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BLOWING-UP PROPERTIES OF THE
POSITIVE PRINCIPAL EIGENVALUE FOR
INDEFINITE ROBIN-TYPE BOUNDARY CONDITIONS

KENICHIRO UMEZU

ABSTRACT. In this paper, we consider the positive princi-
pal eigenvalue for some linear elliptic eigenvalue problem with
Robin-type boundary conditions having indefinite coefficients,
where its asymptotic behavior for indefinite varying weights
is investigated. The aim of this paper is to study necessary
and sufficient conditions for the positive principal eigenvalue
to blow up to infinity. The analysis is based on variational
characterization of the positive principal eigenvalue.

1. Introduction and results Let  be a bounded domain of RY,
N > 1, with smooth boundary 9€2. This paper is devoted to the study
of the following Robin-type eigenvalue problem with indefinite weights.

—Ap = Ag(z)p in Q,

Op
n Ah(z)e  on ON.

(1.1)

Here, A = Z;\le 02 /awf is the usual Laplacian in RY, ) is a real
eigenvalue parameter, g € L>(Q), h € W'=(/P).(9Q) for any p > 1,
and n is the unit outer normal to 0. By LP(Q), 1 < p < oo,
we denote the usual Lebesgue space with norm || - ||,, by W™P(),
m = 1,2,3,...,p > 1, the usual Sobolev space with norm || - || p,
and by W'=(/P):2(9Q), p > 1, the set of traces on dQ of functions in
WP (), equipped with norm || - [l1_(1/p),p,00- It is well known ([1,
Theorem 7.53]) that the trace operator T' defined by Tu = u|pq is an
isomorphism and a homeomorphism of W?(Q) onto W'~ (1/P):P(5Q)
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for each p > 1. It should be remarked that functions g and A may both
change sign, and that, by Sobolev’s imbedding theorem, the hypothesis
of h implies that h € C?(0Q) for any 0 < 6 < 1.

Throughout this paper, we assume either that

(1.2) g > 0 on a set of positive measure,
or that
(1.3) h(zo) > 0 for some x( € 0NQ.

By an eigenfunction ¢ for an eigenvalue A of (1.1), we mean that
¢ € W2P(Q) for any p > N. A principal eigenvalue of (1.1) means
an eigenvalue with an eigenfunction which does not change sign in
Q. By the strong maximum principle ([9, Theorem 8.19]) and Hopf’s
boundary point lemma ([9, Lemma 3.4]), the nonnegative principal
eigenfunction is strictly positive everywhere in Q.

It is clear that A = 0 is a principal eigenvalue of (1.1). In addition,
we can prove that there exists a positive principal eigenvalue of (1.1) if
and only if

(1.4) /gdw—i—/ hda <0,
Q o0

and moreover that it is unique, denoted by A1 (g, k), and is characterized
by the variational formula

Jo Vo] dz
Jo gv?dz + [5, hv? da

/gvzda:—i-/ hv2da>0}.
Q a0

Here, da denotes the surface element of 9). Indeed, if (1.4) is satisfied,
then the infimum (1.5) is positive and is attained by a nonnegative
function p; € W12(Q), and is a weak solution of (1.1) for A = A\;(g, h):

/V<p1dem—)\1(g,h)</ ggolwdm+/ hcplwda> =0
Q Q o0
for all w € C*(Q).

(1.5) Ai(g,h) = inf{ tv € WHA(Q),
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Moreover, by elliptic regularity, we have that ¢; € W2P(2) for any
p > N, meaning that ¢; is a principal eigenfunction of (1.1). These
existence, uniqueness and characterization results for positive principal
eigenvalues of (1.1) have been obtained in [11] under the stronger
assumption that g € C?(Q) and h € C1T?(9Q) for some 0 < 6 < 1.
However, the results remain true under our assumptions of g and h,
which will be verified in Section 2. It should be mentioned that the
case that h = 0 is due to Brown and Lin [4, Theorem 3.13] (also see
Afrouzi and Brown [2]) and the case of nonnegative coefficients was
considered by Amann [3, Theorem 2.2].

