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HAUSDORFF DIMENSION OF
THE IMAGE OF ITERATED ADDITIVE PROCESSES

MING YANG

ABSTRACT. An iterated additive process X; in R% is a
random field defined by

Xe =X} + X% 4+ XN, t=(t1,t2,...,ty) € RY,

where the th_ are independent additive processes in R%. We

J
compute the Hausdorff dimension of the image of an arbitrary
iterated additive process.

1. Introduction. A process Y;, t € R,, with independent
increments, rcll paths and values in R? is called additive if Y; is
continuous in probability and Yy = 0. An iterated additive process
X, in R? is a random field defined by

Xt:th +Xt22+---—|—XN t:(tl,tg,...,tN)ERf

1 tNn?
where the thj are independent additive processes in R%.

When all the thj above are Lévy processes, X; is called an additive
Lévy process (cf. Khoshnevisan, et al. [2]). Let X(G) ={X;:t € G}
for G € B(RY), and denote by dimy the Hausdorff dimension. We
are interested in computing dimy X (G). This paper was motivated by
the author’s desire to find the solution to an unsolved problem. The
author raised the following question in a previous note:

Question. Given an arbitrary additive process Yi, can one find a
closed-form expression of dimgY ([0,t]) for t > 02 The closed-form
expression can be given in terms of the expected sojourn times, the
characteristics of Y, or any data containing the information of Y;.
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(dimg Y ([0,¢]) does not depend on ¢ for Lévy processes but does
for a general additive process.) In this paper, we give the answer
to the above question in a rather general way. It turns out that
the potential-theoretic approach of Khoshnevisan, et al. [2] can be
developed further to compute the Hausdorff dimension of the image
of an arbitrary iterated additive process.

Recall that the characteristic function for an additive process Y; takes
on the form
BetYe — ¢ ¥(® ¢ cRY,

where for each fixed ¢, ¥,(§) is a Lévy exponent. We mention that
U, (&) is jointly continuous in ¢ and £ with ¥y(£) = 0. In particular,
Re ¥, (£) is a nondecreasing, nonnegative function of ¢ for each fixed .
Let (X; Wl ..., ¥") be an iterated additive process; that is, \Ilij €3}

is the characteristic exponent of thj, for 1 <j < N. Let P(G) denote
the collection of probability measures on G. Let

S¢ =S, + 50+ + 5,

be the standard d-parameter additive a-stable Lévy process in R?
for « € (0,1); that is, the S’ are independent standard a-stable
Lévy processes in R? with the common Lévy exponent |¢|*. For any
probability measure p in Rﬂ\_’ and ¢ € R4, define

(1.1) Qu(8)
N j 7
:/ o™ Doy 80 (55—t WL, (sen (5= )6) — ¥, (Sgn(Sj—tj)@]u(ds)ﬂ(dt)_
RYJRY

We will see that 0 < @,(§) < 1in a moment. The main result of this
paper is our characterization of the following intersection probability.

Theorem 1.1. For all 8 € (0,d) and S*=#/? independent of X,
(1.2)
PLX(@ NS P (0.00)) £ 2} >0 = / 1€1P4Q,.(€)de < oo
Rd

for some p € P(G), where |z| = (z - z)*/2.

An immediate consequence of Theorem 1.1 is the following dimension
result.
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Theorem 1.2. Let (X; ¥, ... UN) be any iterated additive process
in R?, and let G be any Borel set in Rf. Then
(1.3)

dimyg X (G) = sup {ﬂ € (0,d) : ueing) . 1£1°74Q,,(¢) de < oo} a.s.

Theorem 1.2 implies that dimy X (G) is deterministic for any Borel
set G of RY. If we let N =1 and G = [0,¢] C R4 in (1.3), we obtain
a closed-form formula for dimgY ([0, ¢]) for any additive process Y.

A more difficult question arose naturally to the author’s mind. Sup-
pose that G in Theorem 1.2 has a nonempty interior. Is it possible to
determine a probability measure u& on R_iA_r such that

dimp X () = sup {B € (0,d) : /R 61°-1Que () de < o0} a7

In the case of additive Lévy processes, this has been known: uS = &,

N

where r(dt) = e 2.5-1%gt. Tt can be obtained by a different but
related argument. However, the above-mentioned argument did not
do quite as well for a general iterated additive process, even in the
cases when G = [0,¢]" and G = RY. The author believes that, due
to the nature of time-nonhomogeneity, it is highly unlikely to advance
beyond the results of this paper with the method of [2]. One case
(somewhat nonessential) is possible. If X is symmetric and the function
Eei€ (Xe=Xe) (which is real and positive in this case) is comparable to
that of some symmetric additive Lévy process, then we can choose u&
to be k.

