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MULTIPLE POSITIVE SOLUTIONS OF SECOND-
ORDER STURM-LIOUVILLE BOUNDARY VALUE
PROBLEMS FOR IMPULSIVE
DIFFERENTIAL EQUATIONS

YU TIAN AND WEIGAO GE

ABSTRACT. In this paper we study two types of impulsive
Sturm-Liouville boundary value problems depending on the
parameter A. The existence of multiple positive solutions is
obtained by applying a three critical points theorem given by
Averna and Bonanno [2].

1. Introduction. Inrecent years, a great deal of work has been done
on the study of the existence of solutions of boundary value problems
for impulsive differential equations, by which the phenomena, such as
many evolution processes, states changed at certain moments of time
due to abrupt changes, are described. For relevant and recent references
on impulsive differential equations, we refer to [13, 20-22, 26, 27]. For
the background and applications of the theory of impulsive differential
equations to different areas, we refer the reader to the monographs and
some recent contributions as [7, 9, 11, 14, 18, 19, 29, 33, 34, 36,
37].

Some classical tools have been used to study impulsive differential
equations in the literature. These classical tools include fixed point
theorems in cones [1, 8, 12, 15] and the method of lower and upper
solutions with monotone iterative technique, see [10, 16].

Critical point theory is a new method to deal with the existence of
solutions for boundary value problems, please refer to [2-6, 17, 23-25,
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30, 31, 32]. The method has become a powerful tool. In critical point
theory, Averna and Bonanno gave a definite interval, say

e aml

in which if X lies, then ® + AW has at least three critical points. Their
result is as follows.

Theorem 1.1 [2]. Let X be a reflexive real Banach space, let P :
X — R be a continuously Gateauz differentiable and sequentially weakly
lower semi-continuous functional whose Gateaur derivative admits a
continuous tnverse on X*, and let ¥ : X — R be a continuously
Gateaux differentiable functional whose Gateaur derivative is compact.
Assume that

(1) limj3 )| 400 (®(2) + A¥(z)) = 400 for all A € [0, +o00f;
(ii) there is an v € R such that

infd<r

X
and

p1(r) < pa(r),
where Y(z) inf -
. ) - e e mp”
= f :
901(7‘) zE@*llﬂfoo,r[) r— @(x) ’

. Y(z) - ¥(y)
r) = inf su _—
#2(r) seb(—oorl) yea1 (oo 2(¥) — ()

and ®~1(]—o0, r[)w is the closure of ® 1(]—o0,r]) in the weak topology.
Then, for each

e Jmmaml

the functional ® + AV has at least three critical points in X.

This theorem has been applied to Dirichlet, mixed and Sturm-
Liouville boundary value problems to get interesting results, see [2—4,
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31]. In [31], Tian and Ge studied the second-order Sturm-Liouville
boundary value problem

()@, (D)) + () (a(t) = M (t2(t)) € [aB],
(L.1) {w’(a)—ﬁw(a)—A 2'(b) + ox(b) = B

where p > 1, ®,(z) := |z|P72z, p,s € L*®[a,b] with ess inflg 50 > 0
and ess inf[a,bﬂ s >0, A € ]0,+0[, A, B are constants, a,8,7,0 > 0
and f is an L -Carathéodory function. By using a three critical points
theorem, the existence of three solutions was obtained.

As far as we know, there are few papers to study impulsive boundary
value problems by using the critical point theorem. The aim of this
paper is to apply Theorem 1.1 to more general fields. In this paper, we
study impulsive boundary value problems

—(p(t)2p(2'(¢))) = A ( z(t)) t#ti, t €[0,T],
(1.2) ¢ —Ap(t:)®p(a'(t:))) = Mi(z(t:)) i=1,2,...,1
az'(0) — Bz(0) =0 ~v2'(T) + oz(T) =0,
and
(1.3)

b )+ s(t)Pp(x(t)) = Af(t,=(t) t#ti,te[0,T],
az'(0) — Bz(0) =0, ~z'(T)+ oz(T) =0,

where p > 1, ®,(z) := |z|P72z, p,s € L>=[0,T] with ess info 770 > 0
and ess infjg7)s >0, A € ]0,+00[, 0 =tg <t; < -+ <ty <ty =T,
A(p(ti)@p('(t:))) = p(t)Bp(a (t])) — p(t; )Bp(2'(t;)), where ' (t])
(respectively :c( ;) denotes the right limit (respectively left limit)
of &'(t) at t = t;, I; € C([0,400),[0,4+0)), i = 1,2,...,[, f €
C(0,7] x [0, +00), [0, +00)), f(£,0) £ 0 for ¢ € [0,7], &, B,7,0 > 0.
Under suitable hypotheses, we prove that problem (1.2) ((1.3)) has at
least three positive solutions when A lies in an explicitly determined
open interval.

