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NCF-DISTINGUISHABLITY
BY PRIME GRAPH OF PGL(2,p)
WHERE p IS A PRIME

M. KHATAMI, B. KHOSRAVI AND Z. AKHLAGHI

ABSTRACT. Let G be a finite group. The prime graph
I'(G) of G is defined as follows. The vertices of I'(G) are the
primes dividing the order of G and two distinct vertices p,
p' are joined by an edge if there is an element in G of order
pp'. Let p be a prime number. In [4], the authors determined
the structure of finite groups with the same element orders
as PGL(2,p), and it is proved that there are infinitely many
nonisomorphic finite groups with the same element orders as
PGL(2,p). Therefore there are infinitely many nonisomorphic
finite groups with the same prime graph as PGL(2,p).

We know that PGL(2,p) has a unique nonabelian compo-
sition factor which is isomorphic to PSL(2,p). Let p be a
prime number which is not a Mersenne or Fermat prime and
p # 11, 19. In this paper we determine the structure of fi-
nite groups with the same prime graph as PGL(2,p) and as
the main result we prove that if G is a finite group such that
I'(G) = T'(PGL(2,p)) and p # 13, then G has a unique non-
abelian composition factor which is isomorphic to PSL(2,p)
and if p = 13, then G has a unique nonabelian composition
factor which is isomorphic to PSL(2,13) or PSL(2,27).

1. Introduction. If n is an integer, then we denote by 7(n) the set
of all prime divisors of n. Let G be a finite group. Denote by 7 (G)
the set of primes p such that G' contains an element of order p. Also
the set of orders of elements of G is denoted by m.(G). This set is
closed under divisibility and is uniquely determined by the set u(G)
of elements in 7. (G) which are maximal under the divisibility relation.
We denote by h(G), the number of pairwise non-isomorphic groups H
with 7. (G) = me(H). The prime graph I'(G) of a group G is defined as a
graph with vertex set 7(G) in which two distinct primes p,p’ € 7(G) are
adjacent if G contains an element of order pp’. Let ¢(G) be the number

2010 AMS Mathematics subject classification. Primary 20D05, 20D60, 20D08.
Keywords and phrases. Prime graph, simple group, composition factors, linear

group.
Received by the editors on July 19, 2008, and in revised form on January 19,

20009.
DOI:10.1216/RMJ-2011-41-5-1523 Copyright ©2011 Rocky Mountain Mathematics Consortium

1523



1524 M. KHATAMI, B. KHOSRAVI AND Z. AKHLAGHI

of connected components of I'(G) and 7,7, ... ,myq) the connected
components of I'(G). If 2 € 7(G), then we always suppose that 2 € ;.
Then 7 is called the even component of I'(G) and m,... ,myq) are
called the odd components of I'(G). Let m and n be positive integers.
We write m ~ n, if every prime divisor of m is adjacent to every prime
divisor of n. There are many results about the prime graph of a finite
group [21].

Hagie in [8] determined finite groups G satisfying I'(G) = I'(S), where
S is a sporadic simple group. It is proved that if ¢ = 3*"*1 (n > 0),
then the simple group >G2(q) is uniquely determined by its prime graph
[3, 33]. A group G is called a CIT group if G is of even order and the
centralizer in G of any involution is a 2-group. In [15] finite groups
with the same prime graph as a CIT simple group are determined.
Also in [16] it is proved that if p > 11 is a prime number and p # 1
(mod 12), then PSL(2,p) is uniquely determined by its prime graph.
In [13, 14, 19], finite groups with the same prime graph as PSL(2, q)
are determined. In [1], the authors determined finite groups with the
same prime graph as 2Fy(q), where ¢ = 22"*! > 2. We introduce the
following definition.

Definition 1.1. A finite group G is called nonabelian composition
factor(s) distinguishable by prime graph (briefly, NCF-distinguishable
by prime graph) if every finite group H with I'(H) = T'(G) has the
same nonabelian composition factor(s) as G.

In [4], it is proved that if ¢ = p®, where p is a prime and « > 1, then
PGL(2,q) is uniquely determined by its element orders. Also in [26], it
is proved that there are infinitely many nonisomophic finite groups with
the same element orders as PGL(2,p). Obviously these groups have
the same prime graph as PGL(2,p). We know that PGL(2,p) has a
unique nonabelian composition factor which is isomorphic to PSL(2, p).
In this paper as the main result we prove the following theorem:

Main theorem. Let G be a finite group, and let p be a prime number
such that T'(G) = T'(PGL(2,p)), where p # 11, 19 and p is not a
Mersenne or Fermat prime.

(a) If p # 13, then G has a normal series 1< N< N.P< N.P.A =G,
such that N is a nilpotent group, P = PSL(2,p), A < Zs and
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m(N) Cnw(p—1). If |N| is odd and p = 5, 11 (mod 12), then N = 1.
Thus PGL(2,p) is NCF-distinguishable by prime graph.

(b) If p =13, then G has a normal series 1« Na N.P< N.P.A =G,
such that P = PSL(2,13) and N is a 2-group; or P = PSL(2,27) and
N is a 3-group, and A < Out(P).

By using the classification of finite simple groups, the structure
of a finite group G such that its prime graph is not connected has
been determined by Gruenberg and Kegel, in an unpublished paper.
Later, Williams published this result together with a classification
of finite simple groups with a disconnected prime graph, which are
distinct from Lie-type groups of even characteristic, see [32]. In [9],
a similar description was given for simple Lie-type groups in an even
characteristic. The connected components of the prime graph of non-
abelian simple groups with disconnected prime graph are listed in [22]
and throughout this paper we use this list.

Throughout this paper, all groups are finite and by simple groups we
mean non-abelian simple groups. All further unexplained notations are
standard and refer to [5]. We use the results of Williams [32], Iiyori
and Yamaki [9] and Kondrat’ev [20] about the prime graph of simple
groups. We denote by (a,b) the greatest common divisor of positive
integers a and b. Let m be a positive integer and p be a prime number.
Then |m|, denotes the p—part of m. In other words, |m|, = p* if p* | m
but p**1tm.

2. Preliminary results.

Remark 2.1. First we give a brief description of the prime graph of
PGL(2,p), where p is an odd prime. By [4], it follows that

wW(PGL(2,p)) = {p,p—1,p+1}.