In this paper, we study necessary and sufficient conditions on a
sequence of weight functions g; and h; to give the blowing-up behavior
of AL (gJ7 hj)

j—roo

In the Dirichlet condition case ¢|sq = 0, it is well known (see Brown
and Lin [4]) that there exists a unique positive principal eigenvalue,
provided that condition (1.2) is satisfied. Under the condition that

(1.7) sup [|gj/[c0 < 00,
jz1

Cantrell and Cosner [5, Theorem 3.1] proved that the positive principal
eigenvalue for g; goes to infinity as j — oo if and only if

(1.8) limsup/ g;¥dx <0
Q

j—oo

for all ¢ € L'(Q) satisfying that ¢y > 0 almost everywhere in (.
Meanwhile, in [12], the Neumann case h = 0 was considered under
(1.7), in which condition (1.8) was also verified to be necessary but no
longer sufficient in order to have that A;(g;,0) — oco. The first main
purpose of this paper is to consider blowing-up behavior (1.6) in the
case h Z 0.

By LP(0R2), 1 < p < oo, we denote the set of functions u defined
on 092 whose usual norm ||u||p s is finite. Our first main result is on
necessary conditions for (1.6). Theorem 1.1 is a generalization of [12,
Theorem 1.1].



676 KENICHIRO UMEZU

Theorem 1.1. Assume that g; and h; satisfy that

(1.9) sup ||gj|lco < 00 and sup ||h;|s0,00 < 0.
i>1 i>1

Then, the following condition is necessary in order to have (1.6):
(1.10)

lim sup/ givdr <0 for all ¢ € L*(Q) such that ¢ > 0
j—oo Ja
a.e. in €2,
lim sup/ hjpda <0 for all ¢ € L*(99) such that ¢ > 0
j—oo Joq
a.e. on Of).

Our second main result is on sufficient conditions for (1.6). Theo-
rem 1.2 is a generalization of [12, Theorem 2.2].

Theorem 1.2. Assume that g; and h; satisfy (1.9). Then, the
following two assertions hold.

(i) If we suppose that

(1.11) lim sup </ 9j da:—l—/ h; da> <0,
Jj—ro0 Q oN

then condition (1.10) is sufficient in order to have (1.6).
(i) If we suppose additionally that

(1.12) sup 1Bjlli—1, 5,00 < 00 for any p > 1,
JZ

then the following weaker condition is sufficient in order to have (1.6).

(1.13) limsup/ gjvdr <0 and limsup hjvda <0
j=oo Ja j—oe Joq

for all v € C*(Q) such that v > 0 in Q.

Remark 1.3. We see from (1.4) and (1.10) that the condition

(1.14) lim sup </ 9j dx+/ h; da) <0
j—roo Q o9
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is necessary for (1.6). In the case when the equality holds in (1.14),
condition (1.10) is no longer sufficient for (1.6), see [12, Example 2.1].
A further discussion of this matter will be given in the latter part of
this paper, see Theorems 1.5 and 1.7.

The following result is a direct consequence of Theorems 1.1 and
1.2, which tells us that condition (1.8) due to Cantrell and Cosner is
necessary and sufficient in order to have (1.6) for a class of coefficients
h.

Corollary 1.4. Let h be such that [y, hda <0 and g; satisfy (1.7).
Then, condition (1.8) is necessary and sufficient in order to have that
Al(gj, h) — O0.

Next, let us consider the Neumann case h = 0 and focus our attention
on the case when

(1.15) lim [ gjdz=0.

j—ooo Jo

This case is quite delicate and is not discussed by Theorem 1.2. Indeed,
the following example satisfies (1.8) but does not give us the blowing-up
behavior A;(gj,0) — oco:

1
gi(x) = X, 1-1/5) (@) = Xa\(0,1-1/5)) (), €2 =(0,1) CR,

see [12, Example 2.1]. Here X 4 is the characteristic function of a subset
A C Q. In [12, Theorem 2.6], we imposed the following additional
condition to (1.8) for ensuring the blowing-up behavior:

2
(1.16) im 9y _ o
j—roo |fQ gj dac|

where

N +2

2N
, { N >3,
q:

1 N =1,2.
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The second main purpose of this paper is to show how condition
(1.16) characterizes the blowing-up behavior A;(g;,0) — oo in the one-
dimensional case N = 1. We denote by ¢g* = max(g,0) the positive
part of g and put g~ = gt — g as the negative part. Our third main
result is the following.

