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ON THUE EQUATIONS OF SPLITTING TYPE
OVER FUNCTION FIELDS

VOLKER ZIEGLER

ABSTRACT. In this paper we consider Thue equations of
splitting type over the ring k[T, i.e., they have the form

X(Xfply)"'(X*pd_1Y)7Yd:6,

with p1,...,pq—1 € k[T] and £ € k. In particular, we show
that such Thue equations have only trivial solutions provided
the degree of pg_; is large, with respect to the degree of the
other parameters pi,... ,pq_2-

1. Introduction. Let F € Z[X,Y] be a homogeneous, irreducible
polynomial of degree d > 3. Then the Diophantine equation

F(X,Y)=m, meZ)\{0}

is called a Thue equation in honor of Axel Thue [23] who proved the
finiteness of the number of solutions. Since then several Thue equations
and also families of Thue equations were solved. In particular, families
of Thue equations of the form

(1) XX —a1Y)- (X —ag 1Y) +Y%=+1,

with ai,...,aq_1 were studied by several authors, e.g., Heuberger [9],
Lee [12], Mignotte and Tzanakis [16], Peth$ [18], Pethd and Tichy
[19], Thomas [22] and Wakabayshi [24]. This type of Thue equation
is called splitting type. Obviously these Thue equations have solu-
tions £(1,0),+(0,1), (a1, 1),..., =(ag-1,1), which are called trivial.
Thomas [22] investigated Thue equations of splitting type of degree
d = 3 with a3 = p1(n), ag = p2(n), where p1, ps are monic polynomials
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724 V. ZIEGLER

with deg (p1) < deg (p2) and n € Z large. Under some complicated de-
gree conditions for p; and ps, Thomas proved that the trivial solutions
are the only solutions provided n € Z is large. These investigations led
him to the conjecture that for a; = p1(n),...,aq-1 = pa_1(n), and n
sufficiently large, p1, ... ,p4q—1 monic polynomials with deg (p1) < --- <
deg (ps—1) Diophantine equation (1) has only trivial solutions. This
conjecture was finally settled by Heuberger [10] under some compli-
cated degree conditions. However, counterexamples exist to Thomas’s
conjecture for d = 3. Ziegler [25] observed that the Thue equations

X(X —nY)(X —(n*+3n)Y)+Y? =41
and
XX -—nY)(X - (n*=2n)Y)+Y3 =41

have the nontrivial solutions 4(n® + 3n® 4 4n3 +1,n® + 3n® + 3n?) and
+(n® — 1, —n® + 3n® — 3n?), respectively. These counterexamples were
found by solving Thue equation (1) for d = 3 over the function field
C(T), i.e., assume X,Y, a1,a2 € C[T] (see [25]).

Thue equations over function fields were investigated by Gill [7],
Osgood [17], Schmidt [21], Mason [14] (see also [15]), Lettl [13] and
many others. Also the case of global function fields has been considered
by Gaél and Pohst [5, 6] recently. Families of Thue equations were
investigated by Fuchs and Ziegler [3, 4] and Fuchs and Jadrijevi¢ [2]. A
first attempt to prove a function field analogon of Thomas’s conjecture
was made by Ziegler [25], who considered equation (1) in the case of
d = 3. The purpose of this paper is to prove an analogon of Thomas’s
conjecture for general d. Therefore, we consider the equation

(2) X(X —piY)-- (X —pa1Y) +Y?=¢,

over k[T], where p1,... ,pq—1 € k[T], £ € k and k an algebraic closed
field of characteristic 0. In particular we prove the following theorem:

Theorem 1. Let 0 < deg(p1) <---< deg(pa—2) < deg(p4—1) and
assume cqdeg (pg—2) < deg (pa—1) with cq = 1.031d(d — 1)(d — 1)!(2d —
3)49=1.  Then Thue equation (2) has only trivial solutions ((1,0),
C(Ov 1)7 C(pla 1)7 T 7<(pd717 1)} with Cd = f
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This is an analogon of a result of Halter-Koch, et al. [8] for function
fields. The plan of the paper is as follows. In the next section we
give a short overview of the tools we need for a proof of the theorems.
Then we investigate the unit structure of the relevant function fields
(see Section 3). With the knowledge of Section 3 we are able to adopt
a method described by Heuberger et al. [11] and find a lower bound
for deg Y. An upper bound for degY is found by Mason’s fundamental
lemma [15, Lemma 2, Chapter 1]. Comparing upper and lower bounds
yields Theorem 1. Note that for the rest of the paper we will assume
that k is an algebraic closed field of characteristic 0.

2. Preliminaries. First, we state Mason’s fundamental lemma [15,
Lemma 2, Chapter 1], which is a special case of the ABC-theorem for
function fields (see, e.g., [20, Theorem 7.17]).