Therefore, by assumption, the prime graph of PGL(2,p) has two
connected components. We note that {p} is an odd component of
the prime graph which is a singleton (a connected component consist
of one vertex) and p is the greatest prime divisor of |PGL(2,p)|.

It is sometimes convenient to represent the graph I'(G) in a compact
form. By the compact form we mean a graph whose vertices are
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FIGURE 1.

labeled with pairwise coprime natural numbers. A vertex labeled n
represents the complete subgraph of I'(G) with vertex set m(n). An
edge connecting n and m represents the set of edges of I'(G) that
connect each vertex in 7(n) with each vertex in w(m). Figure 1 depicts
the compact form of the prime graph of PGL(2,p), where p is an odd
prime and p is not a Fermat prime or a Mersenne prime.

Remark 2.2. f T'(PGL(2,p)) has two complete components, then we
have w(p —1) = {2} or m(p+1) = {2}, which implies that p is a Fermat
or Mersenne prime.

Lemma 2.3 (see [24, 25, 32]). A finite group G with disconnected
prime graph T'(G) satisfies one of the following conditions:

(a) t(G) = 2 and G = KC is a Frobenius group with kernel K and
complement C' and two connected components of T'(G) are I'(K) and
I'(C). Moreover K is nilpotent, and hence I'(K) is a complete graph.
If C is solvable, then T'(C) is complete; otherwise, {2,3,5} C m(G) and
[(C) can be obtained from the complete graph with vertez set w(C) by
removing the edge {3,5}.

(b) t(G) = 2 and G is a 2-Frobenius group, i.e., G = ABC, where
A and AB are normal subgroups of G, B is a normal subgroup of BC,
and AB and BC' are Frobenius groups. The two connected components

of I'(G) are complete graphs I'(AC) and I'(B).

(¢) G is an extension of a nilpotent group N which is trivial or a
m1(G)—group, by a group of the form P.A, where P < P.A < Aut (P)
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for some non-abelian simple group P with disconnected T'(P), and

A=1 or Aisam(G)—group. Moreover, t(P) > t(G).

Lemma 2.4 (see [23, Lemma 1]). Let N be a normal subgroup of
G. Assume that G/N is a Frobenius group with Frobenius kernel F
and cyclic Frobenius complement C. If (|N|,|F|) = 1, and F is not
contained in NCq(N)/N, then p|C| € n.(G), where p is a prime factor
of |N|.

Lemma 2.5 (see [23]). Let G be a finite group having a non-trivial
solvable normal subgroup. Then h(G) = co.

Lemma 2.6. Let L = Lo(p), where p is a prime, p > 3.

(a) (see [3]). L has an irreducible module V' over C of degree p — 1
such that all elements of order p in L act on V fized-point-freely and
an element of order (p+ 1)/2 has a fized point in V.

(b) (see [2]). Let W be a reduction of V. modulo 2. If (p —1)/2 is
odd, then there exists a non-split extension E of W by L.

Lemma 2.7 (see [4]). Suppose that p > 3 is a prime number. Then
there exists an extension E of the Lo(p)-module W from Lemma 2.6 by
L = Ly(p) with m.(E) = m.(PGL (2, p)).

Lemma 2.8 (see [29, Proposition 3.2]). Let G be a finite group and
H a normal subgroup of G. Suppose G/H is isomorphic to PSL(2,q),
q odd and q > 5, and that an element t of order 3 in G\ H has no fized
points on H. Then H = 1.

Lemma 2.9 (see [4]). Let M* = As(q) and M~ = 2A45(q), where
q :pg and pg is a prime, B > 0. Then for e = £1,

o polg—e) (*—1) PF+eq+1\ ., .
M(M)—{qe, B.a—2) Bra—2) (Ga—e) }, if q is odd.

20g—¢) -1 ¢ +eq+1
(37(1_5),(37(1_5), (37(1_5) ’

w(M?) = {q — g, 4}, if q is even.

The following lemma is a consequence of Proposition 3.1 in [31].
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Lemma 2.10. For a positive integer m, let

m m =0 (mod 4)
v(m)=1< m/2 m=2 (mod 4)
2m  m=1 (mod 2)

Let ¢ = p®, and let r be an odd prime such that p # r.
(a) If G = Ap—1(q) and ord,qg < n —2, then r ~ p in I'(G).
(b) If G =24, _1(q) and v(ord,q) < n — 2, then r ~ p in I'(G).

Lemma 2.11 (see [27]). Let G be a finite group and N a nontriv-
ial normal p—subgroup, for some prime p, and set K = G/N. Sup-
pose that K contains an element x of order m coprime to p such that
(lizys Ll(y) > O for every Brauer character ¢ of (an absolutely ir-
reducible representation of) K in characteristic p. Then G contains
elements of order pm.

Lemma 2.12 (see [7, Theorem 4.7]). Let F be a field of order p*,
and let p € C be a (p* — 1)th root of unity, o € C a (p* + 1)th root
of unity, z = (;l _01), a = (: i), d= (i (1)) where v is a generator
of the cyclic multiplicative group F*, ¢ = 1 ) and b be an element
of order p* + 1 in SL(2,p*). Then for p* = 1 (mod 4) the ordinary
character table of PSL(2,p*) is (as shown in Table 2.1).

’
0
1

TABLE 2.1.
) (e (2)d (z)a! (z)a®* D/ (o
1g 1 1 1 1 1 1
¥ p* 0 0 1 1 -1
Xi | P+l 1 1 Pl 4 il | pieF—1)/A iR —1)/4 0
0; | pF-1 -1 —1 0 0 oim _g—im
g [P +12 [ (/)2 | (1 /)2 (1) (-p@F -/ 0
e+l a-me]l sy | (=1 P/ 0

where i = 2,4,6,...,(p* —5)/2, j = 2,4,6,...,(p* —1)/2,1 <1 <
(p* —5)/4and 1 <m < (pF — 1)/4.

For p¥ = —1 (mod 4) the ordinary character table of PSL(2,p") is
(as shown in Table 2.2).
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TABLE 2.2.
PLES)

(2) (z)c (z)d (2)at (z)b™ (z)b T
j¥e] 1 1 1 1 1 1
b p* 0 0 1 -1 -1
Xi | pF+1 1 1 ol 4 pmil 0 0

13

0; | p*—1 —1 —1 0 —oim _gmim | it i

k_ 1/ —pF | —1-/—pF PLEE
m | B ! — — 0 (=nm+t (=1 : t

k_q —1—+/—pk —14+/—pk pi41
n | o o 0 (=nm+t (- = !

where i = 2,4,6,...,(p* —3)/2, j = 2,4,6,...,(pF —3)/2,1 <1<
(p* —3)/4and 1 <m < (p* - 3)/4.

