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THE THREE BODY PROBLEM WITH A RIGID BODY:
EULERIAN EQUILIBRIA AND STABILITY

J.A. VERA

ABSTRACT. We consider the noncanonical Hamiltonian
dynamics of a rigid body in the three body problem. By
means of geometric-mechanics methods we will study the ap-
proximate dynamics that arise when we develop the potential
in a series of Legendre and truncate the series to the second
harmonics. Working in the reduced problem, we will study
the existence of equilibria that will dominate Euler in analogy
with classic results on the topic. In this way, we generalize
the classical results on equilibria of the three-body problem
and many of those obtained by other authors using more clas-
sic techniques for the case of rigid bodies. The instability of
Eulerian equilibria is proven in this approximate dynamics if
the rigid body is close to the sphere.

1. Introduction. In the study of configurations of relative equilibria
by differential geometry methods or by more classical ones we will
mention here the papers of Wang et al. [8] in regards to the problem of
arigid body in a central Newtonian field and Maciejewski [3] in regards
to the problem of two rigid bodies in mutual Newtonian attraction.

For the problem of three rigid bodies we would like to mention
that Vidyakin [7] and Dubochine [1] proved the existence of Euler
and Lagrange configurations of equilibria when the bodies possess
symmetries; Zhuravlev and Petrutskii [10] made a review of the results
up to 1990. These works use canonical variables for the deduction of
their results.

In Vera [4] and a recent paper of Vera and Vigueras [6] we study
the noncanonical Hamiltonian dynamics of n + 1 bodies in Newtonian
attraction, where n of them are rigid bodies with spherical distribution
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of mass or material points and the other body is a triaxial rigid body.
Using the symmetries of the system, we carried out two reductions,
giving in each step the Poisson structure of the reduced space. Then,
we obtained the equations of motion, the Casimir function of the system
and the equations that determine the equilibria and global conditions
for the existence of the same ones.

This paper is a concrete application of the general methods of [6]
to the study of certain types of equilibria of a triaxial rigid body in
Newtonian attraction with two spherical bodies (or mass points). We
describe the approximate dynamics that arise in a natural way when we
take the Legendre development of the potential function and truncate
this to the second harmonics. This approximate dynamics is a good
description of the full dynamics of the problem supposing that the
involved bodies are at much bigger mutual distances than the individual
dimensions of the same ones.

We will see global conditions on the existence of relative equilibria
and in analogy with classic results on the topic, see [9] for details, we
will study the existence of relative equilibria that we will denominate
of Euler for the case in which S, Sy are spherical or punctual bodies
and S is a triaxial rigid body. We will obtain necessary and sufficient
conditions for their existence, and we will give explicit expressions of
these relative equilibria, useful for the later study of the stability of the
same ones. The instability of Eulerian relative equilibria is proven in
approximate dynamics if the rigid body is close to the sphere.

This analysis was done in vectorial form, giving to this problem a
very compact treatment which avoids the use of canonical variables
(Eulerian or Andoyer-Deprit variables) and the tedious expressions
associated with them. This is a typical characteristic of the classic
literature [1, 7] on these systems that the paper overcomes with this
vectorial approach. Contrary to the canonical variables, this analysis
is free of singularities.

We should notice that the system studied has potential interest
both in astrodynamics (dealing with spacecrafts) as well as in the
understanding of the evolution of planetary systems recently found
(and more to appear), where some of the planets may be modeled like
a triaxial rigid body rather than a point mass. In fact, the equilibria
reported might well be compared with the ones taken for the ‘parking
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areas’ of the space missions (GENESIS, SOHO, DARWIN, etc.) around
the Eulerian points of the Sun—Earth and the Earth—Moon systems, see
[2] for details.

To finish this introduction, we describe the structure of the article.
The paper is organized in six sections, one appendix and the bibliog-
raphy. In these sections we study the equations of motion, Casimir
function and integrals of the system, the relative equilibria and the ex-
istence of Eulerian equilibria; in particular, we study the bifurcations
of Eulerian equilibria in this approximate dynamics.