Theorem 1.5. Let Q@ C R be an open interval. Assume that
condition (1.7) and the following two conditions hold.

(1.17)
lim [ (g;)* dz =0,
ji—oo Jq
(1.18)
L fQ(gj)_ dz

;= >1 —|—c</ gj +d:t:> for all 5 > 1 large enough,
T falgy)tde o

with some constants ¢ > 0 and 0 < o < 1. Then, we have that
Al(gjv 0) — 0.

Remark 1.6. We observe from (1.18) that if j > 1 is sufficiently
large, then v; > 1, so that [, g; dz < 0, and Xi(g;,0) is well defined.
Since we have already seen in Theorem 1.2 (i) that A;(g;,0) — oo
when limsup,_, ., [ gj dz < 0, we have only to consider case (1.15).
Conditions (1.17) and (1.18) tell us that the difference between ~y; and
1 decays at most like ([(,(g;)" dx)” as j — oo.

Now, we restrict our consideration of g; to a class of simple functions.
Let Q = (a,8) C R, and define

(1.19)  (2) = KjX(ay,0;+15) (%) — MX\ (05,047 (@),
where k;, m;,a; and T} are all constants satisfying that
kj >0, m;>0, 0<Tj<f—-caanda<a; <p-1j.

Our forth main result tells us that Theorem 1.5 does not remain true
for o = 1, provided that g; is given by (1.19).
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Theorem 1.7. Let Q and g; be given by (1.19) and satisfy that
Jogjdez < 0. Additionally if we assume (1.17) together with the
condition that there exists a constant co > 0 such that

(1.20) 7 <14¢o / (9;)" dx for all j > 1 large enough,
Q
then we have that \1(g;,0) is bounded above.

At the end of this section, we explain our motivation for studying
blowing-up behavior (1.6) from an ecological point of view. We consider
the existence of positive solutions to the following diffusive logistic
problem of elliptic type.

(1.21) { ~V - (uVu) = g(z)u —u® in Q,

(uVu) -n = h(z)u on 0f.

Problem (1.21) denotes the steady state w of the population density
of some species inhabiting the region (2, diffusing at rate > 0 and
taking into account the crowding effect —u?, cf. [6]. The sign-changing
functions g and h denote, respectively, the local growth or decay rate
of the species in the region 2 and the rate of the population flux on the
boundary. It has been proved by the method of super and subsolutions
([11, Theorem 2.3]) that problem (1.21) has a unique positive solution
u, € C?T9(Q) if 0 < p < 1/A1(g, h) and no positive solution otherwise,
provided that functions g € C%(Q) and h € C'*9(9Q), 0 < 0 < 1,
satisfy (1.4). Thus, the open interval (0,1/X1(g,h)) of the diffusion
rate p can be regarded as an interval for survival for the species. For
instance, the shorter the length of this interval is, the more unfavorable
for the species the environment is. If A\i(g;, ;) goes to infinity, then
the length of the interval for survival should shrink to zero eventually,
and this describes a worst environment for the species.

The rest of this paper is organized as follows. In Section 2, we
prove the existence and uniqueness of the positive principal eigenvalue
A1(g, h) for (1.1) with coefficients g and h having the weak regularity
assumptions. This is a slight modification of the proofs of [11, Theo-
rems 2.1 and 2.2]. In Section 3, we prove Theorem 1.1. Section 4 is
devoted to the proof of Theorem 1.2. In Section 5, we prove Theorems
1.5 and 1.7. The proofs of Theorems 1.1 and 1.2 are by contradiction
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arguments, following the line of that of Cantrell and Cosner [5, Theo-
rem 3.1]. Meanwhile, the proof of Theorem 1.7 is rather direct, where
A1(gj,0) is estimated from above by a concrete test function associated
with g;. All the arguments are based on (1.5).

