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CHARACTERIZING MINIMAL RING EXTENSIONS

PAUL-JEAN CAHEN, DAVID E. DOBBS AND THOMAS G. LUCAS

ABSTRACT. Given a pair of commutative rings R C T’
with the same identity, 7" is a minimal ring extension of R
if there are no rings properly between R and 7. Such an
extension is said to be closed if R is integrally closed in T7
otherwise, T is integral over R and the extension is a minimal
integral extension. An extension R C T is a closed minimal
extension if and only if there is a maximal ideal M of R such
that (R, M) is a rank 1 valuation pair of T' (equivalently, for
each t € T\R, M is the radical of (R :g t) and there is an
element m € M such that mt € R\M). Also, for a pair of rings
R C T and element u € T\R, the pair R C Rlu] is a closed
minimal extension if and only if for each ¢t € R[u]\R, there are

elements ¢,d € 1/ (R :g u) such that ct+d = 1. For a minimal
integral extension R C T, the conductor M = (R : T) is
a maximal ideal of R. In this case, if M has no nonzero
annihilators in 7', then there is an R-algebra isomorphism
between 7" and a ring extension S of R in the complete ring
of quotients of R. Moreover, M is regular if and only if S is
in the total quotient ring of R, and M is semiregular but not
regular if and only if S is in the ring of finite fractions over R
but not in the total quotient ring of R.

1. Introduction. All rings and algebras considered below are
commutative with identity and all ring/algebra homomorphisms and
subrings are unital. The set of prime (respectively, maximal) ideals of
R is denoted by Spec (R) (respectively, Max (R)). A regular element is
one that is not a zero divisor, and a regular ideal is one that contains
a regular element. An ideal that has no nonzero annihilators is said
to be dense and an ideal that contains a finitely generated dense ideal
is semiregular. For a pair of rings R C T, an element b of R may be
regular in R but a zero divisor in 7. Similarly, an ideal of R may be
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dense in R but have a nonzero annihilator in 7. Also, a regular ideal
can only be either semiregular or dense with respect to 7.

If R is a subring of T, we say R C T is a minimal (ring) extension if
there are no rings properly between R and T'. Clearly, this is the case
if and only if T is of the form T = R[u] for each u € T\R. Since the
integral closure of R in T is a ring, if R C T is a minimal extension,
then either 7" is integral over R (equivalently, T is a finite R-module) or
R is integrally closed in T'. For the former we say R C T is a minimal
integral extension, and for the latter we say R C T is a closed minimal
extension. By way of [6, Theorem 2.7] and [24, page 1738, lines 8-13],
if D C T is a closed minimal extension with D an integral domain but
not a field, then 7" is an overring of D; that is, T sits between D and
the quotient field of D. Moving beyond the context of domains, one
can find generalizations of the above-cited result from [24] concerning
“overrings” in contexts involving nontrivial zero divisors in work of
Picavet and Picavet-L'Hermitte [23, Proposition 3.9] and Dobbs [3,
Theorem 2.2].

One way to form a minimal integral extension is by using the ide-
alization of a module. Given a ring R and an R-module B, one can
form a new ring R(+)B from the Abelian group R @ B by setting
(r,a)(s,b) = (rs,rb + sa); this is the idealization (of B over R). The
ring R, viewed as {(r,0) | » € R}, is a subring of R(+)B. In many
instances, some rings naturally take the form of an idealization. For
example, if X is an indeterminate over R, then the ring R[X]/(X?) is
naturally isomorphic to R(+)R, the idealization of R as a module over
itself. With regard to minimal extensions, Ferrand and Olivier showed
that K (+)K is one of only three types of minimal (necessarily integral)
extensions of a field K [8, Lemma 1.2]. More generally, if M is a max-
imal ideal of R, then R(+)R/M is a minimal integral extension of R
with conductor M (+)(0) [2, Corollary 2.5].

In Section 2 we develop some tools we need for later use. In particular,
revisiting some of the elementary results of Ferrand and Olivier [8], we
show that the conductor I = (R : T') of a minimal extension R C T’
is a maximal ideal of R for a minimal integral extension, and that it
is a prime ideal of both R and T but not maximal in R for a closed
minimal extension. We also show that a necessary condition for a
pair R C T to be a minimal extension is that there is a (maximal)
critical ideal M, that is, M = /(R :grt) for each t € T\R. Ayache
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proved that if D is an integrally closed domain but not a field, then
D C T is a closed minimal extension if and only if T = Q(M) is
the Kaplansky ideal transform of some maximal ideal M such that
M is the radical of a finitely generated ideal and there is a prime
P C M such that PDp = PDy and (D/P)y/p is a one-dimensional
valuation domain [1, Theorem 2.4]. This was extended to reduced
rings with von Neumann regular total quotient rings by Dobbs and
Shapiro [7, Theorem 3.7]. In order to develop a general characterization
for closed minimal extensions, we need to revisit the notion of ideal
transforms and valuation pairs. For a nonzero ideal I of an integral
domain D with quotient field K, the Kaplansky ideal transform of I
is the overring Q(I) = {z € K | I C /(D :p z)}. An equivalent
form is Q(I) = ({Dqg | I € Q € Spec(D)} [14, Theorem 1.7].
If in addition, I is a finitely generated ideal, then the Nagata ideal
transform T (I) = J(R : I™) is equal to the Kaplansky transform Q(I)
[14, Theorem 1.3]. In this case we refer to 7 (I) simply as the ideal
transform of I. The work in [7] was accomplished in part with the help
of a generalization of Q(I) that was developed in [25] for the context
of base rings having von Neumann regular total quotient rings. For our
purposes, it is convenient to extend Kaplansky transforms to arbitrary
pairs R C T. For a prime ideal P of R, let Rppy = {t € T | rt € R
for some r € R\P}. The ring Rpr) is referred to as the large
quotient ring of R with respect to P and T (see, for example, [13]).
Ift € (\{Rm,ry | M € Max(R)}, no maximal ideal of R contains
(R :r t). Hence R = ({{R(m,ry | M € Max(R)}. For a nonzero
ideal I of R not contained in the nilradical, we define the generalized
Kaplansky transform ¥ (I) of I with respect to T to be the intersection
Yr(I) ={Rmr | I £Q € Spec(R)}.

For a pair of rings R C T and a prime ideal P of R, (R,P) is
said to be a valuation pair of T if there is a surjective valuation map
v: T — G|J{oo}, with G a totally ordered Abelian group (that is,
v is such that v(st) = v(s) + v(¢t) and v(s + ¢) > min{v(s),v(¢)})
such that R = {s € T | v(s) > 0}, P = {s € T | v(s) > 0}, and
v (o) = (R: T) =: Py is a prime ideal of both R and 7' (called the
prime at infinity). Clearly, for each t € T'\ R, there is an element p € P
such that pt € R\ P-simply choose any p such that v(p) = —v(t). The
rank of the valuation pair is the rank of the group G (the length of the
chain of isolated subgroups) and it is the same as the height of P over
P..
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In Section 3, we generalize Ayache’s result on closed minimal exten-
sions of domains, showing that R C 7' is a closed minimal extension
if and only if T" = ¥ (M) for some maximal ideal M of R such that
(R,M) is a rank one valuation pair of 7' (Theorem 3.5). We also
consider the notion of a closed minimal extension from a different per-
spective: given a pair of rings R C 7', what algebraic properties of a
given element u € T\R are necessary and sufficient for R C R|u] to
be a closed minimal extension? One characterization is that, for each
t € R[u]\R, there are elements ¢,d € /(R :g u) such that ct +d = 1.
Another is that R C Ru] is a closed minimal extension if and only if
M = /(R :g u) is a maximal ideal of R and for each a € R\(R :g u),
there is an element b € M such that bau € R\M. Both of these char-
acterizations appear in Theorem 3.4. We also give a characterization
in terms of invertibility. For a pair of rings R C T, we say that an
R-submodule B of T is T-invertible if B(R :p B) = R. As with in-
vertible (fractional) ideals of an integral domain, if an R-submodule
is T-invertible, then it is finitely generated over R. In addition, such
a module has no nonzero annihilators in 7. For an ideal I of R and
rings R C S C T, it may be that I is T-invertible but not S-invertible.
(For example, the ideal YR in the ring R = K[X,Y] is T-invertible
for T = K[X,Y,1/Y] but not S-invertible for S = K[X,Y,X/Y].)
However, if the R-submodule B of T contains R, then (R :r B) is con-
tained in R and the ring 7’s relevance is then simply that it contains
B. In particular, for an element ¢t € T\ R, the R-module J = R+ tR
is “T-invertible” if and only if there are elements m,n € R such that
m-+nt = 1 and both mt and nt are in R. In Theorem 3.5 we show that
R C T is a closed minimal extension if and only if, for each t € T'\R,

(R :g t) is a maximal ideal of R and (R + ¢R) is invertible.

Section 4 is devoted to the embedding in various quotient rings. For
a ring R, we denote by Q. (R) the total quotient ring, by Q(R) the
complete ring of quotients and by Qo(R) the ring of finite fractions
(definitions recalled below within said section). An overring is simply
a ring T between R and Q. (R), while a Q-overring is one between R
and Q(R) and a Qo-overring is one between R and Qo(R). Extending
results in [7, 24], we show that if R C T is a closed minimal extension,
then there is a natural R-algebra isomorphism from 7 into a Qp-
overring of R (Theorem 4.1). In Theorem 4.4 we consider the case
of a minimal integral extension R C T such that M = (R : T) has no
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nonzero annihilator in 7. In the case that M is regular in 7' (and in
R), there is an R-algebra isomorphism from 7" to an overring of R. If
M is semiregular in 7' and not regular in R, then there is an R-algebra
isomorphism from 7T to a Qg-overring of R, but there cannot be one to
an overring. Finally, for M dense in T but not semiregular in R, there
is an R-algebra isomorphism from 7' to a Q-overring of R, but there
cannot be one to a Qp-overring. In Theorem 4.6 we show that if M
has an (nonzero) annihilator in R\M, then M = eR is both minimal
and maximal with e idempotent and T takes one of three forms: (i) R-
algebra isomorphic to a ring of the form eR ® L where L is a minimal
algebraic field extension of the field R/M, (ii) R-algebra isomorphic to
the ring R x R/M, or (iii) R-algebra isomorphic to the idealization ring
R(+)R/M.

In Section 5 we consider the Nagata ring R(X) = R[X]y(g), where
U(R) denotes the set of polynomials in R[X] with unit content; that
is, those whose coefficients generate R as an ideal. For a pair of rings
R C T, if T is integral over R and the coefficients of f € T[X] generate
T as an ideal, then there is a polynomial g € T[X] such that the
coefficients of fg € R[X] generate R as an ideal (see the proof of [12,
Theorem 3]). It follows that in this case U(T) is the saturation of
U(R) in T[X]. A key step in the proof of Theorem 5.4 is showing that
the same conclusion holds in the case that R C T is a closed minimal
extension. The end result is that R C T is a closed minimal extension
if and only if R(X) C T(X) is a closed minimal extension.

We devote Section 6 to examples illustrating the diversity of minimal
ring extensions in the presence of nontrivial zero divisors. In particular,
we give a pair of examples of closed minimal extensions R C S such
that each element of S\R is a zero divisor (Examples 6.2 and 6.4). In
Example 6.2, the ring S is a subring of Qo (R) that cannot be embedded
into Q. (R), while in Example 6.4, S is contained in Q. (R). With
regard to minimal integral extensions, Example 6.5 shows that the
conductor of the minimal integral extension R C S into R can be a
semiregular ideal of S that is not regular. The last example is of a
minimal integral extension R C S where the conductor of S into R is
a dense ideal of S that is not semiregular (Example 6.6).

2. Conductors, valuation pairs and critical ideals. In this
section we revisit some of the elementary results of Ferrand and Olivier
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[8] as well as some tools which will be used later. The section is divided
into three subsections.