Lemma 1. Let K/k(T) be a function field of genus g, let us denote by
Mgk the set of all valuations in K, let Hg (o) := — Y cps, min(0,w(a))
denote the height of o € K and let v1,72,7v3 € K with v1 +v2+73 = 0.
Let V be a finite set of valuations such that for all w ¢ V we have
w(m1) = w(72) = w(73); then

Hg (y1/72) < max(0,2g — 2 + |V|).

Let K/k(T) be an extension of function fields; then we are interested
in the integral closure of k[T'] in K, which is denoted by O . Obviously
Ok is a Dedekind ring and all primes of k[T] are tamely ramified.
Assume K is Galois over k(T'); then we know

(3) Nic/k(r) (Do suiry) = [ [(T = @) D9 = 65, iy,

ack
where Dp/4 and dp,4 denote the different and the discriminant of B
over A respectively. Moreover, (T' — a)Op = (p1---Pg, )%, L., €4 is
the ramification index of (T' — a) in Or. The equation above holds
since the residue class degree is 1 in this case (see also [25]). Besides
the valuations which are obtained from the primes (1" — a) with a € k,
infinite valuations also exist which are obtained by the unique maximal
ideal of the discrete valuation ring

Ooo :={f(T)/9(T) : f,9 € C[T],deg (f) < deg(g)} C k(T).
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The following result is useful to determine ramifications and valua-
tions:

Proposition 1 (Puiseux). Let the function field K/k(T) be defined
by the polynomial

P(X,T) = X%+ Py (T)X%¥ 1 ...+ Py(T)

with coefficients Py, ... ,Pq_1 € k(T). Then for each a € k there exists
a formal Puiseux series

oo
yig= Y cniC (T —a)/ei, (1< j<eqsl <i<ry),

h:mi
where ci; € k and (; € k is an e, ;th root of unity such that

€a,i

P(X,T) = H TIX = wii)

i=1j=1

Moreover, let Bi,..., B, be the primes of K lying above the prime
(T —a). Then eq; = e(Pi|(T — a)) for i = 1,...,r, for some
appropriate order of the indices.

Note that a similar statement holds also for infinite valuations.
Furthermore, the m; are the valuations of o with respect to the primes
above (T' — a), where « is a root of P(X,T).

An essential tool in our proof is Mason’s fundamental lemma (see
Lemma 1). But, for an application of this lemma, we need a tool to
compute the genus of function fields. The Riemann-Hurwitz formula
(see, e.g., [20, Theorem 7.16]) yields such a tool.

Proposition 2 (Riemann-Hurwitz). Let L/K be a geometric ex-
tension of function fields with constant field k. Let gx and gy, be the
genera of K and L, respectively. Then

(4) 2g9;, —2=[L: K](29x —2)+ Y (ew —1),

wEMy,
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where M7y, is the set of valuations of L and e,, denotes the ramification
indezx of w € My, in the extension L/K.

A geometric extension L/K is a finite algebraic extension of function
fields such that L Nk = k, where k is the constant field of K and L.
Note, if k£ is algebraic closed, then every finite algebraic extension is
geometric.

3. Unit structure. Let F(X) = X(X —p1)--- (X —pg-1) +1 €
k[T, X], o aroot of F(X), K = k(T,a) and L D K the splitting field
of F over k(T). Moreover, let us assume K and L are imbedded by
a fixed morphism into K := U, k((7~1/7)), which is the algebraic
closure of k(T). We fix this embedding for the rest of the paper.
Furthermore, let v be the valuation such that v(f) = —deg(f) for
any f € K and v(0) = —oco. In the sequel we will use both the
deg- and the v-notation. In order to distinguish between polynomials
€ k[T] and algebraic functions € K we will use the deg-notation only
for polynomials.

Let d; = v(a;), for 0 < i < d— 1, with dy > - > d~d_1, where
Qo,...,0q-1 € L C K are the conjugates of . Then we have:

Lemma 2. Let d; = deg(p;) and dy = _2?2—11 d;. Then we have
viaj) =d; = —d; for0<i<d-—1.