2. Existence and uniqueness of the positive principal eigen-
value. In this section, we prove the following existence and uniqueness
result for positive principal eigenvalues of (1.1), which is an extension
of [11, Theorem 2.2] to the lower regularity case of g and h.

Theorem 2.1. Assume that either (1.2) or (1.3) is satisfied. Then,
there exists a positive principal eigenvalue of (1.1) if and only if condi-
tion (1.4) holds. Moreover, it is unique and is characterized by formula
(1.5) if it exists.

Proof. To prove this theorem, it is sufficient to verify the following
proposition for the corresponding auxiliary eigenvalue problem

—A¢ = Ag(z)p + u(A)¢ in Q,
g—¢ = Ah(z)o on 09.

n

(2.1)

Proposition 2.2. The following three assertions hold:

(1) For any X\ € R, there exists a unique principal eigenvalue py(\)
of (2.1), given by the formula

(2.2) pi(N) —inf{/ |Vv|2dw—)\</ gv?dz + hv? da> :
Q Q o9
v e Wh(Q), / v?dr = 1}.

Q

(2) Mapping X — p1(\) is concave and satisfies that

(2.3) p1(A) — —o0, A — o0.



INDEFINITE ROBIN-TYPE BOUNDARY CONDITIONS 681

(3) The principal eigenvalue pi(N) has a unique local mazimum (i.e..
global maximum). Moreover, the sign of the global mazimum point
coincides with that of —( [ gdz + [, hda).

It is clear that A is a principal eigenvalue of (1.1) if and only if 1 () =
0. Since u1(0) = 0, we see from assertions (2) and (3) of Proposition 2.2
that, in order to have the existence of a positive principal eigenvalue
of (1.1), it is necessary and sufficient that [,gdz + [,,hda < 0.
Furthermore, the uniqueness is straightforward from the concavity.
Finally, formula (1.5) comes from (2.2), just as in the proof of [11,
Theorem 2.2]. Theorem 2.1 now follows once Proposition 2.2 is proved.

It remains to prove Proposition 2.2. Let Sy be an energy functional
associated with (2.1), defined as

/|VU\2da:— </ngda:—|—/ hv2da>, veM,
Q o0

where M = {v € WH?(Q) : |jv||2 = 1}. Just as in [11, Lemma 3.1],
we can show that S) is bounded below. By the standard argument by
Smoller [10, Chapter 11], we have the existence of a minimizer ¢; € M
for S\, nontrivial and nonnegative almost everywhere in Q:

S,\(qﬁl) = Ulél]& S)\(’U).

By the Lagrange multiplier rule, we can show that S (1) is a principal
eigenvalue of (2.1) and ¢; is the eigenfunction which is strictly positive
in 2, and we have

/§2V¢1de:v/\</Qg¢1wdac+/89h¢1wda> :SA(¢1)/Q¢1wdx

for all w € W2(Q).

If p is another principal eigenvalue of (2.1) for A and ¢, is a positive
eigenfunction with p, then we see that

/Q V62V, dm—A( /Q 9baér do + /@ hoty da) —u /Q Go01 da.

It follows that
(s $3(60)) [ b6 dz =0,
Q
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Hence, u = Sx(¢1), and the uniqueness of the principal eigenvalue
follows. Assertion (1) has been verified.

Next, we verify assertion (2). By pj()), we denote the principal
eigenvalue of (2.1), meaning that p1(A) = Sx(¢1). The concavity of
mapping A — p1(A) follows from the fact that mapping A — Sy(v) is
affine. For verifying (2.3), we first consider case (1.2), and let g satisfy
that g > 0 in a measurable set A C Q with |A| > 0. Since |4| < o0, we
can choose a compact subset E C Q such that E C A and |E| > 0. It
follows that

(2.4) g > 0 in a compact set E C Q of positive measure.

For the measurable set F and a constant § > 0, there exists an open
subset G C 2 such that G D F and |G\ E| < 4. For a constant € > 0,
let

Ge={reQ:dist (z,E) < e}.

Here, G, is an open subset of 2. Since the inclusion ¥ C G is compact,
we can choose a constant €9 > 0 so small that G D G, D E.

Now, we put ug € C1(Q) with compact support in § as

0<uy<1 in Q,
ug =1 in G, /2,
supp up C Ge,.