Conductors. For a ring extension R C T, we first recall a few facts
about the conductor I = (R : T'). Clearly I is an ideal shared by R
and 7', and hence, we have a pullback:

R———T

]

R/T——T/I

This can be considered trivial if I = (0). But in any case, R C T is a
minimal extension if and only if R/I C T'/I is a minimal extension (as
every ring S between R and T shares the ideal I with them): cf. [5,
Lemma I1.3].

First, the following lemmas about minimal extensions are immediate.

Lemma 2.1. Let R C T be a ring extension with conductor
I=(R:T). If T is a minimal extension of R, then for each t € T\I,
T=R+1T.

Lemma 2.2 (cf. [8, Lemme 1.3]). Let R C T be a minimal extension
and S a multiplicatively closed set in R. Then either Rs C Ts is a
minimal extension or Rg = Ts. If S meets the conductor I = (R :T)
nontrivially, then Rg = Ts.

Recall from [8, Lemme 1.2] that if K is a field and K C L is a ring
extension, then K C L is a minimal ring extension if and only if L
satisfies one of the following:

(i) L is a minimal (necessarily algebraic) field extension of K,
(i) L K x K, or
(i) L = K[X]/(X?) = K(+)K.

In all three cases, it is clear that L is a finite K-module.

Theorem 2.3. Let R C T be a minimal extension with conductor
I=(R:T). Then exactly one of the following holds.
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(1) I is a mazimal ideal of R, and T is a finite R-module and therefore
integral over R.

(2) I is not a mazimal ideal of R and R is integrally closed in T.

Proof. Since R C T is minimal, either T is integral over R or R is
integrally closed in T

Assume first that I € Max (R). Then R/I is a field and R/I C T/I
is a minimal extension of one of the three types (i)—(iii) recalled above.
In any case, T'/I is a finite R/I-module and it follows that T is a finite
R-module.

Next, assume that 7' is integral over R. Let P be any maximal ideal
of R such that P #I. If p € P\I, then T = R+ pT = R+ PT. As
T is an integral minimal extension of R, it is a finite R-module. As
Tp = Rp + PTp, Nakayama’s lemma gives Tp = Rp. Since T' # R, it
follows via globalization that I € Max (R). O

In case (1) of Theorem 2.3, I is a maximal ideal, thus a prime ideal
of R, but not necessarily a prime ideal of T' (indeed T'/I need not even
be reduced). In case (2) of Theorem 2.3, it follows from Theorem 2.4
that I is a prime ideal of 7' (and hence, also of R).

Theorem 2.4. Let R C T be a minimal extension with I = (R :T).
If R is integrally closed in T, then I is a prime ideal of T.

Proof. Suppose zy € I with z € T,y € T\ I. Then T = R+ yT.
Thus, x = a+by for some a € R and b € T. Multiplying by x, we obtain
z? = ax + byx, with byz = b(zy) € bI C R. As R is integrally closed
in T, we conclude that z € R. Then 2T = zR + 2yT C R+ R = R,
whence = € I. o

Valuation pairs. In the next section we characterize the minimal
closed extensions. In particular, we generalize Ayache’s result [1,
Theorem 2.4] (cf. also [7, Theorem 3.7]) that if D is an integrally
closed domain but not a field, a ring extension D C 7' is a minimal
closed extension if and only if there is a maximal ideal M of D that
is the radical of a finitely generated ideal with T' = Q(M) and there
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is a prime P C M such that PDp = PDys and (D/P)y/p is a one-
dimensional valuation domain. As we will see, the pair (D, M) is a rank
one valuation pair of 7" with P the corresponding prime at infinity.

For our work, the following alternate (equivalent) definition for a
valuation pair is quite useful. For a pair of rings R C T and a prime
ideal P of R, the pair (R, P) is a valuation pair of T if, for each
t € T\R, there is an element ¢ € P such that ¢t € R\P. Such a pair
gives rise to a valuation map v from T onto a totally ordered Abelian
group (together with symbol co) with R = {t € T | v(¢t) > 0} and
P={teT|v(t) > 0}. (See, for example, [17, 22]). Note that one
may consider the vacuous case of (R, P) being a valuation pair of R,
but we shall always assume we are dealing with distinct rings R C 7.

We next record the following (see, for instance, [19, Section X.1]).

Lemma 2.5. Let (R, P) be a valuation pair of T. Then
(1) Ift e T\R and r € R\P, then tr € T\R.
(2) T\R is multiplicatively closed (although 1 ¢ T \ R).

(3) If b € P is such that bT € R, then there is an element ¢ € T such
that bq € R\P.

Proof. For (1), choose p € P such that pt € R\P. Then p(rt) =
r(pt) € R\P, and so rt € T\R.

For (2), let t,s € T\R. Choose p € P such that pt € R\P. By (1),
p(ts) = s(pt) € T\R, and so ts € T\R.

For (3), pick w € T such that wb ¢ R. Then there is an element
¢ € P such that b(cw) = c¢(wb) € R\P. Then the assertion follows,
with q := cw. ]

Let (R, P) be a valuation pair of T'. It follows easily from the above
characterization of valuation pairs that no ideal of T can contract to
P. Also, if S is any intermediate ring (that is, such that R C S C T),
(R, P) is also a valuation pair of S, and so no ideal of S can contract to
P. It follows (from the Lying-over theorem [10, Theorem 11.5]) that
R is integrally closed in T'.

It follows immediately from Lemma 2.5 (1) (and the assumption that
T properly contains R) that the conductor P, = (R : T is contained
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in P. Consider a,b € T\P. There are elements s,t € T such that
as,bt € T\R. Thus by Lemma 2.5(2), abst = (as)(bt) € T\R, and so
ab € T\Py. Hence P, is a prime ideal of both R and T, called the
prime at infinity.

The next result completes the derivation of the properties of a
valuation pair that were given in the Introduction.

Lemma 2.6. Let (R, P) be a valuation pair of T (with R # T).
Then the set {(P :7x t) | t € T \ Py} forms a totally ordered Abelian
group (G,*) under the operation (P :r t) «x (P ¢ s) = (P :r ts),
with 0g = (P 7 1) = P. Moreover, the surjective function v : T +—
G J{o0}, given by v(t) = (P 7 t) if t € Py and v(t) = 0o otherwise,
is a valuation map.

Proof. We have seen that P, is the conductor (R : T'). It follows
easily that if s € T, then (P :7 s) = T if and only if s € Py,.

To see that the set of conductors {(P :r t) | t € T\ Py} is totally
ordered under containment, suppose a,b € T\P,, where (P :r a) is
not contained in (P :p b). We shall show that if d € (P :r b), then
d € (P :r a), that is, da € P. Pick an element ¢ € (P :r a)\(P :7 b).
As be ¢ P, there is an element f € R\P, such that bcf € R\P.
(In detail, use f = 1 if be € R; otherwise, such an f can be found
in P, since (R,P) is a valuation pair of T.) Then the product
(ad)(bef) = (ac)(bd)f is in P with bef € R\P. Hence ad € R by
Lemma 2.5 (1), and so ad € P since P € Spec (R).

That the operation is both well-defined and compatible with the order
is from a basic property of the colon operation. Suppose (P :r b) C
(P:ra)and (P:p f) C (P:rg),andlet u € (P:p bf). Then (ub)f =
u(bf) € P implies ub € (P :r g). Thus ug € (P :7 b) C (P :7 a) and
we have u € (P :r ag), as desired.

Next, to prove that the asserted group has inverses, we shall show
that for each ¢ € T\P., there is an element ¢ € T\P,, such that
gt € R\P and (P :r qt) = (P :x 1) = P. If t € R\ P, it suffices
to take ¢ = 1, as Lemma 2.5 (2) and the primeness of P ensure that
(P :p qt) = P. If t € P, Lemma 2.5 (3) supplies ¢ € T such that
gt € R\ P, and one then shows (P :r ¢qt) = P as above. Observe
that ¢ ¢ P, for otherwise, qt € P,,T = Py, C P, a contradiction. In
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the remaining case, t € T\ R, and so our “valuation pair” definition
yields ¢ € P such that gt € R\ P. The argument for this case can be
completed as above.

Finally, it is straightforward to verify the assertion about v. o

Recall that the rank of the valuation pair (R, P) is the rank of the
group G (that is, the length of its chain of isolated subgroups). This
is the same as the height of P over P, [19, Theorem X.10.10]. In
particular, (R, P) has rank 1 (that is, G is isomorphic to a nonzero
subgroup of the real numbers) if and only there are no prime ideals
strictly between P and P,,. In the subsection Critical ideals, we
show that a valuation pair (R, P) of a ring T has rank 1 if and only
if P is the critical ideal of the extension R C 1. Subsequently, based
on the rings in Remark 3.8 (2), we see that a critical ideal need not be
maximal.

Remark 2.7. Let (R, P) be a valuation pair of a ring 7, with the
usual meanings attached to P, and v. It is relatively straightforward
to show that (R/Pw, P/Ps) is a valuation pair of T//Py; and that,
for a multiplicatively closed subset S of R that is disjoint from P,
(Rs,PRg) is a valuation pair of Ts [17, page 13]. It follows that
(R/Px)p is a valuation domain, having the same rank as (R, P) and
having quotient field (T'/Ps)p. Indeed, if Po, = (0), then T and R
are integral domains; and if R is quasilocal, then for every t € T'\ {0},
there exists ¢’ € T with v(tt') = 0, that is, ¢’ is a unit in R (and so ¢
is invertible). It follows that the prime ideals between P and P, are
totally ordered by inclusion.

In general, the prime P in a valuation pair (R, P) need not be a
maximal ideal of R, even if (R, P) is a valuation pair of its total
quotient ring: an example is given below in Remark 3.8 (2). Next,
we characterize the valuation pairs (R, P) of T such that P is maximal
and then we describe some of their properties.

Proposition 2.8. Let R C T be rings and P an ideal of R. Then
the following are equivalent.

(1) P is a mazimal ideal of R and (R, P) is a valuation pair of T.
(2) For each t € T\R, there are elements c,d € P such that ct+d = 1.
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Proof. If (R, P) is a valuation pair, then, for each ¢t € T\ R, there is an
element ¢ € P such that ¢t € R\P. If P is maximal, then ctR+P = R
and (2) follows.

Conversely, if (2) holds then, for each ¢t € T\R and r € R\P,
tr € T\R (as we saw for valuation pairs in Lemma 2.5(1)). Indeed, we
have elements ¢, d € P such that ct+d = 1. Hence ¢(rt)+rd = r € R\P,
and therefore rt € T\ R, as asserted. Since r¢t € T\ R, it follows from (2)
that there are elements f, g € P such that frt+g = 1. Thus r(ft) € R,
and so the above fact gives ft € R. It follows that, for each r € R\P,
we have rR + P = R. Thus P is maximal, a fortiori prime. Then (2)
implies that (R, P) is a valuation pair of T (for ¢t =1 —-d € R\ P). O

Proposition 2.9. Let (R, M) be a valuation pair of T with M a
mazximal ideal of R. Then

(1) Each finitely generated M -primary ideal of R is both T-invertible
and 2-generated.

(2) If R has at least one finitely generated M -primary ideal, then the
intersection P := ({I | I is M-primary and finitely generated} is a
prime ideal properly contained in M, and each prime ideal of R that is
properly contained in M is contained in P.

Proof. For (1), let v be the valuation map on T associated with
the valuation pair (R, M), and let I = (ai,az,...,a,) be a finitely
generated M-primary ideal. Since M properly contains the prime
ideal Poo = (R :x T), IT ¢ R. Thus 0 < v(a;) < oo for some
a;. Since I is finitely generated and v is a valuation, we may relabel
so that v(a;) < v(a) for each a € T and v(a;) < oo. Since v is
surjective, there is a ¢t € T such that v(t) = —v(a;) < 0. Thus
v(ta1) = v(t) + v(a1) = 0 < v(t) + v(a) = v(ta) for each a € I. Tt
follows that t € I~'. Also, since M = /I is maximal and ta, ¢ M,
there exist r € R and a positive integer k such that (rta; — 1)¥ € I. Tt
follows that tI + I = R, whence I is invertible, and there are elements
b,c € I such that tb+ c=1. Thus I = bR + cR.