Remark 2.13. We note that if (3% —1)/2 is a prime number, then f3 is
an odd prime. Also if (37 4 1)/2 is a prime number, then 3 is a power
of 2.

Lemma 2.14 (see [28, page 29]). Let a > 1, m and n be positive
integers. Then

(a” —1,a™ —1) = a™™) — 1.

Lemma 2.15 (see [6, Remark 1]). The equation p™ — ¢" = 1,
where p and q are primes and m,n > 1 has only one solution, namely
3223 =1.

Lemma 2.16 (see [17]). Let n and q be positive integers. If q is odd,
then |(¢*" —1)/(¢* = 1)|2 = Inl2.

Lemma 2.17 (see [6]). With the exceptions of the relations (239)2 —
2(13)* = —1 and 35 — 2(11)? = 1, every solution of the equation

p™ —2¢" = +1; p, q prime; m,n > 1

has exponents m = n = 2; i.e. it comes from a unit p — q.21/2 of the
quadratic field Q(21/2) for which the coefficients p and q are primes.
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Lemma 2.18 (Zsigmondy theorem) (see [34]). Let p be a prime, and
let n be a positive integer. Then one of the following holds:

(i) there is a primitive prime p' for p™ — 1, that is, p’ | (p™ — 1) but
Pt (p™ — 1), for every 1 < m < n,

(i) p=2,n=1 or6,
(iii) p is a Mersenne prime and n = 2.

In the sequel we recall the concept of quadratic residue and the
Legendre symbol from number theory.

Remark 2.19 (see [28]). Let (k,n) = 1. If there is an integer = such
that > = k (mod n), then k is called a quadratic residue (mod n).
Otherwise k is called a quadratic nonresidue (mod n).

Let p be an odd prime. The symbol (a/p) will have the value 1 if
a is a quadratic residue (mod p), —1 if a is a quadratic nonresidue
(mod p), and zero if p | a. The symbol (a/p) is called the Legendre
symbol.

Let p be a prime number and (a,p) = 1. Let £ > 1 be the smallest
positive integer such that a* = 1 (mod p). Then k is called the order of
a with respect to p and we denote it by ord,(a). Obviously by Fermat’s
little theorem it follows that ord,(a) | (p —1). Also if a™ =1 (mod p),
then ord,(a) | n. Similarly if ¢ = p®, then ord,a is defined.

Lemma 2.20 (see [28]). Let p be an odd prime. Then (—1/p) =
(—1)e-1/2,

3. Proof of the main theorem. We note that if G is a group
such that I'(G) = T'(PGL(2,2)), then |G| = 293", for some integers
a and b, and so G is solvable. Therefore G does not have any non-
abelian composition factor. Also we know that PGL(2,2) does not
have any non-abelian composition factor, and so PGL(2,2) is NCF-
distinguishable. Therefore in this section we suppose that p is an odd
prime.

Lemma 3.1. Let G be a group such that I'(G) = T'(PGL(2,p)),

where p is a prime. Ifp is not a Fermat or Mersenne prime and p # 11,
19, then G is neither a Frobenius group nor a 2-Frobenius group.

Proof. If G is a 2-Frobenius group, then by Lemma 2.3, the graph
components of I'(G) are complete. So by Remark 2.2, p is a Mersenne
or Fermet prime, which is a contradiction.
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If G is a Frobenius group, then by Lemma 2.3, either the graph com-
ponents of I'(G) are complete, which is a contradiction, or {2,3,5} C
7(G) and I'(C) can be obtained from the complete graph with vertex
set m(C) by removing the edge {3,5}. So we have n(p — 1) = {2,3}
and m(p+1) = {2,5}; or m(p — 1) = {2,5} and 7(p + 1) = {2,3}. If
p—1=2%3% and p + 1 = 2%5°, for some non negative integers o, 3, a
and b, then 2%3° + 2 = 295, Therefore a =1 or « = 1. If a = 1 and
po is a primitive prime of 5° — 1, then py = 2 or py = 3. If py = 2, then
b=1and p =9, which is impossible. If pg = 3, then b = 2 and p = 49,
which is a contradiction. Let « = 1. Then by Lemma 2.18, either
B = 1, which implies that p = 7 and this is excluded, or 3%% — 1 has
a primitive prime, say pg. Then pg = 5 and hence f = 2 and p = 19,
which is a contradiction. If p —1 = 2°57 and p 4+ 1 = 223°, for some
non negative integers «, 8, a and b, then similarly we conclude that
p =11 and we get a contradiction. |

Proof of the main theorem. By Lemmas 2.3 and 3.1, (G is an extension
of a nilpotent group N which is trivial or a m;-group, by a group of the
form P.A, where P < P.A < Aut (P) for some non-abelian simple group
P with disconnected I'(P), and A =1 or A is a m1-group. Moreover,
t(P) > t(G). Now using the classification of finite simple groups and
the results in Tables 1-3 in [22], we consider the following cases.

Case 1. Let P = A/, Ayiyq or Apryo, where p’ > 5 is an odd prime.
Since {p'} is an odd component of P, by Remark 2.1 it follows that
p=1p and

r((p— 1)) € 7(p? — 1) = m (PGL(2,p)).

If z | (p—2), then z | (p? — 1), which implies that x = 3, and so there
exists a natural number ¢ such that p — 2 = 3*. If z | (p — 3), then
x| (p? — 1), which implies that 2 = 2, and so there exists a natural
number r such that p — 3 = 2”. Therefore 3! — 2" = 1, and so we have
either (¢,7) = (2,3), or t = r = 1. If (t,7) = (2,3), it follows that
p = 11, which is a contradiction. If »r = ¢ = 1, then p = 5, which is a
Fermat prime and this is impossible.

Case 2. Let P = A, _1(g), where ¢ = p’g and (p',q) # (3,2),(3,4).
Then similarly to the above case we have

(1) T (P) = 71.((110'(10’—1)/2 1:[ (qi _ 1)) C ﬂ,(pQ ~1),
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¢ —1 3
WZP , for some a > 0.