Approximate Poisson dynamics. Following the line of Vera and
Vigueras [6] let Sy be a rigid body of mass mg and S;, S two spherical
rigid bodies of masses m; and ms. We use the following notation. For
u, v € R3 u-v is the dot product, |u| is the Euclidean norm of the
vector u and u X v is the cross product. Irs is the identity matrix and
0 is the zero matrix of order three. We counsider I = diag (A4, B, (),
A # B # C, the diagonal tensor of inertia of the rigid body with A, B
and C the principal inertia moments of Sy.

The vector z = (IL, A,p), i, Pu) € R'% is a generic element of the
twice reduced problem obtained using the symmetries of the system.
We consider 2 the angular velocity of Sy, IT = IS2 the total rotational
angular momentum vector of the rigid body in the body frame J, which
is attached to its rigid part and whose axes have the direction of the
principal axes of inertia of So. The elements A, u, py and p, are
respectively the barycentric coordinates (or Jacobi coordinates) and
the linear momenta expressed in the body frame J.

The twice reduced Hamiltonian of the system, obtained by the action
of the group SE(3), has the following expression

LN 271 S S—
1 H(z) = + NRES 11 | Y
(1) (2) =t 5y T3

My = mq 4+ ma, My = my + mg + myg,
mimso moMQ
M;
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The potential function V is given by the formula

(2) V(Am)

_ Gmyimao Gm1dm(Q) Gmadm(Q)
B < Al +/30 |Q + p — (ma/ M)A /50 Q+p+ (ml/M2))‘|>

with G the gravitational constant.

Let M = R'5, and we consider the Poisson manifold (M, { , },H),
with Poisson brackets { , } defined by means of the Poisson tensor

I XA pyx £ P
A 0 Igs O 0
(3) B(z)=[py -Igs © 0 0
i 0 o 0 Ips
b, 0 0 —Igs O

In B(z), V is considered to be the image of the vector v € R? by the
standard isomorphism between the Lie algebras R3 and so(3), i.e.,

0 —Us (%)
i/'\ = V3 0 —V1
—V2 U1 0

The equations of motion are

(4) ¥ (2 H()) = BV H

with V,V the gradient of V with respect to an arbitrary vector u.

Developing {z,H(z)}, we obtain the following group of vectorial
equations of the motion

dIl

E:HXQ‘FAXVAV‘F#XV“,V,

d\ Py dp),

A_Pr i axn, PA_ Q-
(5) Qg A T TRAXEEVRY,

dp P dpp
—_— = — Q _— = Q - V .
dt gy THX g TP pY
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Important elements of B(z) are the associate Casimir functions. We
consider the total angular momentum L given by

(6) L=II+Axpy+uxppy.

Then the following result is verified, see [6] for details.

If ¢ is a real smooth not constant function, then o(|L|?/2) is a
Casimir function of the Poisson tensor B(z). Moreover, Ker B(z) =
(Vo). Also, we have dL/dt = 0, that is to say, the total angular
momentum vector remains constant.

It is outstanding that the integrals of the potential V, except for
some geometries of the rigid body S, show important difficulties for
the calculation. It arises in a natural way to consider the multipolar
development of these potentials, supposing that the involved bodies
are at much more mutual distances than the individual dimensions
of the same ones. Under additional hypotheses we will be able to
develop the potential in quickly convergent series. Considering the
series truncated until the second harmonics, then we will be able to
study the approximated Poisson dynamics.

For a triaxial rigid body at great distance the following formula is
verified with great accuracy

(7) V=V1+V,
where
(Gmlmz Gm1m0 + Gm2m0 >
R lp — (ma/M2)A| [+ (m1/Ma)A|
Vs — _1( Gmi«a n Gmao >
T 2\[p— (me/M)AP T [+ (ma/Ma)AP
§< Gm 51 Gmy B >
2\ |p — (m2/M2)A[P  |p + (m1/M2)AP?
and
a=A+B+C,
Bi( A, pu)=p- Iu——A Ip +( > AT,
M,

Ba( A ) = - Iu+—)\ Ip +( > A-IX
M,
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with A, B and C the principal moments of inertia of Sy in the
appropriate orientation of the body frame J.