For (2), let @ be a prime ideal of R that is properly contained in M,
and let I be a finitely generated M-primary ideal of R. Consider any
g € Q. Then B := I 4+ qR is M-primary and, by (1), is T-invertible.
Hence, there exists a w € (R :r B) such that wB ¢ M. We have
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quw € Q@ C M, since (qw)I = g(wl) C Q and I Z Q. So we must have
wl & M, and it follows easily that wl +I = R. Multiplying by ¢ yields
gR = qwI 4+ qI C I. Hence I contains Q. It follows that P ={A | A
is M-primary and finitely generated} contains each prime ideal that is
properly contained in M. Also P is properly contained in I* for each
positive integer k (since I* is M-primary). By an easy localization
argument, P is prime. o

The final result of this subsection deals with characterizing when
(R, P) is a valuation pair of a simple (proper) extension R[u].

Proposition 2.10. Let R C R[u] be a simple ring extension, and let
P be a prime ideal of R. Then (R, P) is a valuation pair of R[u] if and
only if, for each a € R\(R :g u), there is an element p € P such that
pau € R\P.

Proof. The condition is clearly necessary; we have to show it is
sufficient. Thus, assume that for each a € R\(R :g u), there is an
element p € P such that pau € R\P. Specifically, let b € P be such
that bu € R\P.

Let f = fou™+ fn1u™ 14+ fiu+ fo € R[u]\R with each f; in R.
We may assume f,u is not in R (if f,u € R, writing f,u"+f, ju"~! =
(fau + fn_1)u™"t, one could write f as a polynomial in u of lesser
degree). By hypothesis, there exists a z € P such that zf,u € R\P. We
also have (bu)"~! € R\P and therefore zb" 1 f,u"™ = (2 f,u)(bu)" ! €
R\P. On the other hand, " ! fiu’ € R for each i < n — 1. It follows
that 20" 1 f = 20" fu™ + >, 2" fiut € R\P. As 2"~ ! € P,
(R, P) is a valuation pair of R[u]. o

In the next section we give an example to show that just having an
element p € M such that pu € R\M is not enough to make (R, M) a
valuation pair of R[u], even if pu is a unit of R (see Remark 3.8 (3)).

Critical ideals. We devote the first paragraph of this subsection to
recalling a special type of ideal whose existence characterizes minimal
ring extensions. A key result of Ferrand and Olivier [8, Théoréme
2.2 (i)] shows that if R C 7" is a minimal ring extension, then there
exists a (necessarily unique) M € Max (R) such that, for each P €
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Spec (R), the canonical injective ring homomorphism Rp — Tp is an
isomorphism if P # M and a minimal ring extension if P = M. It
has become customary to call this M the crucial mazimal ideal of the
minimal ring extension R C T'. It is easy to see via globalization that a
ring extension R C T has a crucial maximal ideal (that is, an ideal M €
Max(R) with the above properties) if and only if R C T is a minimal
ring extension. Having reviewed “crucial” ideals, we next proceed to
introduce the “critical” ideals.

We will see that for any minimal extension R C T, there is a maximal
ideal M of R such that M = /(R :gt) for each t € T\R. We thus
say an ideal J is critical for an extension R C T if J = /(R :g t) for
each ¢t € T\ R. By definition, a critical ideal (if any) for a given R C T’
is unique and it is a radical ideal of R. In fact, if an extension has a
critical ideal, we next show that this ideal is necessarily prime.

Lemma 2.11. If a ring extension R C 1" has a critical ideal P, then
P is a prime ideal of R.

Proof. Suppose, by way of contradiction, that J := /(R :g t) is not
a prime ideal of R for some ¢ € T\R. There exist a,b € R\J such
that ab € J. In particular, there is a positive integer n such that
(ab)” € (R:g t). Since a ¢ J, a™ ¢ (R :g t), and hence a™t ¢ R. Then
be /(R :g a™t) = J, a contradiction. u]

The next result determines when a valuation pair leads to a critical
ideal.

Lemma 2.12. Let (R, P) be a valuation pair of a ring T. The
extension R C T has a critical ideal if and only if the valuation pair
(R, P) has rank 1. Moreover, under these conditions, P is the critical
ideal of RC T.

Proof. Consider the valuation map v : T — G|J{oo} defined in
Lemma 2.6. If t € T\R, then v(t) < 0 and thus, (R :g t) C
P ={seT]| v(s) > 0} Hence \/(R:gt) C P. If (R,P) has
rank 1 (that is, G is isomorphic to a nonzero subgroup of R), then
for each s € P, the Archimedean property of R gives a positive
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integer n such that nv(s) > —wv(t), and so s € /(R:gt). If, on
the contrary, the rank of the valuation pair is not 1, there are isolated
subgroups of G and it follows that there are elements t;,t, € T\ R with
V(R:rt1) # +/(R:gt2). (In detail, since G is nonarchimedean in
this case, there are elements g < h < 0 in G such that g < nh for each
positive integer n. Since v is surjective, there are elements t1,t; € T\R
and r € R such that v(t2) = g and v(¢1) = h = —v(r). Then rt; € R
but v(r"ty) < 0 for each n > 0, and so 7 € \/(R:r t1)\\/(R:r t2)). O

We will give four sufficient conditions for an extension to have a
critical ideal, but first, we establish an easy lemma for a simple
extension.

Lemma 2.13. Let R C T = Rlu] be a simple extension. Then for
each t € R[u]\R, (R :g u) (R:grt).

Proof. Write t = g(u) for some polynomial g(X) € R[X], say of
degree n. Thus, for any r € (R :g u), we have " € (R :g t). o

Proposition 2.14. Let R C T be a ring extension. Then R C T has
a critical ideal in each of the following four cases.

(1) T = Ru] for someu € T\R (that is, R C T is a simple extension)
and /(R :g u) is a mazimal ideal of R.

(2) R C T is a minimal ring extension.
(3) For each t € T\R, \/(R :r t) is a mazimal ideal of R.
(4) The conductor (R : T) is a mazimal ideal M of R.

Proof. Tt follows from Lemma 2.13 that (1) and (2) are each sufficient.
(For (2), with R C T = R[u] a minimal extension, let ¢t € T\ R, note
T = R]t], and exchange the roles of u and ¢ in Lemma 2.13.) For (3), let
s # t be elements of T\ R and set 7 := s+t¢. If r € R, then clearly (R :g

t) = (R:g s). If r ¢ R, then \/(R:g7), \/(R:gs), and \/(R:gt)

are each maximal ideals, and each one contains the intersection of the
other two. It follows easily that \/(R :g s) = \/(R:r t) (= /(R g T)).
Finally, if (4) holds, then it is clear that M = (R:gt) = /(R :g t) for
each t € T\R. u]
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Under conditions (1), (3) or (4) of Proposition 2.14, the critical ideal
is obviously maximal. We will show this is also the case for (2), namely,
when R C T is a minimal extension. (At least, we already know
from Theorem 2.3 that in the case of a minimal integral extension,
the conductor M = (R : T) is a maximal ideal.) Examples abound to
show that extensions with a maximal critical ideal are not necessarily
minimal extensions: simply take a suitable pair of quasilocal rings
R C T with the same maximal ideal. Also, it follows from Lemma 2.12
and Remark 3.8 (2) that a critical ideal need not be a maximal ideal.

Finally, recall that, for a pair of rings R C T and an ideal I of R
not contained in the nilradical, we defined the generalized Kaplansky
transform U7 (I) of I with respect to T' to be the intersection ¥ (I) =
(MR | I £ Q € Spec(R)}, where Rig 1y := {t € T | rt € R for
some r € R\Q} is the large quotient ring of R with respect to @ and
T. The last result of this section links the ideal transform of a maximal
ideal with the notion of a critical ideal.

Lemma 2.15. Let R C T be a pair of rings, and let M be a maximal
ideal of R. If R # ¥r(M), then M is a critical ideal for the extension
R C ¥r(M). Conversely, if M is a critical ideal for the extension
RCT, then T =Yp(M).

Proof. For each t € ¥7(M)\R (if any) and each prime P # M, we
have t € R p 1y, and so there exists an r € R\P such that 7t € R; that
is, (R :g t) is not contained in P. Hence y/(R :g t) = M. Conversely, if

V(R :r t) = M for each t € T'\ R, then it is easy to see that ' C R(p 1)
for each prime P # M, and so T = ¥ (M). O

3. Closed minimal extensions. In this section, we give several
characterizations of closed minimal extensions, either in terms of spe-
cific properties related to u for R[u] to be such a minimal extension, or
in terms of valuation pairs. Before doing so, we need a few lemmas.

Closed minimal extensions and Kaplansky ideal transforms.

Lemma 3.1. Let R C T be rings and u € T'. If R is integrally closed
in R[u] and h(X) € R[X] is a polynomial of degree n > 0 such that
h(u) = 0, then the leading coefficient of h multiplies u into R.
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Proof. Let h(X) = hp,X™ + --- + hy € R[X] be such that h(u) = 0.
Then

R h(u) = (hnw)"+hn_1(hnt)™ Y Hhphn_o(hpu)™ 24 - 4h2 thy = 0.

Hence the monic polynomial g(X) := X™ + hp,_1X + hphp_ o X" 2 +
-+++h" Lhg is such that g(h,u) = 0. As R is integrally closed in R[u],
we have h,u € R. m]

Lemma 3.2. Let R C T be rings and u € T. If R s integrally closed
in R[u] and R[u] = R[u?], then (R+ uR)(R :g u) = R.

Proof. Since R[u] = R[u?], there is a degree n polynomial (n > 1)
f(X) € R[X] such that u = f(u?). Setting g(X) := f(X?) gives a
polynomial g of degree 2n with no term in X such that u = g(u). Thus
there is a polynomial h(X) € R[X] of minimal degree with no X term
such that h(u) = u. Write h(X) = ho + haX? + -+ - + hi X*. Without
loss of generality, u ¢ R, and so k > 0. By Lemma 3.1, hyu € R. If
k > 2, we can rewrite h(X) as

b(X) = ho + ha X2+ - + (hp_1 + hpu) X571,

obtaining a polynomial b(X) € R[X] of smaller degree, again with
b(u) = u and no X term, thus reaching a contradiction. Hence k = 2,
and we have u = hg + hou? with hou € R. Rearranging yields
ho = u(1l — hau). Thus, both hy and (1 — hou) are in (R :g u). Hence
1= (1—hou)l+hou € (R+uR)(R :g u). Thus, (R+uR)(R:g u) = R;
also, both R+ uR and (R :g u) are R[u]-invertible. O

We are ready for a first characterization. Given rings R C T and
a maximal ideal M of R, we next give a condition for the generalized
Kaplansky ideal transform of M to be a closed minimal extension of
R. In fact, we shall later see (in Theorem 3.5) that, for any closed
minimal extension R C T, there is a maximal ideal M of R such that
T =Tp(M).

Lemma 3.3. Let R C T be a ring extension, and let M be a mazimal
ideal of R. The following assertions are equivalent.



CHARACTERIZING MINIMAL RING EXTENSIONS 1097

(1) O (M) is a closed minimal extension of R.
(2) (R, M) is a valuation pair of U (M).
(3) (R, M)

is a rank 1 valuation pair of ¥ (M).

)

Proof. Assume U7 (M) is a closed minimal extension of R, and let
u € Up(M)\R. By Lemma 2.15, M is a critical ideal for the extension
R C ¥r(M); in particular, \/(R:gu) C M. Since R is integrally
closed in ¥r(M), no power of u is in R. Hence ¥r(M) = R[u"]
for each positive integer n. By Lemma 3.2, (R + uR)(R :g u) = R.
As (R :g u) C M, it follows there is an element m € M such that
mu € R\M. By definition, (R, M) is thus a valuation pair of ¥r(M).
By Lemma 2.12, this valuation pair is rank 1.