(a) Let p’ = 3. So (¢*+q+1)/(3,g—1) = p*. We have the following
subcases.

(a.1) Let (3,g — 1) = 3. Therefore g(¢ +1) = 3p® — 1 and so
po | (3p®—1). On the other hand, py | (p?—1), by (1). So po | (p?* —1),
which implies that pg = 2. Let # € w(q + 1). Therefore z | (3p* — 1).
Also by (1), z | (p** — 1), which implies that * = 2, and this is a
contradiction, since ¢ + 1 is odd.

(a.2) Let (3, — 1) =1. Sog¢(¢+1) = p* — 1. By Lemma 2.18,
p* — 1 has a primitive prime, say z. By (1), | (p?> — 1), which implies
that « = 1 or o = 2. Let a = 2. Therefore q(q + 1) = p?> — 1 and by
(1), m(alg +1)(g = 1)) C 7(p? = 1). If y € m(g — 1), then y | (p* —1).
Hence y | (¢ + 1) and so y = 2. Thus ¢ is a Fermat prime, and so
q=po and po(po +1) = p? — 1. If pg | (p — 1), then there is a natural
number h such that hpy = p — 1 and h(p + 1) = pp + 1. Therefore
h(hpo + 2) = po + 1, which implies that hpy + 2 < pg + 1, and this is
a contradiction. Therefore py | (p + 1) and we conclude that there is
a natural number h such that hpg = p + 1. Since po(po + 1) = p* — 1,
it follows that h(p — 1) = pp + 1. Therefore po(h? — 1) = 2h + 1 and
hence h? —1 < 2h+1. Thus h < 2, which is a contradiction. Therefore
a=1. Hence p—1=gq(q+1). Let z € (¢ — 1). By (1), z | (p* — 1).
Ifz|(p—1), then z = 2,sincep—1=g¢q(¢g+1). Iff x| (p+1), then
x| (¢® +q+2), which implies that x | (¢ + 3), and hence z = 2. So ¢ is
a Fermat prime and ¢ = py. By Lemma 2.9 and our assumptions, we
have

(2) 1(As2(po)) = {po(po — 1),p5 — 1,p5 + po + 1}.

If there exists 2 # s € m(po + 1), then we have s » po in I'(Az(po)).
On the other hand, po(pp + 1) = p— 1, and so py € w(p — 1) and
m(po +1) C 7(p — 1). Also we know that p — 1 € u(PGL(2,p)) and
so every two prime divisors of p — 1 are joined to each other, and
|A] | 2, since by Lemma 2.3, A < Out(P). It follows that py € m(N) or
s € m(N). Since p is not a Mersenne prime there exists 2 # r € w(p+1).
Since 1 (P) = m(po(pg—1)) and po(po+1) = p—1 and w(po—1) = {2},
we conclude that 71 (P) Nw(p + 1) = {2}. Also |A]| | 2, which implies
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that r € 7(IN). Sor ~ pg or r ~ s, since N is nilpotent, which is a
contradiction by Figure 1.

If m(po + 1) = {2}, then py = 3, since py is a Fermat prime. Thus we
have p = 13. We note that 7 € 7(PGL(2,13)) and 7 ¢ ©(A2(3)) and
|A| | 2. Therefore 7 € m(N). Let x € P, X = (z) and o(z) = 3. Now
by using [30], about irreducible characters of A2(3) (mod 7), we can
see that

(x,1x) =1;
(12]x, 1|x) = %(12 +2x3)=6;
(13]x, 1] x) = %(13+ 2% 4) =T:
(161]x,1|x) = <162|X,1|X> = (163]x, 1|x) = (164]x, 1| x)
—(16+2><( 2)) =
(261]x,1|x) = <262|X,1|X> = <263|X7 1lx)
= 5(26+2x( 1)) =

1

1
(391x,1x) = 5(30 +2x3) = 15.

Therefore, for every irreducible character ¢ of A3(3) (mod 7), we show
that

(¢lx,1|x) = Z¢

zEX

Now by using Lemma 2.11, it follows that 3 ~ 7 in I'(G), which is a
contradiction.

(b) Let p’ > 5. By [31], the order of a maximal torus of A, _1(q) is
in the form of (Hl (gF = 1) /((¥',q—1)(g — 1)), where p’ = 22:1 k;.
Since the graph of every maximal torus 7" is complete, it follows that
m(T) Cw(p—1) or 7(T) C w(p+1). We consider the following subcases:

(b.1) Let py # 2. By Lemma 2.10, every prime divisor of ¢* — 1, where
1 <4 < p —2is adjacent to pg. Since p’ — 1 is even, it follows that
g?' "l =1 = (¢®'~D/2_1)(¢®?'~D/2 1 1). If 7(¢P~D/2 —1) = {2}, then
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(¢,p") = (3,5), which implies that p = 11, and this is a contradiction.
If p' | (¢— 1) and w((¢% 1% —1)/p) = {2}, then p' = 5 and ¢
is a Mersenne prime. Therefore ¢> — 1 = 2.5, for some integer t,
which implies that ¢ = 11 and we get a contradiction. So there exists
24ren((q? =12 -1)/(p/,q—1)). Since 2 < (p' —1)/2 < p/ — 2, we
have r ~ py in I'(G), by the above discussion. Thus m(P) C 7(p — 1)
or m(P) C w(p+1). Let m(P) C 7w(p+ ¢), where ¢ = +1. Since
A < Out(P), we conclude that w(4) C «(8) U {2,(p',q — 1)}. If
(p'yqg — 1) = p', then p' € w(p +¢€), and so p' ¢ w(p —e). If
2#sen(B)Nnm(p—e), then s ~ pg in I'(G), since s is the order of a
field automorphism and so s ~ m(A,—1(py)). So we get a contradiction,
since pg € m(p + €). Therefore m(A) N7 (p — ) = {2}. By the above
discussion 7(p —¢) \ {2} C 7(N).