We call differential equations of motion given by the following expres-
sion

dz 0 B 0
¥ — (5, 1)) = B V. H

approzrimate dynamics of order zero since

2 2
0 ‘p)\‘ |pllz| 1 —1
=—2+ =+ TIIT 'II + A .
H(z) 20, 202 5 Vi, p)

Similarly, the approzimate dynamics of order oneis given by (M, {, },
HY) with H! = H° + Vs.
On the other hand, it is easy to verify that

V. ([I1]*)B(2)V,H’ = 0
and similarly when the rigid body is of revolution
V. (m3)B(2)V,H’ =0
where 73 is the third component of the rotational angular momentum

of the rigid body. In what continues H = H'.

2.1 Relative equilibria. The relative equilibria are the equilibria
of the twice reduced problem whose Hamiltonian function is obtained
in Vera and Vigueras [6] for the case n = 2. If we denote by z. =
(I, )\E,pEX ne, pz) a generic relative equilibrium of an approximate
dynamics of order one, then this verifies the equations

II. X 2+ A° X (VA V)e +p° x (VpV)e =0,

IeA
—+)\6XQe—0, EXQC— V Ve,

P
= 4+ ux Q. =0, ¢ X Qe =(VuVe.
5 T PL (VuV)

Also, by virtue of the relationships obtained in Vera and Vigueras
[6], we have the following result.
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If z. = (1, A%, Py, u°, p;,) is a relative equilibrium of an approzi-
mate dynamics of order one the following relationships are verified

Q2 AP — (A 9,)% = gi(xe (V)
(9) '

1
|| [p]” — (1 - Qe)* = g—z(ue (VuV)e)-

The last two identities will be used to obtain necessary conditions for
the existence of relative equilibria in this approximate dynamics.

We will study certain relative equilibria in the approximate dynamics
supposing that the vectors €., A¢, u° satisfy special geometric prop-
erties.

We say that z. is an Fulerian equilibrium in an approximate dynamics
of order one when A°, u® are proportional and €2, is perpendicular to
the straight line that these generate.

From the equations of motion, after some calculations with V), the
following property is deduced.

In an Eulerian equilibrium for any approximate dynamics, moments
are not exercised on the rigid body. The vector A¢is an eigenvector of
the tensor of inertia 1.

Next we obtain necessary and sufficient conditions for the existence
of Eulerian relative equilibria.

3. Eulerian relative equilibria. According to the relative position
of the rigid body Sy with respect to S; and Ss there are three possible
equilibrium configurations: a) SpS2S51, b) 525051 and ¢) 525150, see
Figure 1.

3.1 Necessary condition of existence. If z, = (I, A°, Py, K5, P)
is a relative equilibrium of Euler type, then for the configuration Sy.5251
we have

mi
e —AE
‘u 2

ma
— Ae e _ —Ae
|A| + ‘u W,
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FIGURE 1. Eulerian configurations a), b) and c).

In a similar way, for the configuration S55¢S; we have

ma

A
M,

ma
¢ = e _ T\
A% ‘u W

+‘ue+

Finally, for the configuration $251Sy, we have

mi
— e . el
W, L + |29

‘ue_ﬂxz

The previous equations are deduced from the definition of the Jacobi
coordinates, see [6] for details.

Next we study necessary conditions for the existence of relative
equilibria of Euler type for the previous configurations. If z. is a
relative equilibrium of Euler type in an approximate dynamics of order
one, using (9), we have

91| Qe [X)? = AC - (V) V),
92|Q)? [p€]? = p€ - (VV)e-

On the other hand,

mi m2
e_ L ae — pA¢ e 2= (1 ¢
m L N T (1+p)As,
“e — ((1 + p)ml + me))\e
M,
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where p € (0,+00) in case a), p € (—1,0) in case b) and p € (—o0, —1)
in case c).

After some calculations it is possible to obtain the following expres-
sions

(VaV)e = fi(p)A®, (VuV)e = fa(p)A°

where

Gmimsy Gm1m2< mo ( 1+p p )
10 = _ 7
A0 =" Tan \ BT+ aP P

+£(ﬂ_L>>
IXeP\[L+pl [pl?) )

) )= e (TR )

PRI R e
n GB (m1(1+p) n mzp>
AP [1+p5 o

Remark 1. The parameter 31 takes the following values

3(A + B - 20) 3(A+C — 2B)

Blzfa ﬂlzfa
3(B+C —2A
51:%

according to the orientation of the body frame J.