Proof. Suppose z = v(a;) and —dr > x > —dg41 for some
k=0,1,...,d—2or —dg_1 > —z and k = d — 1. Then we have

d—1
0=v(1) = v(aios —p1) -+ (2 —par)) = (k+ )z — Y d; <0,
j=k+1

a contradiction. Similarly, we get a contradiction if x > —dy. Hence,
each JJ- is equal to some —d;. Therefore, we have to prove that JJ- * d;
if i # j. Obviously, dy = —dy, respectively dy_; = —dg_1, since
otherwise 0 = v(1) = v(ap - - ag—1) < 0, respectively

—dg-1=—deg(p1+---+pa-1) =v(w+---+aq-1)
> v(ag1) =dg_1 > —dg_1.
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Let j be the largest index such that Jj = cij_l =... = Jj_kH for
some k > 1. Then we obtain the following equations:

—dg—1 = —deg <zj::0j> = V(Z aj) = v(ea—1) =da-1,

J
—dg—1 — dg—2 = —deg < Z pjlpj2>
J1<Jj2
= 1/< Z ajlaj2> =v(ag_104-2)
J1<g2
=dg—1+da—2

_ddl_---—dj+1:_deg< Z pjl"'pde'l)’

J1<--<Jd-j-1
_ V< Y a ...ajdj1>
J1<-<ja—j-1
=v(oa-1--aj41)
= Jd—l +“‘+Jj+1-
This yields —d; = d; for all i > j. But we have

_ddl_..._dj:—deg< Z pj1"'pjdj>

J1<--<Jd—j
_l/< Z ajl'”ajdj>
J1<-<ja—j
> v(agoyray) = —dg—y — - —dji1 +d;
> —dg—1— - —djq1 —dj
and therefore ~j = JJ_l = ~j_k+1 = —d;. This implies

—dg-1 = —dj g1 = —deg ( Z DPjy - 'pjd—j+k‘1>

J1<<Jd—jtk—1
= V( E : Ay v ajdj+k1>
J1<-<Jd—j+k—1

=v(ag-1-" Qjpt1) = —dg—1 —++-— dj11 — kd;
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which is a contradiction to the assumption dy < d; < -+ < dg_1 unless
k=1. ]

The lemma above implies F'(X) is irreducible. Otherwise, F(X) =
P (X)Py(X) such that Pi(ag) #0 and {a; : 1 € N C{L,2,... ,d—1}}
is a complete set of conjugate umits such that v(a;) < 0 for each
t € N, which is a contradiction. Furthermore, we conclude that K is
unramified at infinity since all the infinite valuations of a are distinct
by the lemma above. Similarly we deduce that L is not ramified at
infinity, since for each automorphism o € Gal (L/k(T')) not the identity
we can find two indices j and k such that v(a; — ag) # v(o(oj — ax)).
Therefore, we have:

Lemma 3. The polynomial F(X) is irreducible and the fields K and
L are unramified over k(T) at infinity.

Let us denote by oco; the valuation that is induced by the imbedding
o; + K — K such that a — o;, and let |a|e, := v(o;a). Then
we consider the free Abelian group D, generated by oog, ... ,004_1-
Because of the previous lemma we know that all the valuations oo;
are distinct. The group D is called the group of polar divisors.
We also define the polar height H;?O)(alool + -+ ag-1004-1) =
— > (min{0, a;}). Similarly, we can define for every a € k the group of
local divisors D,, which is freely generated by the valuations above the
finite valuation induced by the prime (T'—a). Let w1, ... ,wq, be these
valuations; then HI(?) (@rw1 +---+ag,wy,) = —>_ (min{0, a;}) is called
the local height. For every a € K, we can define the principal divisor
(@) = > emy W(@)w of @ and similarly we can define the (principal)
polar and local divisors of a. Note that M is the set of all valuations
of K.

Proposition 3. Let ¢ € k[T, a]* C O} with e ¢ k. Then we have

Hg(e) > —do = »_d;.
i=1
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Proof. Let us write

e=ho+hia+ -+ hg_1a%L,

with hg, ... ,hq—1 € k[T]. Moreover, we define
mo = min{—deg (ho), —deg (hl) — do, caey —deg (hd—l) — (d — 1)d0},
my = min{—deg (hg), —deg (h1) — dy,... ,—deg(hq_1) — (d —1)d1 },
mg—1 = min{—deg (hg), —deg (h1) —dg_1,... ,—deg (hq_1)

—(d—1)dg_1}.

We see that the polar divisor of € has ooj-coefficient m; if the corre-
sponding minimum occurs only once. Note that the minimal index j
with m; = —deg (h;) — jd; is decreasing with .

Now, let us assume m; = —deg h; — jd; is the singular minimum with
! maximal. Then we have

—deg (h;) — jdi
—deg (hj,) — jidi+1

_deg (hjl) - jldl

<
< —deg (hj,) — jadit1

—deg (hjd—l—l) — Jd—i1-1dq—1 = —deg (hjd—l) — Ja—1dqg—1

with 7 = jo < j1 < -+ < Jg_i1-1 < jq—i and each j; minimal
with 1 < ¢ < d—1— 1. Moreover, j; ; is maximal such that
—deg (hj, ,) — ja—1da—1 = mg—1. Since jg—; < d — 1, we conclude
j <1 and by the inequalities above, we obtain

a1 d—1

—deg (h;) < — Z(jd—i — Jd—i—1)d; —deg (hj,_,) < — Z d;.
i=l i=d—1—(ja—1—7)

Therefore, m; = —deg (h;) — jdi < — Z?;dl—1—jd,l d;.