Conversely, assume that (R, M) is a valuation pair of ¥r(M). It
follows (by considering the associated valuation or via the Lying-over
theorem) that R is integrally closed in ¥r(M). Let S # R be any
ring between R and Ur(M). Since (R, M) is a valuation pair of S, no
(prime) ideal of S contracts to M. Thus each maximal ideal N of S
contracts to a prime @ of R distinct from M, and so R 1) C S(n,1)-
Then S = ({Sn,7y | N € Max (S)} contains, and hence is equal to,
(M) = M{Rg) | Q € Spec (R)\{M}} Thus, if Ur(M) # R, (1)
holds. O

When is R[u] a closed minimal extension of R? Given an
element v € T\R, we now give a list of necessary and sufficient
conditions for R C Rfu] to be a closed minimal extension. One
necessary condition is that M = /(R :g u) is a maximal ideal of R
and we note that, by Proposition 2.14 (condition 1), this is equivalent
to say that y/(R:gt) = M for each t € R[u]\R (that is, M is the
critical ideal of the extension R C R[u]). Another necessary condition
is that, for each t € R[u]\R, R+ tR is invertible. Note that, as R+ tR
contains R, its T-invertibility is the same as its R[u]-invertibility and
simply means that (R+tR)(R :g t) = R (while the S-invertibility of an
ideal depends in general on the ring S containing R relative to which
it is considered).

Theorem 3.4. Let R C T be rings and u € T\R. Then the following
are equivalent.

(1) R C R[u] is a closed minimal extension.
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(2) For each t € R[u]\R, there are elements c,d in the ideal
(R :r u) such that ct +d =1.

3) M = /(R:gu) is a mazimal ideal of R, and (R,M) is a
valuation pair of Rlu).

(4) There is a mazimal ideal M of R such that (R, M) is a rank 1
valuation pair of R[u].

(5) M = /(R :g u) is a mazimal ideal of R and, for eacht € R[u]\R,
R+ tR s invertible.

(6) M = /(R :g u) is a mazimal ideal of R, (R :r w) is finitely gen-
erated, and each finitely generated M-primary ideal is R[u]-invertible.

(7) M = /(R :g u) is a mazimal ideal of R, and R+auR is invertible
for each a € R.

(8) M = /(R:gu) is a mazimal ideal of R and, for each a €
R\(R :r u), there is an element b € R such that bau € R\M.

Proof. Assume (1). Then for each t € R[u]\R, we have R C R[t?] =
R[u] = RJt], with R integrally closed in R[t]. Thus, by Lemma 3,2,
R+ tR is invertible. On the other hand, by Proposition 2.4 (condition
2), (R:r t) C y/(R:gt) =+/(R:gu). Therefore, there are elements

¢,d € /(R :g u) such that ct +d = 1. This is (2).
That (2) implies (3) follows from Proposition 2.8.

If M = /(R :gu) is a maximal ideal of R, then M is the critical
ideal of the extension R C R[u] by Proposition 2.14 (condition 1). If
moreover (R, M) is a valuation pair of R[u], then this valuation pair is
rank 1 by Lemma 2.12. Hence (3) implies (4).

If M is a maximal ideal of R such that (R, M) is a rank 1 valuation
pair of R[u], then M is the critical ideal of the extension R C R[u] by
Lemma 2.12. Thus, it follows from Lemma 2.15 that R[u] = ¥ g, )(M).
Hence, (4) implies (1) by Lemma 3.3.

The equivalent conditions (1)—(3) clearly imply (5). Conversely, if
M = /(R :gr u) is maximal, then it is the critical ideal of the extension
R C RJu] by Proposition 2.14 (condition 1); and if R+ tR is invertible
with ¢ € R[u| \ R, there are elements ¢,d € (R :gt) C /(R :g u) such
that ¢t + d = 1. Thus (5) implies (2).
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The equivalent conditions (3) and (5) imply (6): If (R,M) is a
valuation pair of R[u] with M maximal, it follows from Proposition 2.9
that each finitely generated M-primary ideal is R[ul-invertible. If
R + tR is invertible for each t € R[u]\R, then in particular, R + uR is
RJu)-invertible, and so its inverse (R :g w) is finitely generated.

(6) implies (5). Let ¢ € R[u]\R. Since ¢t € R[u], there is an integer
n > 1 such that ¢(R :g u)™ C R. Since (R :gr u) is finitely generated
and M-primary, (R + tR)(R :g u)" is finitely generated and either
M-primary or equal to R. In either case, R + tR is invertible.

Obviously, (5) implies (7).

If M = /(R:gu) is a maximal ideal of R and a € R\(R :g u) is
such that (R + auR)(R :g au) = R, then Proposition 2.14 (1) yields
that M is the critical ideal of R C R[u], and so there is an element
be (R:gau) C /(R:gau) = M such that bau € R\M. Hence (7)
implies (8).

By Propositions 2.10 and 2.14 (condition 1) and Lemma 2.12, (8)
implies (R, M) is a rank 1 valuation pair of R[u]. Thus (8) implies
(4). o

When is R C T a closed minimal extension? We next obtain
necessary and sufficient conditions for a pair of rings R C 1" to be a
closed minimal extension.

Theorem 3.5. Let R C T be a pair of rings. Then the following are
equivalent.

(1) R C T is a closed minimal extension.

(2) The extension R C T has a critical ideal M such that M is a
mazimal ideal of R, and for each t € T\R, R+ tR is invertible.

(3) For eacht € T\R, \/(R :r t) is a mazimal ideal of R and R+tR
15 invertible.

(4) There is a mazimal ideal M of R such that (R, M) is a rank 1
valuation pair of T.

Moreover, under these conditions, T = Up(M).



1100 P.-J. CAHEN, D.E. DOBBS AND T.G. LUCAS

Proof. Assume (1). Then T' = R[u] for some (in fact, each) u € T\ R).
Thus it follows from the proof of Theorem 3.4 that (1) implies (2) (and
(4))-

Obviously (2) implies (3); conversely, (3) implies (2) by Proposi-
tion 2.14 (condition 3).

Assume (2). Let ¢t € T\ R. By (2), there are elements ¢,d € M,
such that ct + d = 1. By Proposition 2.8, it follows that M is maximal
and (R, M) is a valuation pair of T'. Since M is the critical ideal, this
valuation pair is rank 1 by Lemma 2.12. Thus (2) implies (4).

Finally, if (R, M) is a rank 1 valuation pair of 7" with M maximal,
then M is the critical ideal of the extension R C 1" by Lemma 2.12.
Hence T = ¥r(M) by Lemma 2.15, and so R C T is a closed minimal
extension by Lemma 3.3. Thus, (4) implies (1). O

It follows from the classification of the minimal ring extensions of a
field [8, Lemme 1.2] that condition (1) of Theorem 3.5 cannot hold if
R is a field. It is instructive to verify directly that the same is true for
conditions (2)—(4), by using the following facts: if a field K is a proper
subring of a ring T', then {0} is a critical ideal for K C T and (K, {0})
is not a valuation pair of T

We next give two corollaries. The first of these is proved by combining
Proposition 2.9 (1) with Theorem 3.5. The second corollary combines
Lemma 3.3 with Theorems 3.4 and 3.5.

Corollary 3.6. Let R C T be a closed minimal extension. Then, for
eacht € T, (R :g t) is T-invertible and 2-generated.

Corollary 3.7. Let R C T be a pair of rings and M be a mazimal
tdeal of R. Then the following are equivalent.

(1) R C (M) is a closed minimal extension.

(2) M is the radical of a finitely generated ideal of R, and each finitely
generated M -primary ideal of R is T-invertible.

Proof. That (1) implies (2) follows from Lemmas 2.12, 2.15 and 3.3
and Theorem 3.4. Conversely, assuming (2), there exists a finitely
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generated M-primary ideal; let us denote it by I. Since M is the only
prime that contains I, (R :r I) is contained in R(p ) for each prime
P # M. Thus (R:p I) C Up(M). As I is T-invertible, (R :7 I) € R;
hence R C ¥r(M). By Lemma 2.15, M is the critical ideal for this
extension. Let t € Up(M)\R. Then (R :g t) is an M-primary ideal
since /(R :gt) = M. As I is finitely generated and contained in M,
(R :gr t) contains some power I"™ of I. Hence I" + tI™ = I"(R + tR)
is a finitely generated ideal of R which is either M-primary or equal to
R. At any rate, R + tR is T-invertible. Thus R C ¥ (M) is a closed
minimal extension by Theorem 3.5. ]

Remark 3.8. (1) We have seen in Lemma 3.3 that if T = ¥ (M)
for some maximal ideal M, then it is enough to know that (R, M) is a
valuation pair of T" to conclude that R C T is a closed minimal extension
(and the valuation pair is rank 1). In general however, if (R, M) is a
valuation pair of 7', then R C T is not necessarily a closed minimal
extension. For instance, if V' is a valuation domain with maximal ideal
M and quotient field K, then V' C K is not a minimal extension and
U7 (M) # K, unless the valuation is rank 1.

(2) If (R, P) is a rank 1 valuation pair of ¥r(P) with P not maximal
in R, then R is integrally closed in ¥ (P) but the extension R C ¥r(P)
is not minimal. For example, let D := K[Y,Z], T := K(Y,Z) its
quotient field, and P := ZD. Then the ideal transform Q(P) = U7 (P)
is the ring K1Y, Z,1/Z]. Tt is easy to check that (D, P) is a valuation
pair of ¥ (P) and, since P is a height 1 prime of D, this valuation pair
is obviously rank 1. However, the ring S := D[Y/Z] = K[Y, Z,Y/Z]
sits strictly between D and Q(P). Note also that while P = ZD is
Q(P)-invertible, it is not S-invertible.

(3) Given a pair of rings R C T and a maximal ideal M of R, it is
not enough to simply have 1 (M) = R[u] for some v € T\R with R
integrally closed in ¥ (M) and an element p € M such that pu € R\M
for U (M) to be a closed minimal extension of R. For example, let
D := K[Y,Z], T := K(Y,Z) and P := ZD as above. Then set
R:=K+ P =K[{Y"Z | n > 0}]. Clearly, the rings R C D share the
ideal P, and P is maximal in R; we thus call it M as an ideal of R.
For each prime ideal Q) # M of R, one has Ry = D¢: hence the ideal
transform ¥ (M) of the ideal M of R is the same as the ideal transform
of the ideal P of D. In other words, U (M) = K[Y, Z,1/Z]. It follows
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that ¥r (M) is not a minimal extension of R and, by Lemma 3.3,
that (R, M) is not a valuation pair of Ur(M). On the other hand,
R is integrally closed in D (since R/P = K is integrally closed in
D/P = KJY]) and thus also integrally closed in U7 (M) (since D is
integrally closed in Uz (M)). Moreover, Ur (M) = R[u] with u :=1/Z;
and for p:=Z € M, one haspu=1¢ M.

(4) The converse of Corollary 3.6 does not hold, even if R+ ¢R is
a cyclic R-module for each t. For example, let R be a principal ideal
domain with quotient field 7. Then R is integrally closed in T and,
for each t € T, (R :g t) is a principal ideal (thus invertible, that is,
T-invertible). If R is semilocal, then T' = R[u] for some u. Yet, if there
is more than one maximal ideal in R, R C T is not a minimal extension.
What is missing is that 4/(R :g u) is not maximal in this case.

(5) Although we have not made use of the theory of the “crucial
maximal ideal” as developed by Ferrand and Olivier [8], it is interesting
to note that if R C T'is a closed minimal extension with crucial maximal
ideal M, then M is also the critical ideal of R C 1. 'To see this, let NV
be any maximal ideal of R other than M. Then Ry = T canonically.
Thus, if t € T\ R, one has (R :g t) € N and, a fortiori, /(R:g t) £ N.
It then follows from the proof of Theorem 3.4 that N cannot be the
critical ideal of R C T', and so M must be that critical ideal.