We point out that our proof of Theorem 1.1 is very close to the proof
of Theorem 2.2 of Khoshnevisan and Xiao [1] for the direction =, and
to the proof of Theorem 2.1 of Khoshnevisan, et al. [2] for the direction
—.

2. Proof of the lower bound. The direction <= in (1.2) is
referred to as the “lower bound” in the literature. The reader can
find that this part of the proof in this section does not need the
assumption of independent increments. The argument works for any
kind of process Y. One can use the characteristic function EeiYt
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instead of the exponent “¥,” which does not make sense to Y outside
the class of additive processes.

Let Y be an additive process, and let 0 < s < t. By the hypothesis
of independent increments,

Eei€Ye — peie- (=Y +ieYe _ pit(Yi=Y.) poi&Ye

Thus,
Eeié(Ye—Ys) — o—[¥:(§)—¥s(O]

It follows from calculations that, for any iterated additive process
(X; ¥',...,¥") and any s, t € RY,

i€ (Xi—Xo) _ = 2oy, sen (t5=s5) (W] (san (t5=s5)6)— W], (sgm (t5=55)8)]

Lemma 2.1.

Qe =B [ e uan

2
:E/ / e (Xa=X) 1y (ds) pu(dt).
RY JRY

Proof. This lemma follows simply from the Fubini theorem and the
fact that

Fei€ (XamX) _ = 2o, s8m (o5 t5) [ (sgm (55 —15)6) = W] (s (s =)O)]

Lemma 2.1 implies that 0 < Q,(§) < 1 since \fRi e Xep(dt)| < 1.

Introduce the p-occupation measure O, by

| J@O0utde) = [ f(Xou(ar),

RY
where f: R? — R is a measurable function. In particular,

Ou(E) = /RN 1(X; € E)u(dt), E < B(RY).
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Note that O, is a random probability measure on RY and, if u is
supported on F, then O, is supported on X (F'). Recall that the Fourier
transform of a probability measure v on R¢ is defined by

() = /Rd e ?y(dr), €eRY

Lemma 2.2.

Qu(€) = B|0,(6).

Proof. From the very definition of O
identity

4, we have a frequently used

(2.1) /R 0, (dr) = /R )

By (2.1),
OuOF = [ [ e uanuas).

Finally, use Lemma 2.1 to finish. o

In the following, [|f[|72ga)y = [ga|f(§)|?d¢ for any complex-valued
function f.

Lemma 2.3.

B0 squsy = [ Qule) e

Proof.
10ulfmy = [, 10u(0) i
Rd

Use the Fubini theorem and Lemma 2.2 to finish. m]

Let Aq denote Lebesgue measure in R¢.
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Proposition 2.4. Let F' be any Borel set in Rf, and let p be any
probability measure on F'. Then

(2.2) [, @uyde < o0 = BOWX(E)) > 0.

Proof. By Lemma 2.3, E[|O,[125ga) < 00. Thus, |0, [22ga) < 00
almost surely. By Plancherel’s theorem, the measure O,, is absolutely
continuous with respect to Ay almost surely, and there exists a measur-
able version L,(x) of the density (also called the p-local time) of O,
satisfying

||Ll‘||iz(Rd) = (27r)_d||Ou||2L2(Rd) almost surely.

Note that O,(A4) = [, Lu(z)dz, A € B(R?). Since p is supported on
F, O, is supported on X (F), so is L,. Also note that O,(R%) = 1.
Thus, by the Cauchy-Schwarz inequality,

1= OuRY? = ([ 1xwy()Lulo) dx)2
< /R Tk (@de [ De)do

Rd
= )\d(X(F))(27r)_d||6,,||2L2(Rd) almost surely.