Now, from the identities

A% (VAV)e = X[ fi(p),

pe - (v, = (2] ey )

and using (9), we deduce the following equations

|Q |2 _ (ml +m2)f1(p)
mimso

(mo +m1 4+ m2)f2(p)

mo (14 p)m1 + pma)”

)

|Qe|2 =
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Then for a relative equilibrium of Euler type p must be a real root of
the following equation

mo(m1 + me) (1 + p)ma + pms) f2(p)

12
(12) myma(mo + mi + ma)

= f1(p).

We summarize all these results in the following property.

If z. = (I, A°, pe)‘, ne, pz) is an Fulerian relative equilibrium in the
configurations a), b) or c) the equation (12) has, at least, a real root.
The functions f1(p) and f2(p) are given by (10) and (11). The modulus
of the angular velocity of the rigid body s

G(mi+m
|Qe|2: ( ‘;‘ |3 Z)hl(P)

with

mo 1+p 14
hi(p) =1+ -~
1(e) m1+m2<|1+p|3 |p|3>

N B < 1+p _L>
(m1+ma) AP\ [L+p5 o)

3.2 Sufficient condition of existence. The following result
indicates how to find solutions of equation (8).

Fiz |A¢| and let p be a solution of equation (12). Then z, =
(TLe, A%, P, u%, Py.) given by

A =(X%,0,0), pe = (15,0,0),
(13) pe)‘ = (0, +£g1we A%, 0), pit = (0, £gowep’,0),
Q. = (0,0, £w,), IL, = (0,0, +Cw,)
or
A =(1%,0,0), pe = (15,0,0),
(14) Py = (0,0, Fg1weA®), Py = (0,0, Fgowep©),
Q. = (0, £w.,0), IL. = (0,+Cuw.,0)
where

((]' +p)m1 +pm2) 2 G(ml +m2)
e _ A€ — h
12 M, ’ We |Ae‘3 1(p)




THE THREE BODY PROBLEM WITH A RIGID BODY 705

is a solution of relative equilibrium of Fuler type in an approximate
dynamic of order one in configurations a), b) or c). The total angular
momentum of the system is given by

L =(0,0,+Cw, £ g1weA® £ gawe )
or

L= (07 :I:C"Je + glwe)\e + g2we/JJ57 0)

Let us see the existence and number of solutions for the approximate
dynamics of order zero and one respectively. For superior order it is
possible to use a similar technique.

4. Eulerian relative equilibria in an approximate dynamics
of order zero and one. The following property gathers the results
about relative equilibria of Euler type in an approximate dynamics of
order zero in any of the cases previously mentioned a), b) or c¢). These
results generalize the classical ones of [9].

If p is the unique positive root of the equation
po(p) = (my1 + my)p® + (3my + 2my)p*

+ (3my + ma)p® — (3mo + ma)p
— (83mo + 2ma)p — (Mo +m2) =0

2

with G )
my +m
Q.2 = S ho(p),
el
mo 1 1
h =1+ - —
o) m1+m2<(1+P)2 P2>

then z. = (He,Ae,pe)‘,pe,pZ), given by (13) or (14) is a relative
equilibrium of Euler type in the configuration SgS2S1.

If p € (—1,0) is the unique root of the equation
po(p) = (my1 + my)p® + (3my + 2my)p*
+ (3my + m2)p® + (3mg + 2my + ma)p
+ (83mg + 2ma)p + (mg + m2) =0

2



706 J.A. VERA

with G )
mi +m
|Qe‘2 — %ho(p)7
el
mo 1 1
ole) my + my <P2 (1+P)2>

then z, = (He,)\e,pe)‘,ue,pZ), given by (13) or (14) is a relative
equilibrium of Euler type in the configuration S35¢S1.