Using Proposition 2.9, we can easily describe the conductor (R : T)
when R C T is a closed minimal extension.

Corollary 3.9. If R C T is a closed minimal extension with critical
mazximal ideal M, then the conductor of T into R is the prime ideal
P=({IC M|I is M-primary and finitely generated}. Moreover, P
contains all the prime ideals of R that are properly contained in M.

Proof. By Theorem 3.5, (R, M) is a valuation pair of T. Thus by
Proposition 2.9, the intersection P = (\{I C M | I is M-primary and
finitely generated} is a prime ideal contained in M and it contains all
the other prime ideals of R that are properly contained in M. (Notice
that P must be the prime at infinity since the valuation pair (R, M)
has rank 1; in particular, P = (R: T).) o
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Note that, for a domain D with quotient field K, if M is the radical
of a finitely generated ideal I of D, then the ideal transform 7 (I) of
I (which is both the Kaplansky and the Nagata transform of I) is the
same as Q(M) = Ug(M). Thus, a closed minimal extension of D
is always of the form 7 (I) for some finitely generated ideal I whose
radical is a maximal ideal M. By Corollary 3.7, the extra condition
to characterize when T (I) is “closed minimal” is that each finitely
generated M-primary ideal is invertible (that is, K-invertible). In
the case of a Priifer domain, every nonzero finitely generated ideal
is invertible, and so this extra condition is automatically satisfied in
this case. We thus recover an alternate form of [1, Theorem 2.4].

Corollary 3.10. Let D be a Priifer domain. An overring S of D
is a (necessarily closed) minimal extension of D if and only if S is the

ideal transform of an invertible ideal of D whose radical is a mazimal
ideal of D.

Closed minimal extensions of the form R[t™!]. If Ris a
quasilocal ring and Rfu| is a closed minimal extension of R, then
R[u] = R[t™!] for some t in the maximal ideal of R (this is part of
[7, Theorem 3.1]). In fact, the next result shows that one can say a
great deal more (cf. [8, Lemma 2.1]).

Lemma 3.11. Let (R, M) be a quasilocal ring and R C T a closed
minimal extension with conductor P := (R : T). Then each element
t € T\P is a unit of T. More precisely, if t € T\R, thent ! € M\P;
ift € R\M, thent ' € R\M; and ift € M\P, thent ! € T\R.

Proof. By Theorem 3.5, (R, M) is a valuation pair of T. Since the
image of the associated valuation map is a group, we see that if t € T\ P,
there exists ¢ € T such that v(¢t') = v(¢) +v(¢') = 0. Thus ¢t € R\M;
that is, #' is a unit of R. As v(t) = —v(¢) = —v(¢ 1), the “more
precise(ly)” assertions follow from the fact that 7\ R, R\ M and M \ P
are, respectively, the sets of elements ¢ such that v(t) < 0, v(t) = 0 and
v(t) > 0. o

Remark 3.12. If R is a quasilocal domain that shares its maximal
ideal M with a proper overring 1" of R, then R has no closed minimal
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extensions. (This applies, for instance, in case R is a pseudo-valuation
domain which is distinct from its canonically associated valuation
overring T'.) For a proof, note by Lemma 3.11 (or [7, Theorem 3.1]) that
such a closed minimal extension would be an overring of the form R[t~!]
for some t € M. Then R[t™!] = T[t™!] contains (and, by minimality,
must coincide with) 7. However, no proper ideal of R[t~!] can contract
to M (since ¢ € M), contradicting the fact that M is an ideal of T

The result that was just proved stands in contrast to the non-closed
(that is, integral) case. Indeed, any nonzero ring R, having a maximal
ideal M, leads to the integral minimal extension R C R(+)R/M |[2,
Corollary 2.5] and R(+)R/M shares the ideal M with R.

Outside the quasilocal case, it is not particularly difficult to find an
example of a closed minimal extension R C R|u] for which u is not a
unit in R[u]. For example, Z C Z[2/3] is a minimal extension such that
2/3 is not a unit of Z[2/3]. Of course, in this case Z[2/3] = Z[1/3]. A
natural question to ask is, “For which rings R is each closed minimal
extension R C S of the form S = R[u] for some unit u of S?”

Our next two results answer the above question for two special cases,
Dedekind domains and Priifer domains. Note that related results
appear in [1, Proposition 2.3] and [7, Theorem 3.1]. In fact, alternate
proofs of the next two results can be obtained via [1, Proposition 2.3
and Theorem 5.2].

Theorem 3.13. The following are equivalent for a Dedekind domain
R which is not a field.

(1) Each minimal overring of R is of the form R[u] for some element
u ! €eR.
(2) R has torsion class group.

(3) Each minimal overring of R is the ideal transform of a (nonzero)
principal ideal of R.

Proof. By Corollary 3.10, the minimal overrings of R are the rings of
the form ¥r (M) where T is the quotient field of R and M € Max (R)
(where M is necessarily the radical of a finitely generated ideal of R).

(1) = (2). Assume (1). Let M € Max(R). Then ¥r(M) = RJu]
where 4= € R. By Theorem 3.5, M = /(R :g u). Since (R :g u) =
Ru~', it follows that M is the only prime ideal of R which contains
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Ru~!. Since R is a Dedekind domain, the factorization of Ru~! as a
product of prime ideals of R must take the form Ru~! = M" for some
positive integer n. In particular, some power of M is principal and (2)
follows.

(2) = (1). Assume (2). Let M € Max(R). Then M™ = Rs for
some positive integer n and nonzero element s € R. As M is the only
maximal ideal of R that contains s, it follows (cf. [10, Theorem 26.1
(2)]) that R[s7!] = N{Rnx | N € Max (R) and s ¢ N}. In other words,
R[s™'] = Up(M). As M = v/Rs and Rs is invertible, (1) follows, with

w:=s"1,

(2) = (3). Using the notation of the proof that (2) = (1), we have
that \I/T(M) = \I’T(V RS) = \I/T(RS) = T(RS)

(3) = (1). Assume that M € Max (R) and some nonzero element
s € R is such that U (M) = T(Rs). This minimal overring of R is

Ur(Rs) = {Bn | N € Max (R), s ¢ N} = R[s '],

where the last equality holds via [10, Theorem 26.1 (2)] as above. Then
(1) follows, with u := s~1. O

In Theorem 3.14, we provide a companion for Theorem 3.13 where R
is an arbitrary Priifer domain which is not a field.

A maximal ideal M of a domain R is sharp if Ry does not contain
the intersection of the Ry’s as N ranges over the set Max (R)\{M}
(see, for example, [9]). If R is a Priifer domain, M is sharp if and only
if R has a finitely generated ideal J C M that is contained in no other
maximal ideal [11, Corollary 2]. Also, a nonzero prime P of a Priifer
domain is said to be branched if it contains a proper P-primary ideal.
By [10, Theorem 23.3], P is branched if and only if it is minimal over
a finitely generated ideal. Combining the two concepts, we see that a
maximal ideal M of a Prifer domain R is both sharp and branched
if and only if M is the radical of a finitely generated ideal of R [11,
Theorem 2].

Theorem 3.14. The following are equivalent for a Prifer domain
R which is not a field.

(1) Each minimal overring of R is of the form R[u] for some element
vl €eR.
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(2) Each sharp branched mazimal ideal of R is the radical of a
(nonzero) principal ideal of R.

(3) Each minimal overring of R is the ideal transform of a (nonzero)
principal ideal of R.

Proof. Let T denote the quotient field of R. By Corollary 3.10, an
overring of R is a minimal overring of R if and only if it is the ideal
transform 7 (J) = Uy (M) of a finitely generated ideal J such that the
radical of J is a maximal ideal M. As noted above, such M are the
maximal ideals which are both sharp and branched. Hence (2) < (3).

(1) = (3). Assume (1). Let M € Max (R) be sharp and branched.
Then Ur(M) = R[u] with u=! € R. As u € ¥p(M) \ R, we have
M = /(R :gu), and so u™! € M. Since each prime of R distinct from
M survives in Ur(M), no other prime of R can contain u~!. Thus
M = vVRu~! and ¥7(M) = Ur(Ru™1) = T(Ru™1).

(2) = (1). If M € Max (R) is the radical of a nonzero principal ideal
Rs of R, then U7 (M) = Up(Rs) = R[s 1], the last equality following
from [10, Theorem 26.1 (2)] as above. o

To close this section, we note that it is possible for a domain R which
is not a Priifer domain to have the property that each minimal overring
of R is the ideal transform of a principal ideal (and thus is of the form
R[u] for some element u such that u~! € R). For instance, this is the
case for the ring R := D + (X,Y)K]|[X,Y]] whenever D is a Priifer
domain with quotient field K (# D) such that each maximal ideal of D
is the radical of a principal ideal. By Theorem 3.4 and Theorem 3.5,
each minimal overring of R is the ideal transform of a principal ideal
whose radical is maximal.

4. Embedding in a quotient ring. In this section, we discuss the
embedding of a minimal ring extension into various quotient rings.

The simple way to form the total quotient ring of a ring R is to say
Q1 (R) consists of the fractions a/b where a,b € R with b regular,
with the same equivalence relation used to form the quotient field
of an integral domain. For an alternate approach, note that if J
is a nonzero ideal of an integral domain D, then each element of
Homp(J, D) can be viewed as multiplication by some fixed element
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of the quotient field. Indeed, if f € Homp(J, D), choose any nonzero
element b € J; then for each ¢ € J, f(¢) = (a/b)c where a := f(b).
A similar identification is possible when I is a regular ideal of a ring
R (with nonzero zero divisors), although one must choose b € I to
be regular. On the other hand, such a simple interpretation is not
possible if I is not regular. Since a product of dense ideals is dense, a
product of semiregular ideals is semiregular. Thus for a pair of dense
(respectively, semiregular) ideals I and J, the product and sum of a pair
of homomorphisms f € Homg(I, R) and g € Hompg(J, R) restrict to R-
module homomorphisms on the dense (respectively, semiregular) ideal
IJ. Also, there is a dense ideal B such that f(z) = g(z) for all z € B
if and only if f(y) = g(y) for all y € I J. Setting f equivalent to g
when this occurs gives an equivalence relation that is compatible with
sums and products. The complete ring of quotients of R, Q(R), consists
of the equivalence classes of homomorphisms over dense ideals and the
ring of finite fractions of R, Qo(R), consists of those equivalence classes
of homomorphisms over semiregular ideals. In this setting, one can
identify Q. (R) with the equivalence classes of those homomorphisms
defined on regular ideals. In general, R C Qu(R) C Qu(R) C Q(R)
with one or both of the last two containments being proper. (See [18,
Chapter 2] for details on this construction for Q(R); for an alternate
way of constructing Qo(R) see [20]). Also, for each nonzero t € Q(R),
there is a dense ideal I of R such that ¢ C R and ¢I # (0). The same
can be said of Qo(R), replacing “dense ideal” by “semiregular ideal,”
and of Q. (R) by replacing “dense” by “regular.”

Embedding a closed minimal extension into Qo(R). We wish
to study the embedding of a minimal extension of R into the rings
Q(R), Qo(R) or Q. (R). Extending results in [7, 24], we first show
that any closed minimal extension is R-isomorphic to a QQg-overring of
R. The ring R in Example 6.2 shows that such an extension need not be
isomorphic to an overring of R (that is, a Q. (R)-overring). Moreover,
the particular extension 7' in that example is such that each element
of T\R is a zero divisor in T. In Example 6.4, we present a closed
minimal extension R C S where S C Q.(R) and each element of S\R
is a zero divisor.