Applying the inequality E(("')E¢ > 1 valid for all positive ran-
dom variables ¢ and the fact that EHOHHiZ(Rd) = Jra Qu(&) dé by
Lemma 2.3, we obtain

a2 @] [ aued] >0 o

Proof of the direction <= of (1.2). First, note that
(2.3)

- 1 ‘
e <o = [ (g ) @@ d <o,
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since @, (§) < 1. Now we apply Proposition 2.4 to the case where the
iterated additive process is X — S1~8/¢  the set is G x (0, 00)¢, and the
d
measure is u X K, where k(dt) = e 2 b, t = (ti,-.. ,ta) € RE to
find that
E{Xa(X(G) = §*7P/4((0,00)%))} > 0,

since the quantity @, (§) in Proposition 2.4 in this case equals

1 d
(1) @@

Finally, since for every ¢t € (0,00)" the distribution of Stl
mutually absolutely continuous with respect to A\q and since S'—#/¢
and X are independent, by [1, Lemma 4.1], we have

—B/d o

(24) E{\a(X(G) = S #/%((0,00)")} > 0
=P {X(G) (S 2/4((0,00)%) # @} > 0.

Thus,

/ 16/°79Q,,(€)dé < 0o = P {X(G) S~ #/4((0,00)%) # @} > 0.0
Rd

3. Proof of the upper bound. By (2.4), to prove

P{x(@ NS (000 £ 0} >0 [ 1 Que) d < o,

we only need to establish
(3.1)

LX) = S H/4(0.00)} > 0= [ 161°Que) de < o

for some p € P(G).

To work toward this direction, we need an appropriate sigma-finite
measure as defined below, which gives the information of the Lebesgue
measure of the image set of the process naturally via the Fubini
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theorem. Let us get started with a simple lemma. Let Z be any
random variable taking values in R%. Suppose that f, f € L'. Define
the function Pf(z) = Ef(Z +z), x € R%. Here, Pf is a symbol. Pf
can always be expressed in terms of the characteristic function of Z.

Lemma 3.1.

Pf(z) = (27r)*d/Rd e f(—€)Eet?tdE, e RY

Proof. Let QQ be the distribution of —Z. Then,
PIE) = Bf(Z+€) = Bf(~(-2)+O) = [ fe=n)ldy) = £+Q(©).

Thus,

~

PF(e) = FxQ(6) = f(£)Q(6).

By the inversion formula and the fact that |@(§)| <1,

Pf) = 2m) " [ e e)Qe) de

— (2m)~¢ / e ¢ f(—£)D(—¢) de
R4
:/ e f(—€) B e,
R4

since Q(—¢) = Ee'Z¢ is the characteristic function of Z. o

Let X be an N-parameter iterated additive process in R?. For any
s, te Rf and f with f, f € L', we define

P, f(z)=Ef(X; — X, +z), zecR™.

Note that the order of s, ¢ in P;; f matters. It follows from Lemma 3.1
that
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Lemma 3.2.

Puefl@) = @) [ =€ f(=

e g S8n (s =a) [V (smn (85 =5)O) =W sm (6= 5)6)] g

= (27r)_d/ e f(—E)Beit X=X de ¢ e RY
Rd

Since X has rcll paths for every parameter ¢; of (t1,...,tn) € Rf,
for each z € R? there is a probability measure P® on 2, the law that
X starts from z. (P° = P.) Hence, we have a sigma-finite measure Py,
on  given by Py, (e) = [z4 P"(e) dz. Let Ey, denote the expectation
operator with respect to Py, for real-valued random variables. Py, has
some favorable features. For example, for any nonnegative function f,
by Fubini’s theorem, a change of variable and the fact that the Lebesgue
measure is translation-invariant,

Ex,f(Xi) = RdE[f(:erXt)]dw: Rdf(ﬂf)dﬂ??-

In particular, for all ¢ € Rf and Borel sets A in R%, Py, (X; € A) =
Ad(A). That is, under P, the distribution of X; is A4 for all t € Rf.

For the sake of completeness, we reproduce but selectively the ma-
terial between the definition of F), and Lemma 3.4 in Section 3 of
Khoshnevisan, et al. [2]. Let A be a subset of {1,...,N}, and define
the partial order <4 on Rf by

s=at<=s5;<t;, it€Aands; >t;, i¢ A

A worthy computational observation is that if ¢ =4 s =4 s’ then
X; — Xs and X; — X are independent. Define .7-'tA to be the sigma-
field generated by {X,; s <4 t}, which is P®-complete for all z € R?,
and F4 is right-continuous under < 4.