Let = be a primitive prime of pg *'=2) _1 and let y be a primitive prime

ofpg(plfl) —1. We note that y + z, since otherwise (g7 ~2—1)(¢* ~'—1)
divides the order of a maximal torus of P and sop’ —1+p — 2 <9/,
which implies that p’ < 3, and this is a contradiction. Let z € w(A).
If (¢—1,p') =p and = p/, then z | (¢ — 1) and so p' — 2 = 1,
which is a contradiction. Since x is a primitive prime of qp"2 —1,it
follows that B(p’ — 2) <z — 1. Therefore z ¢ m(8) and so we conclude
that ¢ m(A). Similarly to the above discussion, we have y ¢ 7(A).
On the other hand, we know that p + ¢ € u(PGL(2,p)) and so every
two prime divisors of p + ¢ are joined to each other. Therefore by the
above discussion we conclude that y € 7(N) or z € w(IV). Since N is
nilpotent, z ~ r or y ~ r in T'(G), for every 2 #r € w(p — ). So we
get a contradiction by Figure 1.

(b.2) Let pyp = 2. We note that (¢> —1)/(p’,q — 1) divides the order
of maximal toruses in the form of ((¢' —1)(¢’ —1))/((p',q —1)(qg — 1)),
where i + 5 = p’. Since p’ > 5, by Lemma 2.15, there exists
2#sen((¢>-1)/(p',q—1)). So we have s ~ ¢' —1 in ['(G), for every
1 <4 < p' —1. Therefore 71 (P) C w(p — 1) or m1(P) C w(p+ 1) and
similarly to (b.1) we get a contradiction.

If P = Ay(q), where (g —1) | (p" + 1), 24, _1(g) or 24,/ (q), where
(g+1)| (P +1)and (p',q) # (3,3), (5,2), then we get a contradiction
similarly.

Case 3. Let P2 A,(q), where 4/(¢+1) and q:pg. Then 72 (P)=m7(q)
and m3(P)=m((q — 1)/2). So we have the following subcases.
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(a) Let m2(P) = {p}. Then p = py and 7((¢+1)(g— 1)) C 7(p? - 1).
Therefore m(p?# — 1) C w(p? — 1), which implies that 3 = 1 and
P = Ai(p), by Lemma 2.18. We claim that m(N) C w(p — 1). Let
there exist 2 # s € 7(N)Nw(p+ 1). Let U be the group of upper
triangular matrices in SL(2,p). Then U has a normal subgroup B
of order p and the diagonal matrices are complements for B of order
p — 1. This gives a p : (p — 1) subgroup in SL(2,p). Passing to the
quotient modulo {I, —I} gives the subgroup p: (p—1)/2 in PSL(2,p).
By Lemma 2.4, for every 2 # r € w(p — 1) we have r ~ s, which is a
contradiction. Therefore 7(N) C m(p—1). If 24 |N| and p = 5, 11
(mod 12), then by Lemma 2.8, we have N = 1. By Lemma 2.3, we
have A < Out(P), and so A < Zs.

(b) Let m3(P) = {p}. So (¢ —1)/2 = p*, for some a > 0, and
m(g(g+1)) C w(p?> —1). By Lemma 2.17, we have either (pg, 3,p,a) =
(3,5,11,2), which implies that 61 € m(¢g+ 1) C n(p? — 1) = m(120),
which is impossible; or a = =2;ora=1l;or f=1. f a = = 2,
then po | (2p? +1). On the other hand, py | (p? — 1), which implies
that pp = 3 and p = 2, which is a contradiction. If 3 = 1, then
po = 2p® + 1. On the other hand, we know that py | (p> — 1) and so
po | (p** — 1). Therefore pg | (4(p®>* — 1) — (4p** — 1)) and so py = 3.
Thus 3 = 2p® + 1, which is a contradiction. If a = 1, then pg =2p+1
and so p+1 = (ph +1)/2 and p — 1 = (p§ — 3)/2. We know that
po| —1)orpy | (p+1). If po | (p+1), then po = 1, which is a
contradiction. If py | (p — 1), then py = 3 and p = (3% — 1)/2, where 3
is an odd prime, by Remark 2.13. Therefore P = A;(3%).

Let 8 > 3. We know that p — 1 = 3(3°~1 —1)/2. If (3%~1 - 1)/2 =
2!, for some integer t, then 3%~1 — 1 = 2¢*!. By Lemma 2.15,
we have B = 3, which is a contradiction. Therefore (37~ — 1)/2
has an odd prime divisor. We claim that 7((3°~! — 1)/2) ¢ m(A).
Let m((3°~% —1)/2) C m(A). We know that A < Out(P) and so
n(A) C {2,8}. Therefore 3°~1 — 1 = 2!3°, for some integers t, s.
Since 3 — 1 is even, it follows that (3(¥=1/2 — 1)(30F=1/2 1 1) = 2tps.
Since (3(~1/2 —1,303-1/2 £ 1) = 2, by Lemma 2.15, we have 8 = 5,
which implies that p = 121, and this is a contradiction. Thus there
exists 2 # 7 € w((3#71 —1)/2) \ 7(A). We note that r # 3 and
r#p=(3#-1)/2. Ifr | (3°41)/2, then r = 2, which is a contradiction
and sor ¢ 7(P). Therefore r € w(N). Since r ¢ ©(P), by [10, Theorem
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15.13], the Brauer character table in characteristic » and the ordinary
character table of P are the same.

By Lemma 2.15, (3% +-1)/2 = p+ 1 has an odd prime divisor, say p;.
So p1 < (3% +1)/4. Let = € P, such that o(z) = p;. Let X = (z).

By the notations of Lemma 2.12, let m = (3 + 1)/(2p1) and
r = b™(z). Therefore 1 < m < (37 — 3)/4. Since o(b) is even and
o(z) is odd, it follows that m is even. By Lemma 2.12, we will show
that for every ordinary character ¢ of P, (¢|x,1|x) > 0. Since 3 is an
odd prime, it follows that 3° = —1 (mod 4). By using the tables in
Lemma 2.12, we have

<1|X71‘X>:1>0;
(Wlx, 1x) = p%(z—aﬁ T (pr — 1)(-1))

1 os a8 _
(3= =34 >0

1
h

v

(. 1x) = pil«sﬂ C1)/2 4 (py - 1) (=)™

> (3 - 1)/2- (3~ 3)/4) > 0

D1
(m2lx, 1x) = (mlx, lx) > 0;

p1—1
(b5lx,1x) = (35 S Z _gimt _ —jmt)>

—3ﬂ+1 >0,
P1( )

for j =2,4,6,...,(3° = 3)/2, (j,p1) = 1;

p1—1
0jlx,1lx) = (35 —1+ Z (—gimt — Ujmt)>
1

= p—(35 —1-2(p1 —1))
> pi(35 ~-1-(3°-3)/2)>0

for j =2,4,6,...,(3% = 3)/2, (j,p1) # 1.
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We note that in the above computations Zf;;lojmt = —1, where
(4,p1) = 1, since 9™ is the p;th root of unity.