Furthermore, there are at least d — j;_; singular minima m; and at
least d— jq—;—1 such minima with ¢ > 0. Indeed, if m; = deg (h;,)+7:d;
and m;41 = deg (thl) ~+ Jit1d;+1 with j; and j;41 minimal and m;
not a singular minimum, then j; < j;41. Therefore, we have singular



THUE EQUATIONS OF SPLITTING TYPE 731

minima m;, other than m; with 1 < 4 < -+ < ig_2_j, ,. We
claim m;, < —d;,, with K = 1,...,d — 2 — j4—;. Each minima m;
is of the form —deg(h;) — jd;. If j # 0, we are done. Otherwise,
—deg (ho) < —deg (h;) — jd;i < —d; for some j with deg (h;) # —oo.
Note that the case h; = 0 for each j > 0 leads to ¢ = hg € k[T] and
this leads to ¢ € k*. Altogether we deduce m;, < —dj and

d—2—ja—: d—1 d—2—ja—1

d—1
HK(E) > —m; — Z m;, > Z d — Z m;, = de [}
k=1 k=1 k=1

k=d—1—ja—1

By an analog of Dirichlet’s unit theorem for function fields, we know
that there are at most d — 1 multiplicatively independent units that
generate the unit group of k[T, «]. This fundamental system of units
spans a lattice, i.e., consider the map log : k[T,a]* — ZI! with
log(g) = (|€]ooys - - - 5 |Elooy_y ), then the image of k[T, a]* is a lattice A C
Z4—1. Moreover, log(e) is the vector of components of the polar divisor
of € except the component of cog. It is obvious that a set of units is
multiplicatively independent if and only if the corresponding vectors in
the lattice are independent. Let us consider the set £ = {ey,... ,e4-1}
of d—1 independent units. Then the absolute value of the determinant
of the matrix whose rows are log(e1),...,log(e4—1) is usually called
the regulator of £. Note that the regulator is the same as the lattice
constant of the lattice spanned by the vectors log(ey), ... ,log(eq4—1).
Let us fix the following set of units £ = {a,a — p1,...,@ — pg_2}.
Then we have

Lemma 4. The set € is a system of multiplicatively independent
units and the corresponding regulator Rg is

(2d1 +da+--da—1)(3da+da+-- +dg—1) - ((d—1)dg—2+di—1)dag—1-

Proof. Note, if | # k, then

‘ | 4, ifk<l,
A — Prloo, =
Pilook =\ g if k> 1.

Since the sum of all valuations of an element is zero and a — p; has
nonzero valuations only at infinity we deduce |o — pileo, = ldi +

ZZ;;H dy. Therefore,
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—d —dy —ds o —dgy

di + Y5 dy, —dy —ds oo —day
—dy 2y + 0L dy —dy U

—ds —ds 3ds + Y 0hdy ... —dgs
—dg-2 —dg-2 —dg—2 cee —dg-

is the matrix which consists of the vectors log(a),log(a — p1),-..,
log(ov — pg—2). After a 180° rotation and Gaussian elimination, we
obtain the upper triangular matrix

dqg—1
0 (d—1)dg2+dg
0 0 s 2dy + 000
This yields the lemma. o

Lemma 5. Let ¥ = Zz;i dy = —dy. Then we have

Re < ((2 — @)2) o < (2:)?-L.

Proof. By Lemma 4, we have

Re = (2d1 +da++++dg—1)(3d2 +da + -+ +dg—1) -+
X ((d=1)dg—2 + dg—1)dg—1

:(2+d1)(2+2d2_dl)"'(2+(d_2)dd*2_d1_"'—dd,S)
X (X —dy - —dg_s)

(C+d) 4+ (S—dy— - —dg_s) d-1
<( oot

(d1 +3dy + 5ds + -+ + (2d — 5)da—s + (d — 1)dd_1>d_1
d—1 '
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The inequality is due to the arithmetic-geometric mean. We have to
maximize

(5) di+3dy+---+ (2d — 5)dd,2 + (d — ]-)ddfl
under the condition
(6) 0<di <dy<-<dy 1 <T—dy—dy——dg_o.

Since this describes a linear program, the maximum lies in a corner of
the polytop defined by (6). Let us consider the corner dy =ds = -+ =
dp =0and dgy1=---=dg 1 =2/(d—1—k) for some k =0,...,d—1.
For this corner (assume k < d — 1) function (5) turns into

d—1

b .
j=k+1
S(d-12-K)  B(d-2)
d—k—1 d—1-k
_E<d—l+k— %) <N(2(d - 1) — 2Vd - 2).
For k = d — 1 the quantity (5) is zero and yields no maximum. i

Let U be the group of units of k[T, ] and U the group of units
generated by &, then we know that I := [U : [7] = Rg/R, where R is
the regulator of U. Therefore we have to find a lower bound for R in
order to find an upper bound for I. Before we determine such an upper
bound we prove the following lemma.