Then, since |G, \ E| < 8, we have

/ gug dx = / gug dx
Q G.

0

= / gu dw+/ gus dx
E G \E

> / gdz — |g* |0 |Gey \ B
FE

z/gdx—éufnm.
E

By using (2.4), it follows that, for some § > 0 small,

1
/gugdxz—/gdx>0.
Q 2JE
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Meanwhile, since wug has a compact support in €2, we have that
Joq hud da = O By letting vop = wug/||uoll2, formula (2.2) gives us
assertlon as follows.

/|Vvo\2d:v— /gv%dw—)\/ hvg da
o0
:||u0||2_2{/ |Vu0|2dxf)\/gu%dxf)\/ hugda}
Q Q o9
A
§||u0||2_2(/ Vu0|2da:——/gdw> — —00, A —o00.
Q 2JE

Secondly, we consider case (1.3). However, the verification of (2.3)
is parallel as in the proof of [11, Theorem 2.2], because h € C(99).
Assertion (2) has been verified.

Finally, we verify assertion (3). Let ¢ (\) be a positive eigenfunction
with p;()), normalized as ||¢1(A\)||2 = 1, and we have, for all w €
Wl’Q(Q),

(2.5) /QV¢1()\)dex/\</Qg¢1()\)wdx+/ her (A )wda>

= p1(A /(751 Jw dz.

Differentiate both sides with respect to A, and then

(2.6) /Q Vo, (\)Vw do — ( /Q gor(uda+ [ h¢71()\)wda>

(/gasl( )wdm+/ hoh (\ )wda)
/¢1 Jwdz + p1(A /¢1 Jw dz.

From (2.5) and (2.6), we derive, respectively, the assertions

/Q V6NV, () de

A [anms s [ ro0s o)
N /Q b0 (V) da
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and

/Q Vo, (N Ver(2) de

- (/ngsl(,\)%z@ur/{m h¢1()\)2da>

A [asiama [ ns0e )
) [ 610 de+ ) [ HN0 ) da
It follows that
@) = [eaaes [ o).

From (2.7), A is a critical point for uq, that is, p](\) = 0, if and only if
Jo 901 (V) dz + [, ho1(X)*da = 0. Moreover, by proving the following
lemma, a critical point for p; is unique if exists, and so it is the global
maximum point.

Lemma 2.3. If Ay is a critical point for py, then we have

p1(A) < pa(Xo), A # Ao-

Proof. By the definition of u(\), it follows that 1 (A) < Sx(é1(No)).
Since fﬂ g¢1(A0)2 dl‘-f-faﬂ h¢1()\0)2 da = 0, we have that S)\(qsl(/\o)) =
S (#1(X0)) = p1(Xo). Hence, u1(A) < p1(Ao). If we assume to the
contrary that p1(A) = p1(Ao) for some A # Ag, then ¢ () satisfies (2.5)
and attains the infimum p()\g), and we have, for all w € WH2(Q),

/ Voi(A)Vwdz — Ao </ gp1(Nwdz + / h¢1(N)w da>
Q Q Gle}

= () | wds,
It follows that

(A— )\0)(/Qg¢71()\)wdw + h¢71()\)wda> 0.

o
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Since ¢1()) is strictly positive in Q, it follows, by the same argument
as in the proof of assertion (2), that ¢ = 0 almost everywhere in Q
and h = 0 everywhere on 02. This is a contradiction. The proof of
Lemma 2.3 is complete. ]

Now, we see from (2.7) that

da + [yn hd
(2.8) () = ~ 102 mmf"’“ -,

where we have used that ¢;(0) = |2|~/2. Since u;(0) = 0, assertion
(3) follows from combining assertion (2), (2.8), and Lemma 2.3. The
proof of Proposition 2.2 is complete. ]

The proof of Theorem 2.1 is now complete. O

3. Proof of Theorem 1.1. This section is devoted to the proof
of Theorem 1.1. This is by a contradiction argument. If we assume to
the contrary that assertion (1.10) does not hold, then we may obtain
one of the following possibilities: (i) There exist a constant §p > 0 and
Yo € L1(Q), satisfying that 19 > 0 almost everywhere in Q, such that