By Lemma 2.11, it follows that r ~ p;, which is a contradiction by
Figure 1.

We know that every composition factor of a solvable group is abelian.
We see that IV is nilpotent and A < Zs. Therefore N and A do not have
any nonabelian composition factor. Therefore P = A;(p) = PSL(2,p)
is the only nonabelian composition factor of G.

If 3 = 3, then p = 13. So P = PSL(2,27) and by Lemma 2.3,
A < Out(PSL(2,27)) and 7(N) C {2,3,7}. If 2 € 7(N), and z is
an element of order 13 in P, then by [11], (¢|(),1|(z)) > 0, for every
Brauer character ¢ of P of characteristic 2. Now Lemma 2.11 implies
that 2 ~ 13, which is a contradiction. If 7 € w(NN), then similarly we
get a contradiction. Therefore N is a 3-group. By using [5], we know
that T(PSL(2,27).3) = I(PGL(2,13)).

If P = PSL(2,13), then similarly to the above discussion, N is a
2-group.

Similar to Case 3, if P = A;(q), where 4 | (¢ — 1), then we conclude

Let P = A;(q), where ¢ = 27, for some 3 > 0.

(a) Let mo(P) = m(qg—1) = {p}. Thus ¢ — 1 = p®, for some a > 0.
Therefore « = 1. It follows that p is a Mersenne prime, which is
excluded.

(b) Let m3(P) = w(q¢ + 1) = {p}. Thus ¢ + 1 = p*, for some o > 0.
Therefore either (p,,B) = (3,2,3); or @ = 1. It follows that p is a
Fermat prime, which is excluded.

Case 4. Let P = B,(q), where n = 2™ > 4 and ¢ = pg is odd.
Therefore

n—1
3) m(P) =n(ald" - 1) [T(¢* - 1)) C =(p* — 1),
i=1
(¢" +1)/2 = p*, for some a > 0.
So ¢" +1 = 2p“, which implies that « = 1, by Lemma 2.17 and

our assumptions. Thus (¢" + 1)/2 = p, (¢" — 1)/2 = p— 1 and
(¢" +3)/2 = p+ 1. By (3), we know that either py | (p — 1), which
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implies that pg | (¢® — 1), and so pg = 1; or pg | (p + 1), which implies
that po | (¢" +3), and so py = 3. Therefore ¢ = 3°. On the other hand,
by Lemma 2.18, 324("=1) _ 1 has a primitive prime, say z. Then by
3),z|(p+1orx|(p—1). Ifz| (p+1), then z | (¢" + 3), which
implies that 2 | (3"~! 4 1). On the other hand, z | (37"~ 4+ 1) and
so z | (3771 —1). Therefore 23(n — 1) < B — 1, which implies that
28 < 8 —1, and this is a contradiction. If z | (p — 1), then z | (¢" — 1),
which implies that 2(n — 1)8 < nf, and this is a contradiction by our
assumptions.

If P = B,(3), Cy(qg), where n = 2™ > 2, C}(q), where ¢ = 2,3,
D, (q), where p" > 5 and ¢ = 2,3,5 or Dp41(q), where ¢ = 2,3, then
we get a contradiction similarly.

Case 5. Let P~ 2D, (q), where n = 2™ > 4 and ¢ = p’g. Therefore

m(P) = w(q@w ~D) Cnl -,

g" +1
(2,¢+1)

(4)

= p%, for some o > 0.

Let ¢ be odd. Then ¢" + 1 = 2p®, and so, by Lemma 2.17, we have
a = 1 and hence (¢" +1)/2 = p. Thus (¢" +3)/2 = p+ 1 and
(¢" —1)/2 = p— 1. We know that pg | (p*> — 1) and we can easily see
that pg t (p — 1). Therefore py | (p + 1) and so py = 3, which implies
that ¢ = 3°. By Lemma 2.18, 32%(*=1) _1 has a primitive prime, say z.
By (4),wehave z | (p+1)orz | (p—1). Ifz | (p+1), then = | (3#™ +3)
and so z | (3°"~! 4 1). On the other hand, x | (3°(~1) 4 1), since =
is a primitive prime of 3%4(®~1) — 1 and so z | (3~ — 1). Therefore
2B8(n—1) < -1, which is a contradiction. If z | (p—1), then z | (¢"—1),
which implies that 2(n — 1)8 < nf, and this is a contradiction, by
our assumptions. Therefore g is even. Then p* = ¢" + 1 and by
Lemma 2.15, « = 1 and p is a Fermat prime, which is excluded.

If P=2D,(2), wheren =2™+1>5,2D,(3), where n = 2™ +1 # p
and m > 2 or 2D,/(3), where p’ > 5, then we get a contradiction
similarly.

Case 6. Let P 22 G2(q), where ¢ = pg.
We must consider 3 subcases. Let ¢ = —1 (mod 3) and ¢ > 2. Then
we have
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mi(P) = n(g(¢® + 1)(¢* — 1)) C n(p* — 1),
¢ +q+1=p° for some o > 0.

(5)

We claim that g is a Fermat prime. Let z € w(¢—1). By (5), = | (p>—1).
Ifz | (p—1), then x | (p™ —1). Thus z | (¢*> +q), since ¢> + ¢ = p* — 1,
and hence z | (¢ + 1), which implies that ¢ = 2. Let z | (p + 1). If
a is even, then z | (p® — 1), and similarly to the above case z = 2. If
a is odd, then z | (p® + 1). Therefore z | (¢*> + ¢ + 2), which implies
that « | (¢ + 3) and so ¢ = 2. Thus ¢ is a Fermat prime and hence
q = 2F + 1, for some integer k.