Lemma 6. There is a symmetric convex region S with A\(S) >
»d=12d-1/(d — 1)! around 0 such that log(U) NS = {0} and X denotes
the d — 1-dimensional Lebesgue measure.

Proof. By Proposition 3 for any unit ¢ € U \ k we have Hg(g) > X.
Let log(g) = (e1,.-- ,eq-1), then

max { > max{0,¢;},— > min{0, ej}} > 3.
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We consider the set S = {z = (z¢,... ,r4_1) € R1: Y |z;] < B}
Then S consists of 2¢71 simplices of volume $4~!/(d — 1)! and fulfills
log(U) NS = {0}. u]

Proposition 4. We have

I<(d—1)4%1,

Proof. We apply Minkowski’s convex body theorem (see [1, Theorem
1I]) to the region S of Lemma 6. This yields R > (X/2)?1/(d — 1)!.
On the other hand we have by Lemma 5 the inequality Rg < (2X)¢71;
hence,

Re d—1
I="5<(d—1)4¢t
7 S ) O

4. Application of Mason’s fundamental lemma. Let (X,Y)
be a solution to (2). In the classical approach to Thue equations, the
terms X — ;Y and (ar — o) (X — a;Y") are denoted by 3; and vk,
respectively. Then Siegel’s identity can be written as

V,li + Vik + Yik, = 0.
We apply Mason’s fundamental lemma (Lemma 1) in order to find an

upper bound for Hr,(Ye,i/7,ik). Since L/k(T) is Galois and k is of
characteristic zero we have by equation (3)

8o, kry = [[(T — a)tee Do,
a€k

Let Op[1,q)/kr) be the discriminant of k[T, o] over k[T]. Since

Suiral/mir) = | (i — o)? € k[T,

1<j

we have deg (0x[7,a1/k[T]) = 2Zi<j max{d;,d;} = QZj;ljdj. More-
over, algebraic number theory shows that dx(r, o) x[r) and 0o, /x () differ
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only by a square factor, say R?. Let deg (R) = r. By Hurwitz’s formula
we obtain

291, — 2 = deg L(2gi(r) — 2) + Z
= —2degL—l—Z —1)ga.
By Mason’s fundamental lemma we get

HL(%> §f2degL+Z 1)ga + 4V + Voo
1,i,k

= fdegL+Z — 1)ga + #{p <O : p|6}

< —degL—i—Z (ea — 1) ga-i-zga‘f‘?“degl/

:degL<r—l+Zl>.

All the sums are taken over all a such that (T'—a)|do, k7). Moreover,
V denotes the set of all valuations w of L such that w(o; — a;) # 0 for
some ¢, j and V., denotes the set of all infinite valuations of L. This
enables us to compute a bound for Hg (8):

Lemma 7.

Hi (5)_(d—1<r—1+z> a1,

Proof. Let by > by > .-+ > bg_1 be the infinite valuations of
B =X —aY over K. Since (3 is a unit, we have Z?;S b; = 0. Moreover,
we have v(X —a;Y) < 0 unless deg X # degY +d;; hence, Hx (8) = bo.
Indeed there is at most one positive valuation of 3, which is by definition
bg. Furthermore, we have

Bz (c0) [ Ok — O
= </8k>_HL (Oll—ai)




736 V. ZIEGLER

Let H be a system of representatives of Sq/Gal (L/k(T)). Note that
the symmetric group Sy acts on L by permuting the conjugates of a.
We obtain

(7)
maxH; | —— | > — H H
6.5,k L(’Yl,i,k) ~ 1S4] pGZI‘I v 5 ;)EZI{ t 043—041

(g oe2)
Seme(22)

ocESy

Let us consider the first sum of (7):

s 2 wax (0 (o2

deg L
=~ (d—2)!Z(bi—bj)
1<)
deg L
=——[(d—1)b d—3)by +--- —d+1)bg_
deg L
= B I (2d—2)by g — - —2
d(d*l)[ (d )bd 1 bl]
deg L __degl
> dbg H
S k(B)-
The last inequality is true, since —(2d — 2)bg_1 — --- — 2b; with
0>2b > - >ba1 = —by = > ;.,b; takes its minimum for
by = =bg 1= —by/(d—1).

