 (see [8, Proposition 6.8, page 72]). Hence, in this case, (8) gives

1 1 1 1
Pr(G) — < |~
(@) |G|‘—3"—2[12 |G|}

Note here that As is the smallest nonabelian simple group and its order
is 60. So, we have

(14)

3n24+4
P*(G) < oo
(@) S 55

4. Conditions for attaining upper bounds. In this section we
derive some necessary and sufficient conditions so that Pry(G) attains
the upper bounds mentioned in Section 3. We begin with (6) to have

Proposition 4.1. Pry(G) = Pr{(G) if and only if g = 1.
Proof. By (1), we have
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PrZ(G) = Pr?(G)
X(g)
= 2N s (5 1) =

— X(9) =x(1) VX €Irr(G), (by Lemma 2.5),

which holds if and only if g = 1. O

Let ¢d (G) = {X(1) : X € Irr (G)}. Then, corresponding to (8), we
have

Proposition 4.2. Pry(G) = 5= —L[Pr(G) +
g=1and cd(G) ={1,d}.

|G, L1 if and only if

Proof. Note that
1 1 1
Pr*(G) - — = —— |Pr(G) — —
SR I [ (@) |G']

= Z ! (%-1) =0, (using (4))

x€lrr ( G)
X(1)#1

< d=X(1) ¥ x € Irr (G) with x(1) # 1, (by Lemma 2.5),
< cd (G) = {1,d}.

Hence, in view of (6), (8) and Proposition 4.1, the result follows. o

Note that the equality holds in (10) if and only if it holds in (9). As
such, by Lemma 2.5, we have

Lemma 4.3. Pr(G) = ;[1+ |ZT] if and only if cd (G) = {1,d}.
More generally, corresponding to (11), we have

Proposition 4.4. Prj(G) = 5-[1+ |G, L] if and only if g = 1 and
cd (G) = {1,d}.
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Proof. Using (8) and (10), we have
1 1 1 1 1
Prl’(G)— — < — |Pr(G) = — | < — |1 - —|.
50~ 17 < 72 O 17| < 7 [ -
Hence, by Proposition 4.2 and Lemma 4.3, the result follows. o
Lemma 4.3 also gives, in particular, the following result.

Proposition 4.5. With p denoting the smallest prime divisor of |G|,

|G : Z(G)| = p* <= cd (G) = {1,p} and |G| = p.

Proof. By (10),

1

p*—1
|G|

So, by Lemma 4.3, we have

1 p? -1

Pr(G) = I?

[1+ } = cd(G) = {1,p} and |G'| = p.

On the other hand, from [10, Theorem 3], we have

1 p?—1 9
Pr(G):? 1+ = |G : Z(G)| = p=.
Hence, the result follows. ]

Corresponding to (11) and (12), we also have

Proposition 4.6. Let p be the smallest prime divisor of |G|, or
p=2. Then,
_p"+p—1

Prl(G) poEe

g
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if and only if g =1, and G is isoclinic to

(,y|a?’ =1=y?, y oy = a?*).

In particular, Pry(G) = 2221'11 if and only if g = 1, and G is isoclinic
to Dg, the dihedral group (i.e. to Qs, the group of quaternions).

Proof. By (11), We have

1 -1
P < —|1 <
50 < |1+ M| <

So, by Proposition 4.4, we have

Pry(G) = I% [1 + pnp ] <~ g=1,cd(G)={1,p}

and |G'| = p.

Hence, the result follows from Proposition 4.5 and Lemma 2.3. ]

5. Conditions for attaining lower bounds. In this section we
discuss the conditions under which Pry(G) attains the lower bounds
given in Section 3. It may be noted here that the lower bound occurs
in equation (7) with

1 1 . 1

_@ Z 7(1)7172 S PI‘g (G) - W
xelrr (G)
X(1)#1

We begin with the following observation.
Proposition 5.1. If cd (G) = {1,d} and g # 1, then

w1 1
Prg(G) = Ied [1 dn]'

Proof. The proof is parallel to that of Theorem 2.2 of [12]. Using the
second orthogonality relation (see [9, Theorem 2.18]), we have

> e =-1EE

x€lrr (G)
X(1)#1
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The result now follows from (4). o

Corresponding to (8), we have

Proposition 5.2. Pr)(G) = 73 [-Pr(G) + dan, | if and only if
g#1,cd(G)={1,d}, |G'|=2.

Proof. Suppose that the given formula for Pry (@) holds. Then,

n L __ 1 _ L
) e T [PY(G) gl

— Y (R ) <o, qusins (0)

X €E€lrr (G
X(1)A1

= —X(g)d"™* = x(1)"~"
V x € Irr (@) with x(1) # 1,

by Lemma 2.5, noting that |X(g)] < x(1) and d < Xx(1) for all
X € Irr (G) with X(1) # 1. Thus, we have g # 1, X(g) is real, and
—X(g) = x(1) =d for all x € Irr (G) with x(1) # 1. In particular, we
have cd (G) = {1,d}. Also, by the second orthogonality relation, we
have

> Xlox1)=0
xelrr (G)
—|G: G| -d*(k(G)—-|G:G|) =
d?+1
2|6
= |G'| =2, (by Lemma 4.3).