(3.1) / giYodx > g for all j > 1,
Q

(ii) There exist a constant 6y > 0 and ¢y € L1(9Q), satisfying that
¢o > 0 almost everywhere on 02, such that

(32) / hj¢0 da > (50 for ally > 1.
E19)
First, we consider case (3.1). Since /%y € L?(Q), for any ¢ > 0

there exists a v. € C1(2) with compact support in Q such that
lve — vV¥oll2 < €. It follows that

/gjv?d:c—i—/ hjv?da:/gjv?d:c
Q o) Q

Z/gj¢0d$+/gj(vgf¢o)dx
Q Q

> o +/ gj(vg — 1) du.
Q
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By Schwarz’s inequality, we have

‘/ng(v? — o) dz| < [lg;lsollve — v/Wollz(llve — v/Wollz + 2l v/Poll2)-

Hence, we can choose € so small that

]
/gjv?da:—i—/ hjv?da > =2 for all j > 1.
Q 00 2
By the definition of A (g;, h;), it follows that

M(gihi) < Jo [V |* d 2 [, Vv |* da -
195> 1) = Jqgiv2de + [, hjvZda 3o

This is contradictory for (1.6).

Next, we consider case (3.2). From the fact that /¢ € L?(99), it
follows similarly that for any € > 0 there exists a w. € C*(9Q) such
that

(3.3) Jwe — v/¢o

see Adams [1, Section 7.51]. We define by @. € C*(Q) an extension of
we to Q and by ng: € C1(Q) a cut-off function satisfying that

|2,BQ < g,

_ /0 in a compact subset Q' of €,
e = 1 in a tublar neighborhood of 02.

If we put p. o = Mo, then .o € CY(Q) and its trace on 99
coincides with w.. Moreover, there exists ' € Q such that

/ g]«pjg, dx
Q

It follows from (3.2) that

/ gﬂp?m dz +/ hjapgvn, da
Q l9)

1)
>_—0+/ h]¢0da+/ hj(wf—qﬁo)da
2 o o0

do

> — +/ hj(w? — ¢p) da.
2 o0

<%forallj21.
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Hence, by (3.3), there exists a € > 0 so small that

0
/ gjsoﬁ Q diE—i—/ hjgag q da > = for all j > 1,
Q ’ By ’ 4

which leads us to a contradiction, just as in case (3.1). The proof of
Theorem 1.1 is complete. u]

4. Proof of Theorem 1.2. In this section, we prove Theorem 1.2,
which is also by a contradiction argument. First, we verify assertion (i).
Assume to the contrary that X; := Xi(g;,h;) is bounded above.
Let ¢; be a positive eigenfunction associated with A;, normalized as
Jo IV@;]? dz = 1. By definition, we have that

(4.1) 1 :)\j</ gjnp? da:—l—/ hjgogda).
Q a0

If we decompose p; by the average t; = 1/|Q| [, ¢; dz, just as p; =
t; + wj, then it follows that

2 2
(4.2) 1=/\jt§</gj<1+ﬁ> da:—i—/ hj<1+ﬁ> da).
Q tj o0 tj

Since [, wjdz = 0, the so called Poincaré-Wirtinger inequality ([8,
Theorem 1, Section 5.8]) shows that ||w;||1,2 and ||Vw;,|| are equivalent.
Hence, w; is bounded in W*?(1), since [, [Vw;|*dz = 1. Moreover,
|t;| is bounded. Indeed, since the imbeddings W'?(Q2) C L?(2) and
Wh2(Q) C L?(69) are both continuous, conditions (1.11) and (4.2)
allow us to have a constant § > 0 such that

Wi

I

Hereby, the function ¢; = t;+w; is bounded in W12((2). By a standard
compactness argument, there exist g € W2() and a subsequence of
@, still denoted by the same notation, such that

> ¢ for all j > 1 large enough.
1,2

J

(4.3) @; — o in L*(Q) and ¢; — ¢q in L*(09).