Now we investigate the second sum of (7). Let us remark that

0 ifl >kor¢>k,
max(O,ak C”): dp —d; ifk>i>l,
o] — O . .
dp —d; ifk>1>1.
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This yields

o€Sy
d—1i-1
deg L
p 2(d —3)1> > " j(di — dj)
i=2 j=1
d-1 d-1i-1
deg L ( . .
= S i(t —1)d; — 2 jd'>
T 1D\ 2 2274
d—1
deg L . . .
= —1)—2i(d—1i—-1))d;
d—1
deg L . .
S S — — 1)dg_;
- Dd=2) ;(d i)(d — 3i + 1)dg—
[(d+1)/3]
deg L deg L . .
=y ST hi—" - - 1
< ——da 1+d(d—1)(d—2)dd 2 ; (d—i)(d—3i+1)
deg L 4deg L
<
< da-1+ o di—2
Combining these estimates with (7), we get the desired result. o

Before we establish an upper bound for deg Y, let us note that we may
exclude the case X = 0. In this case equation (2) turns into Y¢ = ¢,
which yields a trivial solution. Therefore, we may assume deg X > 0.

Let us note v(X — a;Y) < 0 unless deg X = degY +d;. If 5 is not
a constant there exists an index j such that v(X — «;Y) > 0. Let us
fix this index j, and let by > --- > bg_; be the infinite valuations of (3.
Then we have by = -+ =b; = —deg X, by = —degY —d;, for k > j and

bo = jdeg X + (d — 1 — j)degY + > dp.
j<k<d—1
Hence,

d—1
Hg(B) =bo = (d—1)degY +jd;j+ > dp>(d—1)degY +> dy.
j<k<d—1 k=1
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Together with Lemma 7 we obtain

de Y<7‘—1+Zl—di1 d; +dd—1+4dd,2
: - a jzld_l d 27

Counting the number of ramifications yields:

Proposition 5. We have

d-1
. 1 dg—1  4dg—»
< E - ) -1+ )
degY < < <] dl)dj> 1 4 + 97

Jj=1

5. A lower bound for degY. First, we exclude the case Y € k.
Lemma 8. IfY €k, then (X,Y) is a trivial solution.

Proof. Let us write Y = ¢ € k and assume X # (p; for all
1< j<d-—1and X # 0. Then the righthand side of (2) has degree at

least Ef;ll d; = —dp > 0 which is a contradiction. Therefore, X = (p;
for some j or X = 0. This yields Y¢ = (¢ = ¢; hence, (X,Y) is a trivial
solution. O

As mentioned above there is some index j such that v(5;) = v(X —
a;Y) > 0. Let us fix this index j. Then we have, for k # j,

B
I/(ﬁk) = IJ(X — Yozk) = I/(Y(Oéj — Olk,) (1 + m
=v(oj —ag) —deg?.
Note that v(8;/(Y (o — ¢j))) > 0, hence v(1 + (8;)/(Y (ar — a;))) =
0. On the other hand, i is a unit and therefore
Bi = ()P (g, — p1) P/ T+ (g — pa—z)Ba-2/!

where By, By,...,Bg 2 € Z and I < 4971(d — 1). This yields
(8)

B B
V(ak)TO +v(ou _pl)Tl +- - +v(ag —pa—2)

By 2
I

=v(oj—ag)—degY
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for k # j. Solving system (8) with k # j for B; we obtain
Bk Ve — ukdng
9 Zk_ Ik TRYPMS T
) ; e
where
up = det(v(a), .., V(e — pr—1), L, v(0; — pr+1) - -, (@i — pa—2))ij,
v = det(v(ag), ... V(o — pr-1),v( — a;), v(0 — prg1),

R 4\ 7] _pd72))i7&j7
R = det(—v(ow), —v(as —p1)y ..., —v(0 — Pa—2))izj-

Lemma 9. We have
R k=j#d-1;
vp=¢ —R k=d-1;

0 otherwise;

with R = (—1)" Re.

Proof. Let k = j # d — 1. Then the matrices which determine
v and R are identical. Moreover, the matrix corresponding to R
can be transformed to the matrix corresponding to the regulator by
summing up all lines in the last line, multiplying the last line by —1
and exchanging d — 1 — k lines.

Now let us assume that j # k and k& < d — 1. The jth, respectively
kth, column of the matrix corresponding to vy are (—v(a;), —v(a; —
p1),-..,—v(aj — pg—1))’ and (—v(a; — a),...,—v(aj — ag—1))T,
where we omit the j + 1th entry. Since these two columns are equal we
deduce v, = 0.