Let f be a nonnegative function in L'. Then, for any ¢t € Rﬂ\_’ ,
Ey,f(X:) < oo. Thus, the conditional expectation Ej,[f(X:)|G] of
f(X:) given a sub sigma-field G of F/ exists under Py,. In this
paper, only Propositions 3.3 and 3.5 below require the assumption of
independent increments.
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Proposition 3.3. For any s <4 t, Ps.f(Xs) is a version of
B [f(X0)|FL, de.,
Ey, [f(Xt)|.7-'§4] =P, .f(Xs), P, almost surely.
Here, the Py,-null set is independent of t.

Proof. Let g,hy,...,h, be bounded measurable nonnegative func-
tions, and assume that s =4 s;, 1 <7 < m. Since X; — X, and X;— X,
are independent,

dx

s

f(Xt + x)g(Xs + x) hi(XSi + x)

1

o
Il

h’i(XSi - Xs + y)

f(Xe —Xs+y)g(y) dy

=

Rd

_ [ Bl(x. - X, +y>]g<y>E[
Rd

1

K2

hi(XSi - Xs + y):| dy

f=F

Since the distribution of X, is Ay under Py, the proposition follows. O

For nonnegative f in L' and probability measure x on R_ij\_’ , define
the nonnegative random variable

Ouf: /Rf f(Xs),u(dS)'
We have
E)\dOuf = E)\d /RN f(Xs):u’(ds) = /I;LN E)\df(Xs):u’(ds)

= [ @ [ @)= [ fede < oo
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Thus, we can define an N-parameter process
MM = B, 0,017, teRY
with Ex, M = B\,0,f = [q. f(z)dz forallt e RY. @

Lemma 3.4. For all s € Rf,
MATH > / Pyof(X)u(dt), Py, almost surely.
t-as

Here, the Py, -null set depends on s.

Proof. By Proposition 3.3 and Fubini’s theorem,

min =y, [ joeuaniz]

>m] [ B (a2
- /ttAsEM[f<Xt>|f:‘]u<dt>

:/ P, f(Xs)u(dt), Py, almost surely,
tras

since the Py, -null set is independent of ¢. ]

The theory of multi-parameter L?-maximal inequalities is the very
technical foundation of the approach developed by Khoshnevisan, et
al. [2] and others. The following Pj,-type result has been carried out
based on Lévy processes, but obviously it applies to additive processes
without any trouble. We take it for granted. For further information
about their arguments, see [2, Lemma 4.2]. Let Q denote the rational
field as always.

Proposition 3.5. Under any partial order A, for all nonnegative
random variables Z,

2
Ey, sup [Ex,[Z|FA]]” < 4VEN,Z2.
teQY
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Lemma 3.6. If f € L' N L? and f € LY, then

B, sup (M2 < 4% [ (F©PQue) de

teQY

Proof. By Proposition 3.5, this lemma is nothing but about comput-
ing E»,(0,f)?. We show that

d
(3.2) B, (0uf)? = (2m) 4 / FOPQuE) de.
R

To obtain (3.2), we prove a preliminary result: Suppose that g is
another nonnegative function also satisfying g € L' N L? and § € L'.
Then, for any s, t € Rﬂ\_’,

(33)  Bulf(Xg(Xol=@m~ | fOgE)pe X de.
First of all, as in the proof of Proposition 3.3, we find that
Bulf(X)9(X0) = [ Puag@)f () dy.

Rd

By Lemma 3.2 and Fubini’s theorem, thanks to f, § € L? (by
Plancherel’s theorem, g € L?),

[, Past) ) dy
= [ (en @[ v gpes o X)) dy
Rd Rd
—(2m) 4 [ FOT@EE X
Rd
Equation (3.3) is proved. Recall that

(3.4)
Fei(Xe=Xo) _ = Zj.vzlsgn (t5—5)[¥]_(sgn (t;—35)€)—¥] (sgn (tj =551
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Now, by (3.3), (3.4) and Fubini’s theorem (by Plancherel’s theorem,
fer?),

Bn0u0P =B [ [ 1) rxuasnan|

_ / / B [f (Xo) £ (X0 a(ds) u(dt)
RY JRY

B /R /RN<(2“)*d | JOF(€ Bt X Xde) u(ds) ()

SICe R UGICAGE:

Equation (3.2) follows and so does the lemma. o

Proof of the direction = of (1.2). As was stated at the very begin-
ning of this section, this direction follows from (3.1). Let B(z,7) C R?
be the closed ball of radius r with center at . To prove (3.1), it suffices
to show that

(3.5) BOUX(G) =SP4} >0 = [ [e-Que) de < o0

for some p € P(G), where G is compact and ! € (0,00). Thus, there
exists a large R € (0, o0) such that

E{M(M«D SL=A/d([0, 1]4) (]BOR)}

Let Z = X — §'=A/4 which is an (N + d)-parameter iterated additive
process in R?. Therefore, we have that

(3.6) E{ ( (G x [0, 1] ﬂBOR)} (0, 00).