Theorem 4.1. Let R C T be a closed minimal extension. Then
there is a natural R-algebra isomorphism from T into a Qq-overring

of R.
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Proof. For each t € T, multiplication by ¢ gives an R-module
homomorphism ¢(¢) : (R :g t) — R. Since Theorem 3.4 provides
elements a,b € \/(R :g t) such that at + b = 1, the ideal aR + bR has
no nonzero annihilators in 7. Indeed, u = 0 is the only element v € T
such that ua = 0 = wub, as u = wat 4+ ub for each u € T. Choose
a positive integer v such that J := (aR + bR)” C (R :g t). As the
set of dense ideals of R is closed under finite products, J is a finitely
generated dense ideal of R. Therefore, (R :g t) is a semiregular ideal
of R.

We claim that the kernel of ¢ is {0}. To see this, consider any
t € ker (p), and pick positive integers m,n such that a™t,b"t € R.
As (R :g t)t = 0, we have a™t = 0 = b"t. Raising at+b = 1 to
the exponent m + n shows that 1 = b € Rb™ C (R :g t), whence
t = 1t = 0, thus proving the above claim.

Obviously, for each r € R, multiplication by rt also defines an R-
module homomorphism on the semiregular ideal (R :g t). Since ¢(rt)
and rp(t) agree on this ideal, p(rt) = ro(t).

Let s,t € T\{0}. Then both ¢(¢) and ¢(s) are defined as R-module
homomorphisms on the semiregular ideal (R :g t)(R :g s). Both the
product ¢(t)¢(s) and the sum ¢(t) + ¢(s) are defined on this ideal,
and ts and t + s multiply each element of (R :g t)(R :g $) into R.
Since neither (R :g t) nor (R :g s) has a nonzero annihilator in T,
o(ts) = (t)p(s) and o(t + s) = p(t) + ¢(s). Therefore ¢ is an R-
algebra isomorphism from T to a Qg-overring of R. O

Minimal integral extensions. We now turn to the case of a
minimal integral extension R C T". These have been classified into three
non-overlapping classes, identified in terms of the algebras T/(R : T')
(cf. [5, Corollary II.2]). These classes were later each characterized via
generator-and-relations in [7, Proposition 2.12]. Our purpose here is to
use embeddings into Q(R) to shed new light.

By Theorem 2.3 or [8, Théoréme 2.2], the conductor (R : T) is a
maximal ideal M of R. More generally we first consider a pair of rings
R C T sharing an ideal J. If J has a nonzero annihilator in 7', it is
obvious that no ideal of R which is contained in J can extend to a
dense ideal in 7. In Lemma 4.2, we establish a strong version of the
converse; namely, if Anng(J) = (0) where J = (R : T), then every
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ideal of R behaves well when extended to 7', regardless of whether or
not it is contained in J.

Lemma 4.2. Let R C T be rings with conductor J = (R : T). If
Anng(J) = (0), then every regular element of R is reqular in T and
for every regular (respectively, semiregular; respectively, dense) ideal
I of R, the extension IT of I is a regular (respectvely, semiregular;
respectively, dense) ideal of T.

Proof. Suppose that some dense ideal I of R is such that IT is not
dense in T, and pick t € T\{0} such that ¢ = (0). Then ¢IJ = (0) with
IJ C R. Since I is dense, we then have tJ = 0. As Annr(J) = (0),
we have ¢t = 0, the desired contradiction. Thus the extension of every
dense ideal of R is a dense ideal of T'.

The remaining two assertions will follow from the “dense” case. If I
is semiregular in R, then I contains a dense finitely generated ideal H.
Then IT contains HT', which is dense and finitely generated in 7', and
so IT is semiregular.

Finally, any regular element can be seen as a generator of a principal
dense ideal, and so it follows that every regular element of R is regular
in 7. Thus if [ is regular in R, then IT is regular in 7T'. a

The key to the proof given for Theorem 4.1 was that (R :g t)
had no nonzero annihilator in 7. Using Lemma 4.2, we establish
similar conclusions when we know that the conductor (R : T') has no
nonzero annihilators in R. The main difference is that in the context
of Theorem 4.1, the conductor (R : T') may have a nonzero annihilator
in T, and perhaps in R as well.

Lemma 4.3. Let R C T be a pair of rings with conductor J = (R : T)
such that Anng(J) = (0). Then the following hold.

(1) J is dense in both R and T', and there is an R-algebra isomorphism
from T to a Q-overring of R.

(2) J is semiregular in R if and only if J is semiregular in T. If this
is the case, there is an R-algebra isomorphism from T to a Qg-overring

of R.
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(3) J is regular in R if and only if J is regular in T. If this is the
case, there is an R-algebra isomorphism from T into Qq(R), that is,
onto an overring of R.

Proof. Since tJ C R for each t € T, multiplication by ¢ defines an
R-module homomorphism from J into R. Denote this homomorphism
by o(t). As tJ C J, o(t+s) = @(t) + ¢(s), ¢(ts) = p(t)e(s) and
o(rt) = ro(t) for all s,¢ € T and r € R-in this case all maps have
“domain” J. Moreover, if t # 0, then ¢(t) # 0 since Annz(J) = (0).
It follows that ¢ is an R-algebra isomorphism from T into Q(R), that
is, from T onto a Q-overring of R. As J is evidently dense in both R
and T, (1) holds.

By Lemma 4.2, each dense (respectively, semiregular; respectively,
regular) ideal of R extends to a dense (respectively, semiregular; re-
spectively, regular) ideal of T'. Since J is a common ideal of R and T,
an element of J is either regular in both R and T or a zero divisor of
both. Thus J is regular in R if and only if J is regular in 7". Hence if
J is regular, ¢(t) € Qu(R) for each ¢ € T', and so (3) holds.

For any finite nonempty subset A = {ay,...,a,} C J, Lemma 4.2
shows that AR is semiregular in R if and only if AT is semiregular in 7.
Thus J is semiregular in R if and only if J is semiregular in 7. Hence
if J is semiregular, p(t) € Qo(R) for each ¢ € T. Thus (2) holds. O

For an integral minimal extension, the conductor (R : T') is a maximal
ideal of R. Thus, we next focus on rings R C T sharing an ideal M
which is maximal in R. In this situation, M is critical for the extension
R C T. Indeed, more can be said: (R :gt) = M for each ¢t € T\R, as
was noted in the proof of Proposition 2.14 (4).

Theorem 4.4. Let R C T be rings sharing an ideal M = (R : T)
which is maximal in R. Then T is R-algebra isomorphic to a Q-
overring of R if and only Annp(M) = (0). Moreover, under these
equivalent conditions,

(1) T is R-algebra isomorphic to a Qq-overring of R if and only if M
is semaregular; and

(2) T is R-algebra isomorphic to an overring of R if and only if M
s regular.
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Note that if T" is R-algebra isomorphic to either an overring of R or
a Qp-overring of R, then T is, a fortiori, isomorphic to a Q-overring of
R and then Anny (M) = (0) (that is, M is dense in both R and T').
When this is the case, M is regular (respectively, semiregular) in R if
and only if it is so in T (by Lemma 4.3). Thus we need not be precise
in stating in which ring M has the given property.

Proof. Asnoted above, ift € T\R, then (R :g t) = M. It follows from
Lemma 4.3 (1) and the above comments that T is R-algebra isomorphic
to a Q-overring of R if and only if Anny(M) = (0). Certainly, if T is
R-algebra isomorphic to either an overring of R or a Qy-overring of R,
then 7" is R-algebra isomorphic to a Q-overring of R. The equivalences
in (1) and (2) now follow from Lemma 4.3. o

For a pair of rings R C T sharing an ideal M that is maximal in
R, four distinct cases may occur (the last one being divided into two
subcases), as follows.

(1) Anngp (M) = (0) and M is a regular ideal (in both R and T).
Then T is R-algebra isomorphic to an overring of R.

(2) Anngy (M) = (0) and M is semiregular but not regular (in both
R and T'). Then T is R-algebra isomorphic to a Qp-overring of R but
not to an overring of R.

(3) Anny (M) = (0) (thus M is dense in both R and T'), but M is
not semiregular. Then T is R-algebra isomorphic to a Q-overring of R
but not to a Qp-overring of R.

(4) Anngp (M) # (0) (that is, M is not dense in T'). Then T is not
R-algebra isomorphic to any of the above kinds of overrings of R. This
may happen regardless of whether M is dense in R or not dense in R.

In the final section, we give examples of integral minimal extensions
illustrating each of the above four cases.

Conductors with nonzero annihilators. We now turn to a
subcase of case (4), namely, the “worst” case where M = (R:T) has a
nonzero annihilator in R. Since M is maximal, either M +Anng (M) =
R or Anng(M) C M. If Anng(M) C M and 0 # = € Anng(M),
then 22 = 0, whence R is not reduced. On the other hand, if R is
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reduced, then one sees similarly that M () Anng(M) = (0), and so
R =M @ Anng(M). More generally, we have the following.

Lemma 4.5. The following are equivalent for a ring R which is not

a field.

(1) There exist a mazimal ideal M of R and an element x € R\M
such that M = (0).

(2) R 2 S x K, an R-algebra direct product, for some ring S and
some field K.

(3) There exists a mazimal ideal M of R such that R = M ®Anng (M)
as an additive group.

Assume the above conditions hold. Then M is a minimal prime ideal
of R; M is principal, in fact, generated by an idempotent; and R is
reduced if and only if S is reduced.

Proof. Assume (1). Since R is not a field, M # (0), and so
Anng(M) # R. Since M is maximal, there are nonzero elements
r € Rand e € M such that re +e = 1. If b € M, then b = be.
Hence M = Me = Re. In particular, ¢> = e, and so e is a
nontrivial idempotent (that is, e # 0,e # 1). We can thus write
R = Re x R(1 —e) = S x K, a ring direct product, where the ring
S:=Me=M=Reand K :=R(l—e) % R/M = Ry /MRy = Ry
is a field. It is obvious that R is reduced if and only if S is reduced.
Note also that M € Max (R), M is a minimal prime ideal of R, and M

is generated by an idempotent.

It is clear that (3) = (1). It remains to show that (2) = (3). Assume
(2). Without loss of generality, R = S x K is an internal ring direct
product (with K a field). Note that S # 0 since R is not a field.
Then M := S x {0} € Max (R) and Anng(M) = {0} x K, and so (3)
follows. O

Consider any ring direct product R = S’ x S”. Then €,e¢’ =
(1,0),(0,1) are orthogonal idempotents; in fact, e’e” = 0 and e’ +¢€" =
1. If T is a ring containing R, then ¢’ and e” are also orthogonal
idempotents in 7', and T' = T’ x T" is itself a direct product, with
T' = S’¢’ an extension of S’ and T" = S”¢"” an extension of S”. We
can now give the following result.
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Theorem 4.6. Let R C T be a mintmal integral extension such that
the conductor M = (R : T') # (0) has an annihilator x € R\M. Put
K := R/M. Then T can be described, up to R-algebra isomorphism,
in one of the following three ways:

(i) T =2 M x L where L is a minimal (necessarily algebraic) field
extension of K,

(i) TEMx(KxK)®RxK,
(iii) T= M x K[X]/(X?) 2 M x (K(+)K) 2 R(+)K.

Proof. By Lemma 4.5, we can write R = S x K, with M := S x {0}
and K a field. Then the R-algebra T is a product T' = T" xT", where T’
is an extension of S and T" is an extension of K. In terms of the above
notation, with ¢’ = (1,0) and ¢’ = (0,1), we have T =Te' = M = S
and T" = Te” =2 T/M is a minimal ring extension of R/M = K. As
noted by Ferrand and Olivier [8, Lemme 1.2], 7" is then, up to K-
algebra isomorphism, one of three types: (i) a minimal field extension
L of K, (ii) the K-algebra direct product K x K, or (iii) K[X]/(X?),
which is isomorphic to the idealization K (+)K. To conclude, note, in
case (iii), that the assignment (a, (b,¢)) — ((a,b), ¢) gives an R-algebra
isomorphism M x (K(+)K) — (M x K)(+)K. o

Note that the conclusion of Theorem 4.6 shares some of the features of
the classification of minimal ring extensions in [7, Corollary 2.5]. How-
ever, the two results have non-overlapping hypotheses, since Lemma 4.5
shows that the hypotheses of Theorem 4.6 lead to an ideal M that is
both a maximal and a minimal prime of R.