For impulsive problems (1.2) and (1.3), the construction of corre-
sponding functionals ®,® are different, which yields the difficulty of
verification of assumptions in Theorem 1.1, for example, ! is contin-
uous on X*. Lemma 2.6, Lemma 2.7 and Lemma 2.9 are very important
in overcoming these difficulties.
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This paper is organized as follows. In Section 2, to (1.2), the
variational approach is justified and the regularity of an appropriate
functional involved is proved. In Section 3, existence results of (1.2)
are given in Theorem 3.1 and Corollary 3.2. In Section 4, to (1.3), the
variational approach is justified and the regularity of an appropriate
functional involved is proved. At the same time, existence results
of (1.3) are given in Theorem 4.6 and Corollary 4.7. Besides, some
examples are presented in each section to illustrate the results obtained.

2. Related lemmas for (1.2). Let WP ([0,7]) = {z € C([0,T]) :
z' € LP([0,T])} with the norm

fellws = ( [ P+ |w<t>|f’dt)1/p.

Lemma 2.1 [32]. For x € WP([0,T]), let 2* = max{+z,0}. Then
the following six properties hold:

(i) 2 € W2([0,T]) = «*, 2~ € Whr([0, T));
(i) z=at —z7;
(iii) [z |lwre < ||2|lwre;

(iv) if (zy,) uniformly converges to z in C([0,T7), then (z;}) uniformly
converges to x in C([0,T));

(v) 2% ()2~ (t) = 0, («*) () (x™)'(t) = 0 for t € [0, T];
(vi) ®p(z)zt = [zTP, ®p(z)z™ = |z |P.

In order to obtain the existence of positive solutions for (1.2), now
we consider the problem

(2.1)
—(p(t)@p(2'(1))" = Af(t, 27 (1)) t#t;,t €0,T],
—A(p(t:)®p(a' (t:)) = ALz (t:)) i=12,...,1,
az’'(0) — Bz(0) =0, ~z'(T)+ ox(T)=0.

Lemma 2.2. If z € C([0,T]) is a solution of (2.1), then z(t) >
xz(t) #0, t € [0,T], and hence it is a positive solution of (1.2).
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Proof. It x € C([0,T]) is a solution of (2.1), then by Lemma 2.1,
0 :/0 [(p()®,(z' (1)) + AF(t,aT(t)] z~(t) dt

=2 P2y (' (t)z (D],

+ [ @Iy OF + At @) 0)]
0
14 T
Z)Ji(x*(t,-))x*(ti) +/0 M(t,zt () (¢)dt
" T
P01 (1)

>
1
+/ x ) (t)|Pdt
0
T

> [ ol @
0

So (z7)'(t) = 0 for almost every ¢t € [0,T], i.e., 7 (t) = ¢ > 0 for
t € [0,T]. So z(t) = —c. By boundary condition, az’(0) — Sz(0) =
0 — B(—c¢) = Bc = 0, we have ¢ = 0. So z(t) > 0. If z(¢) = 0 for
t € [0,T], the fact f(¢,0) # 0 gives a contradiction. o

Now we define the space X = WP([0,T]) equipped with the norm

1/p

llx = </0T p)2' (1) + Iév(t)”dt> ;
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which is clearly equivalent to the usual one ||z||y1.»; F is the real
function

13
F(t, ) = /0 f(t, ) da.

We denote ||z]|o := max;cjo,7 |#(t)| to be the norm in C°([0,T7).
For each z € X, put

2@ = [ sl @prae+ P (2) amp
(2.2) 0 )
p0) (BY o
+2O (5 Lo,
Vo) i= - [ [Pl (0) - (6007 (0)] d
(2.3) °

_ é [ /0 T Ti(s) ds — I,-(O):c_(ti)] .

Clearly, ® is a Gateaux differentiable functional whose Gateaux deriva-
tive at the point € X is the functional ®(x) € X*, given by

/ (50)
(@'(2),0) = [ p(t)2p(a"(£))V'(t) dt + p(T)2p | —2(T) )o(T)
(2.4) 0 7

+00)2,( Z2(0)) (0

for every v € X, and @' : X — X* is continuous. Moreover, taking into
account that ® is convex, from Proposition 25.20 (i) of [35], we obtain
that ® is a sequentially weakly lower semi-continuous functional.

It is easy to see that ¥ : X — R is a Gateaux differentiable functional
whose Géteaux derivative at the point « € X is the functional ¥'(z) €
X* given by

T l
(25)  (¥'(x),v) = —/0 Ft,at(®)o(t) dt — Zfi(ﬂ«”r(ti))v(ti)

for every v € X.
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Lemma 2.3 [31]. If the function x € X is a critical point of the
functional ® + AU, then x is a solution of (2.1).