Let G° be the closed d-enlargement of G for § > 0, that is, the
smallest compact set such that for each point s = (s1,...,sny) € G,
[51,81+6]x--x[sn,sn+0] C G°. Let Py, and E, be the 51gma—ﬁn1te
measure and the corresponding expectation operator, respectively, with
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respect to Z. By the definition of P, also thanks to Fubini’s theorem
and the fact that —B(0,7) = B(0, ),

Py, {Z(G5 x (0,07 () B(0,8) # 2, Zo € B(o,R)}
= Pllz+ Z(GP x[0,1]* B(0,6 dz
Ly P L+ 26 < 0,910 B0.0) # 2
:/ P{z € B(0,6) — 2(C° x [0,]")} da
(0,R)

/ P{z e Z(G° x [0,1]%) — B(0,0)} dz
B(0,

=5 {\ ( x [0,1%) ~ B(0,6)](BO,R)) }
E{\ (12(6 x 0,11%) + B(0,6)](| BO,R)) }

£ {7 (2@ DI BO.B)}

downwards as § — 0. Thus, by (3.6) for all § > 0,

(3.7) P, {Z(G5 x [0,1) () B(0,8) # 2, Zo € B(O,R)} € (0, 00).

We add a cemetery point A ¢ RY to RY to construct a measurable
map 7° (random variable) from Q to QY U {A}. T° is defined as
follows. 7° # A if and only if 7° € QY N(0,00)Y NG? and there exists
some t € (0,1]4 N Q% such that |Z(s 1y| < 0. This can always be done.
We have

(3.8) P\, {T°#A, Zy € B(O,R)}

= P, {2(G° x [0,0) () B(0,6) # 2, Zy € B(0,R) } € (0,00).
There is therefore a probability measure 0 in Rﬂ\_’ supported on G°
given by

P/\d{T(s ce, T° #A, Zy € B(O,R)}

(3.9) po(e) = P {T% £ A, Z, € B(0,R)}

For ¢ > 0, define f.(z) = (2me2)~%2¢-1o1*/2* 4 ¢ R, Let
u, v E R_iA_r and s, t € Ri. In this paper, we only need to consider
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the partial orders on R_iA_r . Each partial order m on Rf corresponds
to a partial order A on Rerd by (u,s) <4 (v,t) & u <, v, 8; < t;,
1 <7 <d. Note that

Fo(6) = e /2 Fo(O)F = e eI
and that the Lévy exponent of —S*—A/4 js
(e[ 274, . g2,

Let v = p X Kk, s = (u,s) and t = (v,t). By Lemma 3.2 along with
interchanging order of integration due to the term e 1er/ 2, for any
partial order A,

/t Pl 0wa)

:(zﬂ)fde*ZLSi/ / e
v ru J R4

e Do 5Em (v WL (s (v —us)€)— W (sgm (v —ug)E)]

1

X CFREE=ET dép(dv).

Clearly, f. is Lipschitz continuous. Let D(¢g) be the Lipschitz constant
of f.. By the definition of Fs ¢ fe,
D(E)(S + |1?<f5 Ps,tfs(z) > Ps,tfs(o)'

Since v is a probability measure,

D(s)(5+/t inf Py ¢fe(z)v(dt) > /t> P+ f-(0)v(dt).