In the case of k = d — 1 we sum up all columns of the corresponding
matrix to v in the kth column. We multiply this column by —1 and
obtain the matrix which corresponds to R. a

Lemma 10. We have

dqg—>—da— . .
s a fi<d-2,
Yd—1 _ dg_2+(d—1)dq_ o
R Ty (@) daatdsy FI=d—=2
= ifj=d—1,
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and
U, po.
dd—l((d*Z)dd73+ddfz+3d71)((d*1)dd72+dd71) ifj<d-=3,
U/ U
Ud-2 _ | (@D st da st A (@ Ddasvdy 41 =d4-3,
R da_s—da_ o
dd—l((dd*f)ddizidd—l) Zf‘] =d-2,
_dd171 Zf.?:d_la
where

Ug=(d—2)dg_3dg_o+d5_o +2dg_3dg_1 — ddg_odg_1 — d5_,

and
Uj=(da—2 — da—3)(dg_2 — dg_1)
+ ((d — 1)dd72 + ddfl)(ddfg, + (d — l)ddfl).

Moreover, u, = —R/dq—1 if j =d — 1.

Proof. We consider only the cases k = d — 1 and j < d — 2 since the
other cases run analogously. Let us write X9 = X =dy +---+dg_1,
¥, =1d; +djy1+---+dq—1 and E; = (i+1)di+di+1 + -+ +dg_q for
i=1,...d—1. We note that R = (—=1)4"%} ... ¥/, ,d4_1. In order to
prove the lemma we have to compute the determinant of

D A d; disr - dgs 1
dy - - dj_l dj dj+1 s dg—3 1
dj,1 dj,1 .. —Ej,1 d]' d]'+1 .. dg_3 1
divr djyr - djpn djpn =X o0 daes 1,
dg—3 dq—3 -+ dg—3 dg—3 dg—3 -+ —3¥g3 1
dig—2 dg—2 -+ dg_2 dg—2 dg—o --- dgo 1
dg—1 dg—1 -+ dg—1 dg—1 dg—1 -+ dg-1 1

which is (—1)"'ug ;. This is done by Gaussian elimination. Let us
assume j # 0. First, we subtract from every row (except the first row)
the first row and obtain the matrix
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- dy dj_l dj dj+1

S +d - 0 0 0 0
Y+dj1 dj1—di -, 0 0 e 0
T4djt1 djy1—di diy1—dj1 djipr—dj =T, 0
Y+dg-1 dg—1—d1 dg1—dj—1 dg1—dj dg-1—-djy1 -+ O

Next, we sum up all columns and write this sum instead of the first
column. Then the first column is of the form

(1—dg—o—dg1,0,--,0,(d —1)dg_2 +da_1,dg—2 + (d — 1)da_1)".

This yields ug_; = (—1)7%} --- ¥’ jdet M, where

dig1—d; %, 0 0

dj+2 —d;j  djy1—dj - 0 0

dg_3 — dj dg_3 — dj+1 —2&73 0

dg 2 —dj dg 2—djt1 dg 2 —dq 3 DI

dg—1 —dj dq_1 —djy1 dg—1—dg-3 dg 2+ (d—1)dg_1

We obtain M from the previous matrix if we place the first column
behind the last column and delete the first j rows and columns. Next,
we subtract from the last row the second to last row and then from the
second to last row the third to last row and so on. By transposing this
new matrix, we obtain

dj+1 —dj djyz —djp
!

Vi1 B+ dj
0 ~Zjy2
0 0
0 0

dg-2—dg 3
dg_2—dg 3
dg_2 —dq_3

Yg_3+tdg_2
4
Yg_o

dg1—dq 2
dg_1—dg 2
dg—1—dq_2
dg_1 —dg_2

(d —2)(dg—1 — dg—2)

We multiply the last row by —1 and add the last row to the second to
last. Then we add the second to last row to the third to last row and
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so on. This yields

i1 —dj J(djt1 — djy2) e J(da—z — da_1)
“Zin G+ —djye) o (G+1)(da—2 —da—1)
0 =% o (+2)(da2 —da1)
0 0 e (d=3)(da s —dy 1)
0 0 e (d=2)(da s —dg 1)

We multiply the second row by j and subtract j + 1 times the first.
Then we divide the first line by j. Therefore, the new matrix has the
same determinant but the first two rows are of the form

—(Ej41-4dj)/j djy1—djpa - daz —day
_2/

! 0 0

Now we eliminate the other rows and obtain

—(Zj41—dy)/i djy1—djp2 - dgz—dg o dgp—dg 1
-5 0 0 0
0 _E;'-H ... 0 0 ’
0 0 S 0

which yields the lemma in this case.

In the case j = 0, we have to compute the determinant of the matrix

dy -1 do s dg_3 1
do do —Xg e dg_3 1
dg—3 dg_3 dg_3 -+ —Xg_3 1
dg—2 dg—o dg—2 -+ dgo 1
dg—1 dg—1 dg—1 -+ dg—1 1

Subtracting the first column from all other columns except the last
column yields the matrix
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i =% dy—dy - dgs—dy 1
dy 0 =%, o dys—dy 1
dg—s 0 0 - =X, 1
dg—y 0 0o .- 0 1
dg_y 0 0o .- 0 1

whose determinant is X -+ - X/ _,(dg—1 — dg—2).