If p € (=00, —1) is the unique root of the equation
po(p) = (m1 + m2)p5 + (83my + 2m2)p4
+ (2mo + 3my + ma)p® + (3mo + ma)p?
+ (3mo + 2ma)p + (mo + m2) =0

with G )
mi +m
Q| = %ho(ﬁ’)a
| Ae|
mo 1 1
ho(p) =1+ —0 (= 4 =
olp) my + my <P2 (1+P)2>

then z, = (I, )\e,pe)‘,ue, p;), given by (13) or (14) is a relative
equilibrium of Euler type in the configuration S351S).

If mg — 0, then |Qc|?> = (G(m1 +m2))/|A|*> and the equations
that determine the Eulerian equilibria are the same as the ones of the
restricted three body problem, see [9].

4.1 Bifurcation of Eulerian relative equilibria in an approx-
imate dynamics of order one. For the approximate dynamics of
order one, after carrying out the appropriate calculations, equation (1)
corresponding to the configuration SyS52S57 is reduced to the study of
the positive real roots of the polynomial

p1(p) = moa®p®(p + 1)°po(p) — Brao(p)

where a = |A.| and 1 = 3(A+ B — 2C)/2, 3(A+ C — 2B)/2 or
3(B+C—24)/2.

The polynomial gy comes determined by the following expression

qo(p) = (m1 + ma + 5mg)p* + (4mg + 10mg) p*
+ (6ma + 10mg)p* + (4ma + 5mg)p + (mo + ma).
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The polynomial p; has degree nine and generalizes the classic quintic
equation which determines the Eulerian equilibrium, see [1, 7] for
details.

To study the positive real roots of p;, we will analyze the rational
function Ry
Po(p)
q0(p)

Bi1 = Ri(p) =

since pg is the polynomial of degree five that determines the relative
equilibria in the approximate dynamics of order zero. The rational
function Ry (p), for any value of mg, my, mso, always presents a minimum
& located between 0 and pg, since this last value is the only one
positive zero of the polynomial py(p). By virtue of these statements
the following result is obtained.

In the approzimate dynamics of order one, if 81 < 0, we have:
e 01 < Ry(&1); then relative equilibria of Euler type don’t exist.

e 81 = Ry(&1); then there exists a unique relative equilibrium of Euler
type.

e Ri(&) < B1 < 0; then two l-parametric families of relative
equilibria of Euler type exist.

o If B1 > 0, then there exists a unique 1-parametric family of relative
equilibria of Euler type.

For the configurations 525051 and S251.5¢ it is possible to obtain
similar results.

5. Stability of Eulerian relative equilibria. The tangent flow of
equation (5) in the equilibrium z. comes given by

déz

% = u(Zg)(SZ

with 6z = z — z, and #(z.) the Jacobian matrix of (5) in z..

The characteristic polynomial of $/(z.) has the following expression

(15) p(T) = (T? + ) (T* + mT? + n)W(T)
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since
h(T) =T® + pT® + qT* + T2 + s

with ® = (Biwe +1)/A, where the coefficients that intervene in the
previous polynomial are functions of the parameters of the problem
and p, since p is the root of equation (12).

5.1 Order zero approximate dynamics. The characteristic
polynomial (15) of 4(z.) simplifies to

(16) p=T3(T? + ®%)(T? + W)X (T? + p)(T* + qT* +r)

with coefficients expressed in Appendix A.

Ifp>0,¢g>0,r>0,q>—4r > 0, then z, is spectrally stable. These
conditions are not verified since r < 0.

If z. is an equilibrium in the configuration SoS2S1 of the zero order
approrimate dynamics, then it is unstable.

5.2 Order one approximate dynamics. We will analyze the case
where the rigid body is close to a sphere. In this case 8; = 0 then
applying the implicit function theorem z. is unstable.

If 31 is not close to zero, the coefficients of polynomial (15) have very
complicated expressions. Numeric calculations prove that there exist,
for certain values of the parameter (i, linear stable Eulerian relative
equilibria, see Vera [4] for details.

These results are equally valid for the configurations S2S5¢S51 and
525150.