The above case analysis, in conjunction with the examples in Section 6
and the work in Section 3, gives an extensive picture of minimal
ring extensions. Writing nearly 40 years ago, Ferrand and Olivier
noted that the study of integral minimal extensions R C 1" for which
Anng((R : T)) = 0 “est moins trivial ... nous n’avons pas abordé ce
probléme.” We would suggest that our work on the cases (1), (2) and
(3) can be viewed as answering the question that was implicit in the
preceding quotation from [8]. Note that Ferrand and Olivier pursued
their work in [8] via tools such as crucial maximal ideals, a concept that
figured significantly in much of the subsequent literature on minimal
extensions. In contrast, the present work has benefited from the new
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concept of critical ideals. To close this section, it seems fitting to honor
the pioneering work in [8] by noting that Theorem 4.6 (uses and) retains
some of the flavor of the characterization by Ferrand and Olivier of the
minimal ring extensions of a field [8, Lemme 1.2].

5. The ring R(X). Evenif T' = RJu| is a minimal extension of a ring
R, the polynomial ring T'[X] is never a minimal extension of R[X]. As
noted in [4], there is a very simple infinite (descending) chain between
R[X] and T[X], namely,

TIX]2 R+ XT[X]2 R+ XR+ X*T[X]
2R+ XR+X’R+X°T[X]2D---.

However, localizing at the set U(R) of unit content polynomials of R
“collapses” this chain. In fact, for the Nagata ring R(X) = R[X]y(r),
R(X)[u] is both a minimal overring of R(X) and equal to R[u|(X) as
we shall see in Theorem 5.4. This will take care of the transfer of
the “minimal extension” property to Nagata rings for the case of a
closed minimal extension. (Transfer for the case of an integral minimal
extension was handled in [5, Theorem II.10].)

For R C Qq(R) a valuation ring, Hinkle and Huckaba [15] showed
R[X] is a valuation ring of Q(R)[X]. The proof of statement (1) in
Lemma 5.1 is an (very) abbreviated version of what they did.

Lemma 5.1. Let R C T be rings such that (R, P) is a valuation pair
of T, and let v be the corresponding valuation map.

(1) For an indeterminate X, (R[X], P[X]) is a valuation pair of T[X]
with corresponding valuation the extension of v using min; that is, for
each polynomial g(X) = Y1 g: X" € T[X], v(g(X)) = min{v(g:) |
0<i<n}.

(2) (R(X), P(X)) is a valuation pair of T[X|y(r), with the same value
group, using the natural extension of v.

Proof. For (1), the extension of v using min is a valuation map on
T[X] with the same value group, R[X] is clearly the set of elements
of valuation v(f) > 0, and P[X] is the set of elements f such that

v(f) > 0.
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Assertion (2) is simply a combination of (1) together with the fact
that if (R, P) is a valuation pair of 7" and S a multiplicatively closed
subset of R that is disjoint from P, then (Rgs, PRg) is a valuation pair
of Ts with the same value group (the valuation of a/s being such that
v(a/s) = v(a) [17, page 13]). O

The following pair of examples shows that &/(7') is not necessarily the
saturation of ¢/(R) in T[X] and hence, that the conclusion in Lemma
5.1 (2) need not extend to having (R(X),P(X)) a valuation pair of
T(X) = T[X]u()-

Example 5.2. Let K be a field. Then

(1) Let R := K[V,Z], P := ZR and S := K[V, Z,1/Z]. Then
(R, P) is a rank 1 valuation pair of S with P not maximal in R, but
f=X+4+(Y/Z) € U(S) is not in the saturation of U(R) in S[X] and
(R(X), P(X)) is not a valuation pair of S(X).

(2) Let D := K[Z]+YK|Y,Z,1/Z], M := ZD and T := K[Y, Z,1/Y,
1/Z]. Then (D, M) is a rank 2 valuation pair of T with M a maximal
ideal of D, but X + (14 Z)/Y € U(T) is not in the saturation of U (D)
in T[X] and (D(X), M (X)) is not a valuation pair of T'(X).

Proof. (1) As noted in Remark 3.8 (2), (R, P) is a rank 1 valuation
pair of S with P a nonmaximal height 1 prime of R. Consider the
polynomial f := X+(Y/Z) € S|X]. If g € S[X] is such that gf € R[X],
then g = hZ for some polynomial h € R[X]. But this puts the R-
content of ¢gf inside the maximal ideal (Y, Z). Hence X + (Y/Z) is not
in the saturation of ¢(R) in S[X].

We thus have 1/f € S(X)\R(X). If (R(X), P(X)) were a valuation
pair of S(X), there would be an element r/u € P(X), with r € P[X]
and u € U(R), such that r/uf € R(X)\P(X). Thus r/uf = b/w, with
b € R[X] and w € U(R); that is, rw = buf. Multiplying through by Z
yields rwZ = bu(ZX +Y), with rwZ € P[X], and bu(ZX+Y) € R[X].
Since P is prime and both v and ZX + Y are not in P[X], we would
have b € P[X], that is, r/uf € P(X), a contradiction.

(2) For D = K[Z]+ YK]Y, Z,1/Z], note that ZD = M is maximal
(since D/ZD = K). Consider the ring W of the standard rank 2
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valuation on K (Y, Z) where v(Y"Z™) = (n,m) for all pairs of integers
n and m using lexicographic order on Z x Z; denote its maximal ideal
by N. Restricting this valuation to T = K[Y,Z,1/Y,1/Z], we then
have D = W (T (the set of elements in T" with nonnegative valuation)
and M = N(T (the set of elements in T" with positive valuation).
Hence (D, M) is a rank 2 valuation pair of T'.

Let f :== X +(1+ Z)/Y. As above, if g € T[X] is such that
gf € D[X], then g = hY for some polynomial h € D[X]. Hence
9f = h(YX + (1 + Z)). The ideal (Y,1 + Z) is proper. Thus gf is
not in U(D) and f is not in the saturation of U(D) in T[X]. It follows
that 1/f € T(X)\D(X). If (D(X),M (X)) were a valuation pair of
T(X), there would be an element s/u € M(X), with s € M[X] and
u € U(D), such that s/uf € T(X)\M(X). Thus s/uf = d/w, with
d € D[X] and w € U(D); that is, sw = duf. Multiplying through by Y’
yields swY = du(Y X + (Z +1)), with swY € M[X]. Since M is prime
and both v and YX + (Z + 1) are not in M[X] (since Z + 1 ¢ M), it
follows that s/uf € M(X). Hence (D(X), M (X)) is not a valuation
pair of T'(X). u]

One consequence of Theorem 5.4 below is that if (R, M) is a rank 1
valuation pair of T' with M maximal in R, then U(T) is the saturation
of U(R) in T[X], and hence (R(X), M (X)) is a (rank 1) valuation pair
of T'(X). The first statement in the next lemma is trivial but sometimes
very useful; for instance, it enables a simple proof of the second. Both
statements are used in the proof of Theorem 5.4.

Lemma 5.3. Let S and W be rings. Then

(1) If f(X) € U(S), then there is a polynomial g(X) € S[X] such
that at least one of the coefficients of the product f(X)g(X) is 1.

(2) If SC W, then S(X)W = S.

Proof. (1) If f(X) = foX™4+-- -+ fo has unit content in S, then there
are elements go, ..., g, € S such that > fig,_; = 1. The polynomial
g(X) =3 g; X’ is such that the coefficient of X™ in f(X)g(X) is 1.

(2)Ifb € S(X) (W, one can write b = h(X)/f(X) with h(X) € S[X]
and f(X) € U(S). Then bf(X)g(X) = h(X)g(X) € S[X] and some
coefficient of f(X)g(X)is 1. Thus b € S. O
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Theorem 5.4. Let R C T be rings with R integrally closed in
T. Then T is a minimal extension of R if and only if T(X) is

a minimal extension of R(X). Moreover, under these conditions,
R[u)(X) = R(X)[u] = T(X) for each u € T\R.

Proof. If T is a minimal extension of R, it follows from Theorem 3.4
that (R, M) is a rank 1 valuation pair of 7" with M a maximal ideal of
R. Showing next that U/(T) is the saturation of ¢/ (R) in T'[X], it follows
that T'(X) = T[X]y(r), and hence, by Lemma 5.1, that (R(X), M (X))
is a rank 1 valuation pair of T'(X). Again from Theorem 3.4, it finally
follows that T'(X) is a minimal extension of R(X).

Let f(X) € U(T'). Then by Lemma 5.3 there is a polynomial g(X) €
T[X] such that some coefficient of gf is 1. Write gf = h, X™ + --- hy
with some h; = 1. If g € R[X], then gf € U(R) and we are done. If
not, there is a coefficient h; with minimum value under the valuation
v associated with the valuation pair (R, M). As g ¢ R[X], it must be
that v(h;) < 0. By Theorem 3.4, R + h;R is invertible and there are
elements 7, s € (R :g h;) such that rhj +s =1. As v(h;) <0, we have
v(r) > 0 and v(s) > 0. From 0 = v(1) > min{v(rh;),v(s)}, we obtain
0 = v(rh;). It follows that rhy, shy € R for each coeflicient hy of the
product fg. Setting b(X) := rX® + sX7, we then have bfg € R[X]
and, since h; = 1, the coefficient of X**7 in bfg is rh; + s = 1. Thus
bfg € U(R).

Conversely, if T(X) is a minimal extension of R(X), then T(X) =
T[Xyry- Also, if a ring S is intermediate between R and T, then
S[X]u(r) is intermediate between R(X) and T'(X) and thus equal to
one of them. It then follows from Lemma 5.3 that S is equal to either
RorT.

Finally, if u € T\R and R C T is minimal, then T = R[u] and
(from above) R(X) C T(X ) R[u](X) is a minimal extension.
Since R(X)T =R while R(X)[u]T contains u, we have R(X) C
R(X)[u], and hence R(X)[u] = T'(X). o

It is worth noting that if (R, M) is a valuation pair of T" with M
maximal and R quasilocal, then #(T') is again the saturation of U(R)
and thus (R(X),M(X)) is a valuation pair of T(X). Essentially the
above proof applies without explicitly using invertibility. Assuming the
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above notation, argue as follows. Simply select a coefficient h; in the
product fg with smallest value under the valuation v. Next, choose
r € R such that v(r) = —v(h;). Then rfg € U(R) with rh; (now) a
unit of R since R is quasilocal with maximal ideal M.

6. Examples. In this section, we construct the examples promised
above. For some examples, the construction is based on (reduced) rings
of the form A + B.

Let D be an integral domain, and let P be a nonempty subset of
Spec (D). Let A be an index set for P, and let I = A x N where
N is the set of natural numbers. For each ¢ = (o, n) in I, let K; be
the quotient field of D/P,. Next let B := ) K; and form the ring
R := D+ B from the direct sum of D and B by defining multiplication
as (r,b)(s,c) = (rs,rc+ sb + bc). We refer to R as the A + B ring
corresponding to D and P. Two good sources for information about
this construction are [16, Section 26] (albeit in a slightly different form)
and [21, Section 8].

The following result collects many of the basic properties of the above
construction. Except for the statements about the density of B and
the characterization of Q(R) in case B is dense, all can be found in [21,
Theorems 8.3 and 8.4]. For each i € I, we let e; denote the element
of B whose ith component is 1 and all other components are 0. For
elements r € D and b € B, we let (r); and (b); denote the image of r
in K; and the ¢th component of b, respectively.

Theorem 6.1. Let D be an integral domain, and let P be a nonempty
set of prime ideals of D. Let R be the A+ B ring corresponding to D
and P. Then

(1) A finitely generated ideal J = ((ri,a1),(r2,a2),--. , (Fm,am))
of R 1is semiregular if and only if no P € P contains the ideal
J = (ri,ra,...,rm)D. In case J is semiregular, J = J'R = J' + B.