By [31], ¢> — g + 1 is the order of a maximal torus of P. Therefore
by (5), m(¢*> —q+1) C mw(p —1) or m(¢* —¢+1) C m(p+1). Let
(> —q+1) Cr(lp—1). fzen(¢?—qg+1), thenz | (p—1) and
so x | (p® — 1). Therefore | ¢(g + 1), which implies that x | (2¢ — 1).
On the other hand, = | (¢ + 1) and hence z = 3. It follows that
q®> — g+ 1 = 3%, for some integer t. Thus (2% +1)%2 — (28 + 1) +1 =3¢
and so 2% +-2F = 3! — 1. If t is odd, then |3! — 1| = 2 and hence k = 1,
which is a contradiction since 3¢ — 1 = 6. Therefore ¢ is even and so by
Lemma 2.16, we have t = 28=2], where [ is an odd number. Therefore
2k(2k+1) = 32711, For k > 5, we have 2¥(2F+1) < 32°7"'—1 and for
k < 4, the equation has no solution. Therefore 7(¢?—q+1) C w(p+1).
Ifz em(¢>—q+1),thenz | (p+1). If a is even, then z | (p® — 1)
and we get a contradiction similarly. If « is odd, then it follows that
z | (p* + 1) and hence z | (¢> + g + 2). Therefore z | (2¢ + 1), which
implies that z | (3¢ —2). So = 7, and hence ¢> — ¢ +1 = 7¢, for some
integer t. Thus (25 41)2— (2% +1)+1 = 7t. Therefore 22k +-2F =7t —1,
and we get a contradiction similarly to the above discussion.

If g=0,1 (mod 3), then similarly we get a contradiction.
Case 7. Let P = Fg(q). Therefore
m(P) =7(q(¢® - (¢" - 1)(¢"* — 1)) S 7(p” - 1),
(6) ¢ +¢+1
(37 q— 1)
We have the following subcases.

(a) Let (3,g—1) =3. Then (¢°+¢3+1)/3 = p®. Let = € 7(¢® + 1).
By (6), z | (p? = 1). If z | (p — 1), then z | (p* — 1), which implies

= p%, for some o > 0.
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that = | (¢° +¢* —2) and so z = 2. Let = | (p + 1). If « is even, then
z | (p* — 1), and similarly z = 2. If « is odd, then z | (p® + 1) and
hence z | (¢°+ ¢ +4), which implies that z = 2. Therefore ¢ +1 = 2¢,
for some integer ¢, and this is a contradiction, by Lemma 2.15.

(b) Let (3,g—1) = 1. Then ¢° +¢*> +1 =p*. Let x € n(¢®> — 1). By
(6), z | (p* —1). If z | (p — 1), then z | (p® — 1), which implies that
x| (¢ +1), and hence z = 2. If x | (p+ 1), then similarly we conclude
that 2 = 2. Tt follows that ¢ — 1 = 2¢, for some integer ¢, and this is a
contradiction, by Lemma 2.15.

If P = 3Dy(q), Fi(q), 2Es(q) or 2G2(q), where ¢ = 3?"*1, then we
get a contradiction similarly and we omit the proof of these cases for
convenience.

Case 8. Let P =2 2By(q), where ¢ = 22"*1 > 2. We have the
following subcases.

(a) Let mo(P) = m(qg — 1) = {p}. So ¢ — 1 = p*, for some o > 0.
By Lemma 2.15, we have o = 1, and p is a Mersenne prime, which is a
contradiction.

(b) Let 73(P) = m(q—+/2q+1) = {p}. So we have 2271 _2n+l 41 =
p%, for some o > 0. Let = be a primitive prime of ¢ — 1 = 22n+! 1,
Ifz| (p—1), then z | (p® — 1). It follows that = | (2" — 1), which is
a contradiction. Therefore z | (p + 1). If « is even, then z | (p® — 1)
and similarly we get a contradiction. If « is odd, then z | (p® 4+ 1) and
therefore z | (2271 —27+142). Tt follows that z | (2"! —3) and hence
| (2727 —3) — (2% —1)). So x| (3 x 2" — 1), which implies that
x = 7. Since ord;2 = 3, we have n = 1 and p = 5, which is excluded.

(c) Let m4(P) = w(q++/2q+1) = {p}. So we have 22n+1 427+l 41 =
p®, for some o > 0. Let 2 be a primitive prime of ¢ — 1 = 22n+! — 1,
Ifz| (p—1), then = | (p* — 1). It follows that = | (2" 4+ 1), which
is a contradiction. Therefore = | (p + 1). If « is even, then similarly
we get a contradiction. If o is odd, then = | (p* + 1) and therefore
z | (221 4 27+ 4 2). Tt follows that = | (2"*! + 3) and hence
x| (272" 4+ 3) — (2271 —1)). So z | (3 x 2" + 1), which implies
that £ = 7. Since ord72 = 3, we have n = 1 and p = 13. Therefore
q¢—+/2q+1=05,but 5 ¢ 7(13% — 1), which is a contradiction.

Case 9. Let P =2 2Fy(q), where ¢ = 22"*1 > 2. Therefore

(7) m(P) = m(q(q* — 1)(¢* + 1)) S =(p* — 1).
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We have the following subcases.

(a) Let 77(‘12_\/%"’(1_\/%"'1) = {p}. So 92(2n+1) _93n+2 4 92n+1_
27+ + 1 = p*, for some a > 0. Therefore 271 (2" — 1)(2?n+! 4+ 1) =
p® — 1. Let  be a primitive prime of 26"+ _ 1. So z | (¢° + 1) and
hence by (7), z | (p+1)or x| (p—1). If x| (p — 1), then = | (p* — 1).
Therefore x | (2" — 1) or = | (22" + 1), which is a contradiction, since
x is a primitive prime of 26(2*+1) — 1, If z | (p + 1) and « is even,
then x | (p® — 1) and we get a contradiction similarly. If « is odd, then
z | (p®+1) and so x | (22(2n+1) —23n+2 4 92nd1 _ontl 1 9) Since g is
a primitive prime of 26("+1) — 1 hence z | (22(nF1) — 22041 4 1),
It follows that x | (2372 — 227+2 4 27+l _ 1) Therefore z is a
divisor of (22(2n+1) — 92n+l 4 1) _ 2n(23n+2 — 9242 | gn+l 1) _
23n+2 _ 9242 4 9n 4 1. So z | (27! — 1), which is a contradiction,
since x is a primitive prime of 2627+ — 1

(b) If 7(¢* + v/2¢® + ¢+ v/2q¢ + 1) = {p}, then similarly we get a

contradiction.