> AS ‘Zlgé

If ‘ZS‘ < (5, then Ps7tf5(Zs) > inf|z‘g5 Ps7tf5(z). Note that inf|z|g5 X
Ps ¢ f-(z) is a function of t independent of w for each fixed s. Thus,

/ Pyt fe(Zs)v(dt) - 14 1z,1<s}
t>as

2/ inf Ps¢fe(2)v(dt) - 1qz,1<s)
ttAslz‘Sé

> [/ Pyt f-(0)v(dt) — D(e)d| - 12, <s}-
t=as
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By Lemma 3.4,
(3.10)
MG > Psofe(Zs)v(dt) - 1z, 1<s), P, almost surely.
t>=as

Here, the Py -null set in (3.10) depends on s. Thus, if s is random and,
if we wish (3.10) to hold uniformly in w, one way is to require s to take
rational points only. It follows from the definition of 7% that

sup M;“’ff’” > {(27r)de‘”/ / e e 1617 /2
6eQyt? v=-T% JRA

y —00 sen (v~ T)[W (sgn (v;—T5)€) ~ T2 (sgn (v;~T7)¢)]
(& J

< m dép(dv) — D(e) 5}

“Lyrsxn, zoeB(0,R)}» DPr, almost surely.
We rewrite the preceding as

A, fe,v
D(e)8 - Lipssa, zoeBo,m)) + Sup My
peQy !

> (27r)—de—dl/ / 6—52\§|2/2
v>=,T% JRA

- Z;VZI sgn (vj—Tj)[quj (sgn (vj—Tf)g)—\Iﬂ'T& (sgn (v;—T2)€)]
X e i

1
T g )

“Lypszn, zoeB(o,R)}s Pr,almost surely.

Recall the Cauchy-Schwarz inequality

(3.11) <ix>2 Spix?

i=1

for any p real numbers z;, i = 1,...p. We denote p’ x x by v%. Thus,
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by (3.11),

A7 57”6
2D%(e)0% - Lirsza, zoeB(o,r)) +2 sup (MgH7e"")?
aeQN+d

> (2m) -2d —2dl{/ / —e?¢?/2
=75 JRA

—ZJ L sen (v;— T5)[‘I’7 (sgn (v;—T7)€)— ‘I'J 5 (sgn (v; =T7)€)]
X e 75

1 5 2
< G )
“Lipssn, zoeB(0,R)}> Pr, almost surely.

Taking E)y - expectation on both sides of the above inequality yields

2D%()02 - Py, {T° # A, Zo € B(0,R)} +2Ex, sup (MMF=")2
peQyt?

s [ [ [ e
Rij v-.u J R

e Do 5Em (v g WL (s (v —us)€)— W (sgm (v —ug)E)]

1 2
x W dfu‘;(dv)} 1 (du)

P\ {T° # A, Zy € B(0O,R)}.
By Jensen’s inequality (noticing that u? is a probability measure),

2D2()02 - Py, {T° # A, Zo € B(0,R)} +2Ey, sup (MMF=")2
peQyt?

Z(%)—Qde—w{/l\]/ / e 1E?/2
RY Jurqu R4

e Do 5Em (v g WL (s (v —us)€)— W (sgm (v —ug)E)]

1 2
x W df/ﬁ(dv)p‘s(du)}

P\ {T° # A, Zy € B(0,R)}.
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Summing up the above over the 2V partial orders A in conjunction
with (3.11) and noting that for any w € RY, > [ (e)u’(dv) =

Jr~ (9)1° (dv) show that
N
k1 D*(e)6% - Py {T° # A, Zy € B(0,R)}

5
+ ko E E,, sup (M‘;’ff’" )2
gecQN+d
) QY

Z(2ﬂ)2d€2dl{/N/N/ e l€?/2
RY JRY JR4

<e Z;\;l sgn (vj—u;)[ ¥ (sgn (v;—u;)§) — W, (sgn (v; —u;)€)]

2
x W df,u‘;(dv),u‘s(du)}

. P)\d{T(s 7é A7 Zy € B(OvR)}v

where k12an2d ko are two integral constants. Once more, thanks to the
term e~ 1¢/°/2 an interchange of order of integration yields

k1 D*(e)6% - Py {T° # A, Zy € B(0,R)}

)
+hky Y By, sup (Mpler)?
0 N+4d

A €Qy

2002 1 2
> (97) 2,2l / _2e)?)2
> om) e 20 ([ 0,0 (6) e
P\ {T° # A, Zy € B(0,R)}.
By Lemma 3.6, for any A,

s
Ey, sup (Mg 7o)

peQy !
N+d —d —e2|g)? 1
S 4 (271-) /Rﬁ € Qu‘s (f) (l + |§‘17ﬁ/d)d dé‘
Since Q.5 (£)(1+ [¢[* /%)~ € [0, 1],