688 KENICHIRO UMEZU

Hence, it follows from (4.1) that

1=Aj</ gw%dﬁ/ thdaJr/gj(so?*sa%)dH/ hj(sO?SOS)ch)-
Q o0 Q 519

Since A; > 0 is bounded above, conditions (1.10) and (4.3) lead us to
the assertion

lim sup A; gjgo(z] dz <0,
Q

j—oo
lim sup )\j/ hjcpg da <0,
o

j—oo

lim ); /ng(wf — ) dz =0,

j—oo

lim Aj/ hj(©3 — ¢p) da = 0.
o

j—oo
Consequently, we have

1:1imsup)\j(/gj<p(2)dx+/ hjapgda—l—/gj(np?—(pg)dm
Q 9Q Q

j—oo
+/ hi(¢3 —w%)da>
oQ
§limsup)\j/ gjgag dac+1imsup/\j/ hjgag da
j—o0 Q Jj—roo o0
+ lim A [ gi(¢] —¢p) dz
Q

j—oo

j—oo

+ lim /\j/ hj(np? —p3)da <0,
o

a contradiction.

Next, we verify assertion (ii). This is by a bootstrap argument relying
on elliptic regularity and Sobolev’s imbedding theorem. We recall that
the mapping

W2P(Q) — LP(Q) x Wi=1/Pr(90)

U — ((—A + 1)u, g-:;)

(4.4)
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is homeomorphic for each p > 1. By the same argument as in
assertion (i), we note that ¢; is bounded in W1%(Q) and satisfies (4.3).
Then, we show how to obtain that ¢; is bounded in W*27¢(Q2) for
any ¢ > 0. Indeed, by (1.12), we can choose H; € W?(Q2) such that
Hj|59 = hj and

sup || Hjl|1,p < oo for any p > 1.
Jj=1

Since A; is bounded above, Hélder’s inequality shows that

sup || A\;jH;pjll1,2—« < oo for any € > 0.
jz1

The trace theorem gives us that

sup [|Ajhjpjlli—(1/2-¢),2—¢, 00 < 00,
Jj>1

so that ¢; is bounded in W%?7¢(§2), by using (4.4).

Now, applying Sobolev’s imbedding theorem, we obtain, since ¢ is
arbitrary, that ¢; is bounded in W1H(N(2=€)/N=2+¢)(Q))  from which ¢;
is bounded in WHN/N=1)(Q), Tt can be shown by the same procedure
that ¢; is bounded in W*2N/N=D=¢(Q) for any ¢ > 0. Furthermore,
by repeating the same step in finite times, we get that ¢; is bounded
in W2P(Q) for each p > 1. By Sobolev’s imbedding theorem and a
compactness argument, a subsequence of ¢, still denoted by the same
notation, converges to some ¢y in C*(Q). In particular, 92 € C1(Q).
Hence, condition (1.13) leads us to a contradiction in the same manner
just as in assertion (i). The proof of Theorem 1.2 is complete. o

5. Proof of Theorems 1.5 and 1.7. In this section, we prove
Theorems 1.5 and 1.7.

Proof of Theorem 1.5. First, we assert that condition (1.17) implies
(1.8). Indeed, assume to the contrary that there exists ¢ € L1(f),
nonnegative almost everywhere in €2, satisfying that

limsup/ g;¥dzr > 0,
Q

j—oo
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so that, without loss of generality,

/gjwdx>5f0rallj21
Q

with some constant 6 > 0. From (1.17) it follows that some subse-
quence of (g;)*, denoted by the same notation, converges to 0 almost
everywhere in Q pointwisely, so that (g;)"¢¥ — 0 almost everywhere
in Q. Since |(g;)*¥| < (supj>q[lgjllec)? and the right-hand side is
integrable over 2, we obtain by Lebesgue’s convergence theorem that

limsup/ gjYdx < limsup/(gj)+1/1 dz =0,
Jj—oo (9] j—oo Q
a contradiction.