Case 10. Let P = Fs(q) and ¢ =0,1,4 (mod 5). Therefore

(8) m(P) =m(a(¢"~1)(¢" ~1)(¢** ~1)(¢"* ~1)(¢"* - 1)) C 7(p* 1)
We have the following subcases.

(a) Let m(P) = 7((q'® +1)/(¢*> + 1)) = {p}. Therefore (¢'° +
1)/(¢* + 1) = p*, for some a > 0. We know that (¢** — 1) | |P|. Let
x be a primitive prime of ¢** — 1. So z | (¢® — ¢* + 1), and so we
have z € r(p—1) orz € m(p+1). If x € w(p — 1), then = | (p® — 1)
and hence z | (¢® — 1), which is a contradiction. If z € m(p + 1) and
a is even, then similarly we get a contradiction. If « is odd, then
z | (p* + 1), which implies that z | (¢'° + ¢* + 2) and it follows that
x| (¢%+2). Therefore z | (¢* +2¢*> — 1) and consequently z is a divisor
of (g*(g* +2¢*> — 1) — (¢® — ¢* + 1)) = (2¢° — 1), which implies that
x = 5. This shows that for ¢ = 0 (mod 5), we get a contradiction.
Therefore 5 { ¢ and so 5 | (¢* — 1), which is a contradiction, since z is
a primitive prime of ¢?* — 1.

(b) Let m3(P) = m(¢® — ¢* + 1) = {p}. Then ¢® — ¢* + 1 = p®, for
some a > 0. Let x be a primitive prime of ¢° — 1. Obviously z € m2(P)
and so z #p. Ilf z € w(p — 1), then z | (p* — 1), which implies that
x| (¢* — 1), and this is a contradiction. If z € m(p + 1) and « is even,
then we get a contradiction similarly. If « is odd, then z | (p™ + 1),
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which implies that = | (¢® — ¢* +2). Since x is a primitive prime of
q*° — 1, then = | (¢'° + 1) and therefore = | (¢° — 2¢* + 1). It follows
that x | (¢* — ¢® +2) and hence z | (¢* — 4¢®> + 1). Thus z | (3¢> + 1),
which implies that z | (¢® —3), since x | (¢'° +1). Therefore z | (¢* —5)
and so z | (¢8 — 25), which implies that z | 22. Therefore z = 11. Also
ord;1q = 20, since 11 is a primitive prime of ¢?° — 1. Thus 20 | (11— 1),
which is a contradiction.

(c) Let my(P) =7(¢® — ¢" +¢° — ¢* + ¢* — ¢+ 1) = {p}. Therefore
@ -+ —¢*+¢ —qg+1 = p* for some o > 0, and hence
q(¢*> = 1)(¢° —q¢* + ¢® + 1) = p* — 1. Let = be a primitive prime of
q'® — 1. Then z | (¢° + 1), and we have = € 7(p — 1) or = € 7(p + 1).
If 2z | (p — 1), then z | (p® — 1), and hence = | (¢° — ¢* + ¢* + 1),
since z is a primitive prime of ¢'° — 1. Therefore = | (¢ — 1), which is a
contradiction. If z € w(p+1) and « is even, then we get a contradiction
similarly. Therefore a is odd. By [31], (¢° + 1)(¢> — ¢+ 1)(g £ 1) are
the orders of maximal toruses of P. Since z € m(p+1) and = | (¢° + 1),
we have 7((¢® + 1)(¢? — g+ 1)(g £ 1)) Cw(p+1). Ify € (¢? — 1),
then y | (p + 1), which implies that y | (p® + 1). On the other hand,
y | (p* — 1), since q(¢> — 1)(¢° — ¢* + ¢ + 1) = p® — 1. Tt follows that
y = 2. Hence ¢®> — 1 = 2%, for some integer ¢, which implies that ¢ = 3
and this is a contradiction, since ¢ =0, 1,4 (mod 5).

(d) Let 75(P) =7(¢®* +¢" —¢° —¢* — ¢* + ¢+ 1) = {p}. We suppose
that z is a primitive prime of ¢ —1, and we get a contradiction similarly
to (c).

If P~ F3(q) and ¢ = 2,3 (mod 5), then by small modification of the
above proof we get a contradiction.

Case 11. If P is a sporadic simple group or P is isomorphic to
2A3(2), 2F4(2)/, A2(4), 2A5(2), E7(2), E7(3) or 2E6(2), then easily
we get a contradiction. For example if P &2 M, then p = 71, by
Remark 2.1. Therefore 59 € m(p? — 1), which is a contradiction.

So if p # 13, then PGL(2,p) is NCF-distinguishable. If p = 13,
then the only non-abelian composition factor of G is PSL(2,13) or
PSL(2,27). Now the proof of the main theorem is completed. o

Remark 3.2. By Lemmas 2.5 and 2.7, h(PGL(2,p)) = co. So N is
not always trivial.
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Corollary 3.3. Let G be a group and p a prime number such
that e(G) = me(PGL(2,p)) and |G| = |PGL(2,p)|, where p is not
a Mersenne or Fermat prime and p # 11, 19. Then G =2 PGL(2,p).

Proof. Since 7.(G) = m.(PGL(2,p)), then we conclude that I'(G) =
I'(PGL(2,p)). Therefore Z(G) = 1. So by the main theorem, G has
a normal series 1< N< N.P<4 N.P.A = @G, such that IV is a nilpotent
group. If p # 13, then P = PSL(2,p) and A < Out(PSL(2,p)) = Zs.
Since |G| = |[PGL(2,p)|, we have |N| | 2. If |[N| = 2, then N < Z(G),
which is a contradiction, since Z(G) = 1. Thus [N| =1 and |A4| = 2.
So the generator of A is a diagonal automorphism and we conclude that
G = PGL(2,p). If p = 13, then P = PSL(2,13) or P = PSL(2,27)
and A < Out(P). Since |PSL(2,27)| > |PGL(2,13)|, it follows that
P =~ PSL(2,13) and similarly to above discussion G = PGL(2,13). O

Remark 3.4. We note that as a consequence of our main theorem, we
give a new proof for Step 1 and Step 2 of the main result in [26], where
p# 11,13, 19 and p is not a Mersenne or Fermat prime.
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referee for valuable suggestions.
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