—e?¢]? v
a1 Q) g
1

—e2¢)?/ B —
< /Rde 2Qua(§)(1+ |€[1=B/dd dg.
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‘We can now conclude that

(3.12) ¢182D*(e) P\, {T° # A, Zy € B(0,R)}

2 1
+ co /Rde €l /QQu‘s(g) (1+‘£|17ﬁ/d)d df

2le[2 /2 L ’
203</Rde € Qua(ﬁ)m%)
X P)\d{T‘; 7’5 A, ZO S B(OaR)}a

where ¢;, c2, ¢3 € (0,00) are some constants completely independent
of 4 and e.

Choose any sequence 8y | 0 as k — oo where k =1,2,... . Since G
is bounded, there exists a probability measure p such that along some
subsequence §,, — 0, p®» — pu weakly. To see that p is supported
on G, we notice that G, as well as each G, is compact and that
G C G%+1 c @%. Taking the indicator function lgs and noting
that p™ is supported on G, we can easily find a contradiction if
has a positive mass on a compact set B with BNG = &. Next we write

ep 1
/Rde €2Q (f)—(1+ REIET d¢

- / £ (s, ) (ds) ™ (dt),
1 /Ry

where

F(s,8)= / o—e21E17 /2= 8m (55 —1) W1 (sgm (55 —15)6) — W] (sen (55—1;)8)]
R

d

1
(1+ [g[t=prd)e

Quite clearly, f(s,t) is a bounded function. Since all the exponents
UJ(€) are jointly continuous in ¢ and &, we see that f(s,t) is also
a continuous function. According to the approximation argument
(literally the definition) from simple functions to bounded continuous
functions in the weak convergence for probability measures, it also holds
that p%» — p weakly in the double space sense:

X

de.

[ ] soutmsutn — [ [ g oudsud.
T /RY T /RY
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In other words,

(3.13) lim [ e = KF2Q ., (¢) 1

——d
m—oo Jpd (1+|£‘1—ﬂ/d)d €

I e v
_Ade Q#(g)(l+|£‘1_6/d)d d£>0

(The integral to the right in (3.13) must be strictly positive for any
probability measure u because otherwise fRd Qu(&) d¢ = 0 would imply

6u =0.) Now rewrite (3.12) as

(3.14) ¢102D*(e) P\, {T° # A, Zy € B(0,R)}

—2
g2 /2 v
* </R ¢« Qe O gy df)

2¢2/2 1 o
* </R ¢ R O gy dﬁ)
> e3Py, {T° # A, Zy € B(0,R)}.

Recall that [(3.8)]
(3.15) P, {T°" # A, Zy € B(0,R)}

E{ ( (G % [0,1]2 ﬂBOR)} (0, 00)

downwards as m — oo. It follows from (3.13), (3.14) and (3.15) that

(3.16) 02(/Rd 6752\5\2/2QH(6)W d§>
> e { M (Z(G < 0,09 BO,R)) }.

Finally, let ¢ — 0 in (3.16) to obtain

1
(1+[g=p/d)d

which is the same as saying that

G

d€ < o0,

/ EP4Qu(€) dE < 0. T
Rd
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Proof of Theorem 1.2. Let Cz denote the Riesz capacity. By [2,
Theorem 7.2], for all 8 € (0, d),

(3.17) EC4(X(G)) >0 <= P {X(G) S~ 2/4((0,00)%) # @} > 0.

Then, by Theorem 1.1,
B18)  BCX(E) >0 [ e Que) d < o

for some p € P(G). Thanks to the Frostman theorem, it remains
to show that Cg(X(G)) > 0 is a trivial event. Let £ denote the
Riesz energy. By Plancherel’s theorem, given any 3 € (0,d), there is a
constant ¢g3 € (0,00) such that, for all probability measures v in R,

(3.19) &) = aus [ POPIEPas

Suppose that, for some p € P(G), [galélP?Qu(§)dé < co. By

Lemma 2.2, Q,(6) = E|O,(€)]>. Recall that O, is a probability
measure supported on X (G). It follows from (3.19) that

BE4(0,) = cas [ P BIOLOFdE = cas [ 6P Qu)dE < .

Therefore, £5(0,,) < co almost surely and, subsequently, Cs(X (G)) > 0
almost surely. u]
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