6. Conclusions and future works. The approximate dynamics of
a rigid body in Newtonian interaction with two spherical or punctual
rigid bodies is considered. For orders zero and one approximate
dynamics, a complete study of Eulerian relative equilibria is made.
The results obtained generalize those of [1, 7, 9]. Moreover, other
not previously considered results have been studied. The bifurcations
of the Eulerian relative equilibria are completely determined for an
approximate dynamic of order one. The instability of these relative
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equilibria is made in zero order approximate dynamics and order one
approximate dynamics if the rigid body Sy is close to a sphere. Diverse
results, which had been obtained by means of classic methods in
previous works, have been obtained and generalized in a different way.
The methods employed in this work are susceptible to being used in
similar problems. Numerous problems are open, and among them it is
necessary to consider the study of the “inclined” relative equilibria.

Acknowledgments. The author is grateful to the referee for his
useful suggestions and comments which improved the paper.

APPENDIX

A. Coefficients of the characteristic polynomial in Eulerian

relative equilibria. The coefficients of the characteristic polynomial
(16) are

L2 o Glme +ma) p* + (2ma +2my) p°
¢ A2 (1 + p)?p?

(ma 4+ ma) p* — 2mg p — my)

A3(1+p)2p? ’

G((ma + 4mg + m1)p® + (3ma + 6mg) p?

_l_

" (L )P X2
n (4mo + 3ma)p + mg + m2)
(1+ p)3p3A2 ’
‘= G((=2mymap*

(L4 p)2p3A2)
(—2mgomy +m? +m2 — 2mymy — 2mema)p
((L+p)%p%A2)
(3m3 + mima — 6momy ) p?
(L+p)2p*A2)
(—mima + 3m3 + 2mema — 4memy)p
(1 +p)2p*A2)
(m3 — momy + mema — mims))

" ((L+ p)pA2) ’

3
+
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G*(a1p* + az2p* + azp® + asp + as)
(L+p)®p®A2)

r =

A.1 Coefficients a;, t =1,...,5.

ay = —42mim; — 48mimg — 147TmSm?
— 207Tm5m3 — 782m5mimg — 673mymymy
— 869mimimg — 1325mim2m?2 — 378mymymy

— 513mimime — 1270m3m3m3 — 702m3mim3

— 165m3mimo — 610mamims — 648mam3m;

— 119mamim? — 297mamimy + 2m$m3 — 64m3m}

— 336mSmymg — 129mSmg — 81mimy — 14mim?

— 150mam] — 24momSmg — 54mSms3,

as = fﬁomgml — 54m;m0 — 243mgm%

— 399m5m3 — 1345m5m3mg — 999mimym3

— 1846m5ym3mg — 2223mamim? — 648mamym?
— 1364m3mimg — 2506m3m3m? — 1242m3mim}
— 536m3m5mg — 1530m3mim?2 — 1188mam3my
— ATT mam3m3 — 56Tmamim3 — 56mSm3
— 474mSmimg — 173mSm? — 329m3m]
— 135m5m3 — 138m3mJ — 24m3m$

— 90mamSmg — 108mims3,

az = —42mim; — 36mimg — 183mSm]

— 349mim? — 1097m5mimg — 630mimym]

— 1776m5m3img — 166 mamimg — 405mamymy

— 1614m3mimg — 2256mamim3 — 810m3m3m3
— 827Tm3mimgy — 1683m3amim?2 — 810mam3mJ
— 228m2m?m0 — 666m2m?m(2) — 405m2m%mg

— 81mimj — 111mSm3 — 93mSm3 — 30mImg
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— 342m2m1m0 — 81m2m0 358m2m1

— 189m3m? — 31m2mS — 6mym7,

ag = —12mim; — 12mimg — 56mSm?3 — 24mSm?
— 130m5m3 — 387Tmimimy — 162mimym3

— 687mymimg — 432mamimi — 140mim?

— 588mamimd — 52mamS$ — 38Tmamimyg
— 108m2m?m0 — 162m2m‘;’m0 12m1m0
— 114mSmymg — 24mS§m?2 — 179mim]

— 693m3mimg — 432m2mims — 6mym?,

as = —(mg + ma)(18mem$ + 12mm$
+ 81msmimy + 168mamem? + 42msm?
+ 2Tm3m} + 156mim} + 31lmimem]

+ 5dmomim} + 12mamem; + 5mam$ + TmSmy
+ 144m3mam3 + 36m3m35 + 18mam3 + Imim}

+ 128m3mom3 + 94m3mem, + 126mamam3).
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