Now, if we assume that

limsup/ g;dr <0,
Q

j—oo

then Theorem 1.2 applies, thanks to (1.8), and thus A;(g;,0) — oo.
Hereby, we have only to consider case (1.15). By a direct calculation,
we see that

M:—/gjd:v—t—él{l—i—('yj—l)1}/(gj)+da:,
| J2 95 da| Q Q

from which we get (1.16), by virtue of (1.17) and (1.18). Hence, as a
direct consequence of [12, Theorem 2.6], we have that A1(g;,0) — oo.
The proof of Theorem 1.5 is complete. u]

Proof of Theorem 1.7. Without loss of generality, we may consider
the case when © = (0,1). The following proposition tells us that
Theorem 1.7 is true when a; = 0.

Proposition 5.1. Under the hypotheses of Theorem 1.7, we let
a; =0 forall j > 1.

Then, A1(g;,0) is bounded above.



INDEFINITE ROBIN-TYPE BOUNDARY CONDITIONS 691

Proof. First of all, we note that condition (1.17) means that
(5.1) kjTj — 0, j — oo,

and that conditions (1.17) and (1.20) imply that

1-T 1
m]( J) : + cg for any _] >1 large enough.

(5.2) <
k2T ki T

For a fixed constant 0 < ¢ < 1/¢g, where ¢y is a given positive constant
by (1.20), we put
vj (33) = —ijjac + /4.

On the one hand, we have
1
(5.3) / (v))? do = kJT7.
0
On the other hand, a direct computation gives us that
1
/ gjv? dx
0
T; 1
= / kj(*k‘jle‘—l—e)Z dl‘* / mj(fk‘jle‘-f-g)z da:
0 T;

1
= gig'{ﬁs-(ﬁ—-ij?)a}

mj 23 3
- 0 —kjT?)® — (0 — k;T;
gijj{( iT7) = (€= kiT5)° )
k315
__ p2 23
= 0Ck;T; — (kT + %
m;(1—"T;
- % {(6 = k;T7)? + (€ — k5 T7) (0 — ki Ty) + (£ — kyT5)°}
62 kT3
= k272 — T, + 23
%J{%E it
- M(%? — 30k, Ty — 30k;T2 + k2T + K3TD + k2T7)
3k;T;
—. .22
=: k2T ;.
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Since we see that

limsup (3¢% — 3¢k;T; — 3Ck;T; + kT + kiT; + kiT}) > 3¢° > 0,

j—oo

we use (5.1) and (5.2) to estimate I; as follows.

2 kT3
I.>—— —(T; !
Iy i3
1 1 2 2 22 23 24
kiT; 2
= (1 — cof) + 3 {(Beol — 1) (1 4+ Tj) — cok; T;(1+ T; + T7) }
=41 —col)+o(l), j— oo.

This implies that

1
(1 — col
(5.4) / gjv?- dz > k?Tf{%} for any j > 1 large enough.
0

On the basis of (1.5), we derive from (5.3) and (5.4) that

1 2
b @)rde 2

M (as
163, 0) = fol gjvide (1 — col)

for any j > 1 large enough.
The proof of Proposition 5.1 is complete. o

Now, we end the proof of Theorem 1.7. Let g; be given by (1.19) and
satisfy that fol gjdx < 0. The index j is fixed, the notation A;(a;) is
used as Ai(gj,0), by which we understand \;(g;,0) parameterized by
a;. We introduce a new function G, defined by G; = g;/m;, and we
have

k.
Gj(w) = m_],X(ajvaﬁTj)(m) = XQ\(aj,05+15) (2)-
j
Then, fol Gjdxr < 0 and the unique positive principal eigenvalue
A1(G},0), where the notation A(a;) is used as A\;(G;,0) in the same
sense as Ai(a;), satisfies that

Ai(aj)

m;

(5.5) Ai(ay) =
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Due to Cantrell and Cosner [7, Section 2], we know that

1-T;
(56) Al(O)SAl(a])SA1< D) J), Ogajgl—Tj.
Meanwhile, it is easy to see that
1-1T;
(5.7) /\1< 5 ]> =4X(0), 0<T; <L

Hence, condition (5.6) together with (5.5) and (5.7) implies that
1-T;
(58) )\1(0) S)\l(a]-) S)\l T :4)\1(0), Ofa]' Sl—]}.

Combining (5.8) with Proposition 5.1 completes the proof of Theo-
rem 1.7. O
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