The last statement of the lemma can easily be deduced. Multiply the
j + 1th column by —d;—; and add all other columns to this column.
This yields the matrix corresponding to R. u]

As indicated by Heuberger et al. (see [11]) we want to find a linear
combination of the equations (9) such that we get a lower bound for
degY. Due to Lemmas 9 and 10 we have, for j < d — 3,

Bi—z — Bi1 _ d(dg—2 — dg_3)degY
I AP I ’

forj=d—-3

1 (d—1)Ba_y — Ba_s
I

d((d — 2)da—3da—2 + dj_,
dd,lE;_aEg_2
—(d—3)da 3di 1 + (d —2)dg 2dq_1)deg
dd—12517325172

and, for j =d — 2,
1-— Bd,1 — (d — 1)Bd,2 ddd,Qdng

I E:i_gdd—l ’
For j =d — 1, we find
B Ba_ dg—1 +degY
(10) —0 = d—1 = — d-1 + eg .
I 1 dg—1

We note that the righthand sides of the equations above are > 0. Since
the numerator on the left side is an integer, the righthand sides are at
least 1/1. Hence, we get lower bounds for degY:
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Proposition 6. Let j <d—1 and cdg_o < dg_1 for some constant
c. Then we have

cdq—1

5] ifj <d-3,
C2dd_1
degY > fij=d—3
Y 2\ Wd_1tec@d_2y 77 ’
cdq—1 e
i ifj=d—2.

6. Proof of Theorem 1. We have to consider two cases: j < d—1
and j = d — 1. The first case is solved by comparing the bounds for
degY given by Propositions 5 and 6. Let us assume cdy—_o < dg—1 for
some constant c. Then we get by Proposition 5,

deg < (d—1)dg_q + ((d=2)(d-1)+ 8/27)dd—1,

2c
and, on the other hand, we have
deg > ——-——,
dI(2d - 3)
by Proposition 6. This yields
dl(2§_ 5 <d 14 (d—2)(d ;Cl) + 8/27‘

But this inequality holds only for ¢ < ¢4 with

9d(d — 1)(2d — 3)I
18
| V/3dI(2(2d ~ 3)(62 +27(d — 3)d) + 27d(2 — 5d + 3)°T)
18

Cd —

< 1.031d(d — 1)(2d — 3)I,

where I < (d — 1)!4¢~! and d > 3. Therefore, Theorem 1 is proved for
j<d—1.
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Now let us assume j = d — 1. By (10) we know that By = --- =
Bd,Q = —B, i.e.,

B = fOfB/I(Ol - pl)fB/I v (o= pdfz)fB/I = (« —pd71)7B/I
with & € k, which yields
B B
v(B) = TV(adfl —Pi-1) = _T(d —1)dg—1 <0,
hence B > 0.

Let us consider the case d = 3. By Lemma 7 and » + >, 1 =
> j>0Jdj, we have

Hic(B) = Hic (0~ p2)P/7) = 2BId2 < 2(Zjdj - 1> < 6ds,
3>0

i.e., B/I < 3. On the other hand. we know I =1 for d = 3 (see [25]).

Hence, we have B = 1,2. The case B = 1 yields a trivial solution and

in the case B = 2 we obtain 8 = £(a? — 2aps + p3) which is not a

solution.

Therefore, we may assume d > 4. We compute

)3/1 B/1 B pB/I—1+B(B*I)a2pB/I—2

(ak — pa—1 =Pg-1— 70‘19 d—1 oz YPa-1 te,

where the remaining terms have lower valuations provided k& < d — 1.
Assume = (o — pg_1)B/! yields a solution. Then by Siegel’s identity
we have

0= (ap —a1)(a2 — pa—1)?" + (1 — a2)(ag — pa—1)"/*
+ (02 — ag) (a1 — pa-1)?/!

B _ B(B-1 _
Z(ao—a1)(p§_/{—7a2p§_/{ 1+%agpd3_/{ 2+...)

B _ B(B—-1 _

o an) (o o+ B a7 )
B - B(B-1 _

+(aa —an) (o = Fa{ 1+ B a2 )

B(B — I)pZ=?
- % (060063 - Oéloé% + alag — azag + aga% — aoa%)

+...’
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where the remaining terms have lower valuations. Therefore, some
cancelation occurs in the main term. Since v(a2) < v(ai) < v(ap), we
deduce that B(B —I) = 0, i.e., B =0 or B = I. In both cases we
obtain only trivial solutions. Therefore, Theorem 1 is proved.

Remark 1. Note that in the case of d = 3 we have I = 1. Therefore,
we find ¢ = 18- 1.031 = 18.558. This improves the bound c3 = 34
found by Ziegler [25, Theorem 1].
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