(2) An ideal J of R is regular if and only if there is a nonzero ideal
J' of D such that J = J'R = J' + B with some element of J' not

contained in the union of the primes |J P.
PcP

(3) Qu(R) can be identified with the ring Ds+ B where S = D\ |J P.
PeP
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(4) Qo(R) can be identified with the ring E + B where E = |J{(D :
J) | JR is a semiregular ideal of R}.

(5) For a semiregular ideal J, there is an ideal J' of D such that
J=JR=J + B. Moreover, (R :qur) J) = (D :J')+ B and J is
Qo-invertible if and only if J' is invertible.

(4) For each i € I, the set M; = {(r,b) € R | (r); = —(b)i} is a
principal ideal of R generated by the idempotent (1, —e;) and is both a
mazimal and a minimal prime of R.

(5) If P' is a prime ideal of R, then either P' = M; for some i € I
or P' = P+ B where P is a prime ideal of D.
(6) B is a minimal prime of R; B is dense if and only if (| P = (0).
PeP
(7) If B is dense, then the natural map ¢ : D — [[ K; is injective
and Q(R) can be identified with [ K;.

Proof. Tt is clear that R/B = D. Thus B is prime.

No nonzero element of B can annihilate B. Thus, for B to have
a nonzero annihilator, there must be a nonzero element s € D such
that sB = (0). Clearly such an s must be in () P, and each nonzero

PeP
t € (1 P will annihilate B.
PecP

For each b € B and ¢ € [[K;, ¢b € B. Thus if B is dense,

Q(R) contains [[ K;. Also D embeds in [] K;, since B dense implies

| P = (0). Hence Q(R) can be identified with [[ K; when B is
PP
dense. O

In the first example, we present a reduced ring R with a pair of closed
minimal extensions. One of them is Q.;(R) itself and is of the form R[u]
with 1/u € R; the other is a ring S C Qo (R) that cannot be embedded
in Q. (R), while each ¢t € S\R is a zero divisor in S.

Example 6.2. Let D be a Dedekind domain with a principal
maximal ideal P = pD and a maximal ideal M such that no power of
M is principal. Let P = {N,} = Max (D)\{M, P}, and let R = D+ B
be the A + B ring corresponding to D and P. Then
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(1) M is contained in the union |J N,.

(2) The regular ideals of R are the ideals of the form P/R = P/ + B
for some integer j > 0. The semiregular ideals of R are the ideals of the
form M*PIR = M*PJ + B for k,j > 0. In particular, MR = M + B
is a Qo-invertible semiregular maximal ideal that is not regular.

(3) The total quotient ring of R is Q. (R) = T (P)+ B = R[1/p]; this
is a closed minimal ring extension of R. The ring of finite fractions of
R is Qo(R) = T(MP)+ B and R is integrally closed in Qo(R).

(4) The ring S = T(M) + B € Qo(R) is a closed minimal ring
extension of R that is not contained in Q. (R). Moreover, each element
s € S\R is a zero divisor of S.

Proof. (1) As no power of M is principal, each element of M is
contained in some other maximal ideal of D. Let x € M, and let n be
the exponent (possibly zero) of P in the unique decomposition of zD
as a product of maximal ideals. Then xp~ ™ is an element of M that
is not contained in P, and is thus contained in some N,. A fortiori, x
belongs to the same N,.

(2) From (1), the ideals of the form P7 are the only ideals of D with
an element not contained in the union {Jy_cp No. Thus it follows from
Theorem 6.1 (2) that the regular ideals of R are the ideals of the form
PIR = P’ + B. From Theorem 6.1 (2), the semiregular ideals are of
the form J = J'R = J' + B, where the decomposition of J' in D as
a product of maximal ideals contains only powers of M and P. In
particular, MR = M + B is a semiregular maximal ideal that is not
regular. From Theorem 6.1 (5), MR = M + B is Qq-invertible (as
obviously, M is invertible in D).

(3) It follows from Theorem 6.1 (3) that Q. (R) = T(P)+B = R[1/p).
It follows from Theorem 6.1 (4) that Qo(R) = T(MP) + B, as
E =U{(D : J) | JR is a semiregular ideal of R} is then the ring
E = (D : M*P7), that is, E = T(MP). Since D is a Dedekind
domain, both 7(P) = D[1/p] and T (M) are closed minimal extensions
of D between D and T(MP). Finally, R is integrally closed in Qo(R)
since D is integrally closed.

(4) It remains to show that each element s € S\R is a zero divisor of
S. Since Qo(R) is its own total quotient ring, each regular element of S
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is a unit in Qo(R). Thus it suffices to show that if x = (¢,b) € Qo(R)\R
is a unit of Qu(R), then t is not in 7(M) and 1/t € P. Since
Qo(R) = T(MP) + B and z is a unit, ¢ must be a unit of 7(MP).
Thus neither (D :p t) nor (D :p 1/t) is contained in a maximal ideal
from the set P, and therefore the ideals (D :p t) and (D :p 1/t) factor
in (nonnegative) powers of M and P. Write (D :p t) = M™PJ and
(D :p 1/t) = M™P*. Since t(D :p t) = (D :p 1/t) (and M and P are
invertible), we have tP7~% = M™~™. The left-hand side is a principal
fractional ideal of D, but the only power of M that is principal is
M° = D. It follows that tD = p*~/D with k — j < 0 (since t ¢ D).
Therefore t ¢ T(M) and 1/t € P. o

In view of [7, Theorem 3.7 (a)], it follows from Example 6.2 (4) that
if R is the ring in Example 6.2, then Q(R) is not a von Neumann
regular ring. The reader is encouraged to verify this fact directly.

In Example 6.4, we exhibit a closed minimal extension R C S such
that S is embedded in Q(R) but each t € S\R is a zero divisor in
S. First, we record a fairly trivial application of our original pullback
diagram.

Lemma 6.3. Let R C T be a minimal extension. Then S
R + XT[X] C T[X] is a minimal extension. Moreover, S C T[X
is closed minimal if and only if R C T is closed minimal.

Proof. The rings S and T'[X] share the ideal XT[X], and S/XT[X] =
R C T 2 T[X]/XT[X] is a minimal extension. Hence S C T[X] is
a minimal extension. The final assertion follows by considering the
integral closure of a pullback. ]

Example 6.4. Let E = D 4+ X7 (M)[X] where D is a Dedekind
domain with a maximal ideal M such that no power of M is principal.
Let P be the set of height 1 prime ideals of 7(M)[X] excluding
XT(M)[X], and set B := ) pp T(M)[X]/P. Thus B is a T(M)[X]-
module and hence also an E-module. We let R := E(+)B and
S := T(M)[X](+)B be the respective idealizations of B over E and

T(M)[X]. Then

T(
(1) R C S is a closed minimal extension.
(2) S = T(M)[X]+ B is contained in Q. (R).
3)

3) Each element of S\R is a zero divisor.
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Proof. (1) Since B is a common ideal of R and S, and E C T(M[X])
is a minimal closed extension by Lemma 6.3, R C S is a minimal closed
extension.

(2) By construction, (X, 0) is a regular element of S and, a fortiori,
a regular element of R. Moreover S[1/X] = R[l/X], and so S is
contained in Q. (R).

(3) Let (g,b) in S\R. Then g is a polynomial g(X) = ¢; X* with
each coefficient in 7(M) and its constant term go in 7(M)\D; in
particular, go # 0. If g is non-constant, g is contained in a (height
1) prime ideal @ of 7(M)[X] above (0) and distinct from X7 (M)[X].
Then Q € P and (g,b) is a zero divisor in S (annihilated by (0,c)
where ¢ € B is such that its component in 7(M)[X]/Q is 1 and the
other components are 0). If g = go is a constant, then as in the proof
of Example 6.2, gp cannot be a unit of 7(M). In this case, g is in a
height 1 prime of the form N7 (M)[X] for some maximal ideal N of
T (M) and we again have that (g, b) is a zero divisor of S. O

Our final examples are of minimal integral extensions R C T. The
conductor is a maximal ideal M and, as we have seen, there are four
cases, according to the properties of M (in both R and T for the first
three cases): 1) M is regular, 2) M is semiregular but not regular,
3) M is dense but not semiregular, 4) Annr(M) # (0) (that is, M is
not dense in T, regardless of whether M is dense or not dense in R).

It is trivial to give examples of the extreme cases, that is, with M
regular or, at the opposite extreme, M not dense in T'.

e For M regular, we can consider a pair of quasilocal domains sharing
their maximal ideal M. For instance, take T to be a valuation domain
with residue field C and R to be the pullback formed by the elements
in T with residue class modulo M in R. Then R is a pseudo-valuation
domain, and the extension R C T is a minimal integral extension since
R C C is a minimal field extension. Clearly, 7" is contained in the
quotient field K = Q. (R) of R.

e For M not dense in T', we can simply start with any ring R, take any
maximal ideal M of R and consider the idealization T'= R(+)R/M of
R/M over R. As recalled in the Introduction, T is a minimal integral
extension of R, and clearly Anny (M) # (0). Thus, T is not embedded
in any kind of quotient ring of R. This may happen with M dense in
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R (or even regular if, for instance, R is a domain) or not dense in R
(if, for instance, M is nilpotent, as in R = K[X]/(X?)).

We use the A + B construction to provide an example where M
is semiregular but not regular (in both R and T'), and hence, by
Theorem 4.4, T is embedded in Qo(R) but not in Q. (R).

Example 6.5. Let F := K][Y, Z] be the polynomial ring in two
indeterminates over a field K, N the ideal N := (Y2 Y® YZ, 7),
and P the set of height 1 primes of E that are contained in (Y, Z).
Let T := E + B be the A + B ring corresponding to E and P,
D:=K[Y? Y3 YZ 7] and R := D+ B (the subring of T generated by
D and B). Then T is a minimal integral extension of R. The conductor
(R:T)is M =N+ B = NT, and it is semiregular but not regular (in
both R and T).

Proof. The rings R and T share the ideal B, with T/B = E and
R/B = D. The rings D and E share the ideal N, with E/N 2
K[Y]/(Y?) and D/N = K. Since K[Y]/(Y?) is a minimal integral
extension of K, it follows that 7' is a minimal integral extension of R.
Clearly the conductor (R : T') is the ideal M = N+ B, since it is shared
by R and T and maximal in R. Since N is a finitely generated ideal of
E contained in no prime ideal of P, it follows from the basic properties
of the A+ B construction [Theorem 6.1] that M = N+ B is semiregular
in T and that M = NT. Yet, every element of M is of the form (n,b)
with n € N in some height 1 prime P € P, and so every element of M
is a zero divisor in T; that is, M is not regular. o

Finally, we provide an example with M dense in T but not semiregular
(in both R and T"), and hence, T" is embedded in Q(R) but not in Qo (R).
Such an example could have been realized in a rather trivial way as an
A + B ring by using a field for the base domain and the zero ideal for
the set P.

Example 6.6. Let Q := [[Z2 be a countably infinite product of
the integers mod 2. Let M be the ideal M := Y Z3 and R the subring
generated by 1o and M. Then

(1) The ideal M is maximal in R and dense in both R and @ = Q(R).
(2) The only semiregular ideal of R is R. Thus R = Q.(R) = Qo(R).
(3) For each t € Q\R, RJ[t] is a minimal integral extension of R.
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Proof. By using Theorem 6.1 (9), we see that statements (1) and
(2) follow by viewing R as the A + B ring corresponding to Zs and
P = {(0)}. From this point of view, M is the dense (maximal) ideal
“B.” Since each element of @ is idempotent, each such element is
integral over R.

Let t € Q\R and s € R[t]\R. Since t* =t and tM C M, we have
s = r + gt for some r,q € R with ¢ ¢ M. But this means ¢ = 1o + b
for some b € M. Hence s = (r + bt) +t with 4+ bt € R. It follows that
R[t] = R]s], and therefore R C RJ[t] is a minimal integral extension. O
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