= Pr(GQ) =

Conversely, if g # 1, cd(G) = {1,d}, |G'| = 2 then, by Lemma 4.3
and Proposition 5.1, we have

1 dn—2 4+ 1}

1 1 .

This completes the proof. O
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As an immediate consequence, we have, corresponding to (11),

Corollary 5.3. Prj(G) = #[-1+ d‘z;,rll] if and only if g # 1,
cd (G) ={1,d}, |G'| = 2.

Proof. Using (8) and (10), we have

1 -1 1 -1 1
Pri(G)— —=— > —|Pr(G)— —| > —|1—- —|.
50~ 172 5 PO~ i 2 T [~
Hence, using Lemma 4.3, the result follows. |

Remark 5.4. If G is a simple group, then the equality in (14) can
never hold. Because the equality in (14) implies the equality in (8).
This, in view of Propositions 4.2 and 5.2, implies that |cd (G)| = 2.
But, by [9, Corollary 12.6], this is impossible.

6. Some more bounds and equalities. It is well known (see [9,
page 28]) that |G : Z(G)|"/? is an upper bound for cd (G). If this upper
bound is attained then G is said to be of central type. Therefore, as an
immediate consequence of Propositions 4.4 and 5.1, we have

Proposition 6.1. Let |cd (G)| = 2. Then,

1 G/ - 1
P (G) > 1+ — d
(@)= G'|[ +|G:Z<G>"/2]’ an

1 1
Prr'é)< —|1—- ———— ; 1.
50 < 7L~ @) Yo
Moreover, in both cases, equality holds if and only if G is of central
type.

Since, G is nonabelian, |G/Z(G)| > 4. As such, we have

Corollary 6.2. If G is of central type with |cd (G)| = 2 then

n 1 &' -1
Pri(G) < Ied [1+ om ], and

Pry(G) > |G1’|[1 an] if g # 1.
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From [9, page 31], we know that if G’ C Z(G) and G’ is of prime
order (for example, if G is an extra-special p-group) then G is of central
type with |cd (G)| = 2, i.e., cd (G) = {1,|G : Z(G)|*/?}. This fact is
also observed in the proof of Proposition 3.1 of [12]. Therefore, in view
of Proposition 2.2 and Lemma 2.4, it follows, from Proposition 6.1, that

Proposition 6.3. Let G' C Z(G) and |G'| = p be a prime. Then

(1+25) irg=1

Pr?(G) = (1_]#) Fotl

1
p
g 1
p

where k = 3log, |G : Z(G)|.
More generally, we have
Corollary 6.4. Let |G'| be square free and G' C Z(G). Then

o Gl G

pl|G’

where ky = %logp \Gp : Z(Gp)|, Gy is the Sylow p-subgroup of G, and
dp =1 or 0 according to whether p divides or does not divide the order
of g.

Proof. Note that G, being nilpotent, is the direct product of its Sylow
subgroups. Therefore, since G' C Z(G) and |G’| is squarefree, it follows
that, for each prime divisor p of |G'|, the Sylow p-subgroup G, of G
satisfies the conditions G,/ C Z(G,) and |G,’| = p. It also follows
that, all other Sylow subgroups (if any) of G are abelian. Hence, G is
isoclinic to the product || G}, where p runs through the prime divisors
of |G’|. Thus, using Propositions 2.1 and 2.2, the corollary follows. O

If |G| is a prime with G'NZ(G) = {1} then Pry(G) can be computed
in exactly the same manner as in [12, Section 4] in terms of the invariant
number i(G) of G. More precisely, we have
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Proposition 6.5. If |G'| =p, G’ N Z(G) = {1} and i(G) =r, then

Pr(G) =

T ifg=1
T ifg# L

The following two results generalize Propositions 5.2 and 5.3 of [12].

Proposition 6.6. If g # 1, then Pry(G) < % where p is the smallest

prime divisor of |G|; in particular, we have Pry(G) < 1.

Proof. 1f Pry(G) > % then, from (5), (6) and Proposition 4.1, it
follows that Pr(G) > %. Therefore, from (10) with d = p, we have
|G'| < p+1, and so, |G'| = p. Hence, we have either G’ C Z(G) or
G' N Z(G) = {1}. In both situations, we have, from Propositions 6.3
and 6.5, Pry(G) < %. This contradiction proves the result. o

Proposition 6.7. For each € > 0 and for each prime p, there exists
a G such that

n 1
PI‘g(G) — p?‘ < E.

Proof. In view of Proposition 6.3, it is enough to choose a positive
integer k such that k > —% log, &, and consider G to be an extra-special

p-group of order p?F+1, ]

We conclude this paper with the following observation.

Proposition 6.8. Pri"*(G) < Pr}(G). On the other hand, for
g #1 and|cd (G)| =2, Pr;+2(G) > Pry(G).

Proof. Follows immediately from (4) and Proposition 5.1. i

Acknowledgments. The authors are grateful for the helpful sug-
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