Remark 2.1. By Lemma 2.2 and Lemma 2.3, if z € X is a critical
point of the functional ® + A\¥, then x is a positive solution of (1.2).

Lemma 2.4. Ifz € X, and there exists an r > 0 such that ®(z) < r,
then

o < W[(%)I/q(p(o»l“’ A p)w] = o).

)

Proof. If ®(z) < r, then

T
(2.6) | ool ora <o,
(27) p<o><§) 2O <

By the mean value theorem and (2.6), (2.7), we have
T 1/p
<)+ ([ Wpas) 1
0

T ' 1/p
(2)" o+ (o rowtorer)

(ess inf (o 1) p) l/p

a\ e Ly Y '
§W<E> (p(0)) /7 + BT ( [gg]p)

2(0) + /Dt 2/ (s) ds

-1/p

Lemma 2.5. If x € X, then

/0 et

-1 T
< T'max{2F~' 1} [\m(0)|p +1P/9 <ess [%anq p> / p(s)\m'(s)|pds]
: 0
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Proof. For = € X, we have
T T t »
/ (b dt :/ 2(0) +/ ! (5) ds|at
0 0 0
T ¢ P
< max{2p*1,1}/ |z(0)|P + </ x'(s)ds) dt
0 0
T
< Tmax(2r, 1} [[2(0) 7 + 77/ / [ (s)[Pds]
0
-1
< Tmax{2P~1,1} [|m(0)|p + TP/ (ess [ian] p)
0,

y /0 ' P ()Pds]. o

Lemma 2.6. If x € X \ {0}, then there exists a 61 > 0 satisfying

[ o @ras o2, (2o

> 6, / (PO O + [2(OI7) dt = 0[]

Proof. Let

—14-1
0<b < min{ [1 + TP max{2P71 1} (ess [inf] p) ] ,
0,T

P(0)®y (8/2) }
Tmax{2,~1 1} J°

Then by Lemma 2.5 we have

(=00 [ o0l 0Par+ o), (2) w0

T
4 / |z (t)|Pdt
0
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>1-0) [ oo opa pore,(2) o)

T a2, 1 [w(0) + 77 (s it o)
<[ "l s)Pas]

{10 e (o ) )
<[ e

+]z(0)? [,;(o)@,,(é) — 6,7 max{2°~", 1}}

> 0.

The proof is complete. i

Lemma 2.7. For p > 2, there exists a 02 > 0 satisfying

/0 p(t) [8p(w' (1) — 2p(v' ()] (' (£) — V' (2)) dt

+ 9018, ( 2) 1,(0(0) - #,(0(0)] (u(0) ~ v(0)) > Balu - o

foru,v € X,u # v.

Proof. By (2.2) of [28], there exists a ¢, > 0 such that

(2.8) /0 p(t) [2p( (1) — p(v' ()] (' (2) — v'(¢)) dt

B

+ 0008, ( 2) [,(0(0) - #,(00)] (u0) ~ v(0)

2, [ O~ OPdt-+ o0, 2 ) o) - w0}

By Lemma 2.6,
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the right hand of (2.8) > ¢, ||u — v|/%.

Let 02 = c,01; the proof is complete. a

Lemma 2.8. If1 <p< 2, K >0, then there exists a 03 > 0 such
that

T 2/p
( / p(t)|x'<t>|f’dt) K[ (0)2 > a]all%

forz e X \ {0}.

Proof. Let

—2/p -1
0 < 03 < min { {22/1’*1 +T292/P (ess inf p> ] : K(2T)*2/P}.

Then

(2.9 ( / Tp<t>|m'<t>|Pdt) Y KR

2/p

- 93< / OO + w(t)wdt)

> </0T p(ff)lﬂc’(i‘)l”dt>2/1)+K|96(0)|2

T
_ 932<2/p>1<
0

J
r

2/p
p<t>|:c'<t>|pdt)

2/p
—032(2/1“)—1( |:L'(t)|pdt> :

By Lemma 2.5,

the right hand of (2.9)

> (1-0220/0) (/OTp@)z'(t)i”dt) " K

— 032C/P) 172/ (max (2P, 1})2/1’
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x [\w(O)IP + TP/ (ess [%1?%] p) -t /OT p(s)|x’(s)\”d3] 2/p
2 (1 - 9322/p—1> (/OT p(t):v'(t)|P> 2/p + Kla(O)

—2/p
— 05(2T)%/P [|m(0)|2 + 71?4 <ess [%an] p>

<(/ Tp<t>|w'<t>|pdt) "

—-2/p
= [1 — §5202/P)=1 _ g.02/p? <ess inf p) ]

<(/ Tp<t>|w'<t>|pdt) .

+ {K _ 93(2T)2/P} |2(0)|?

> 0.

The proof is complete. i

Lemma 2.9. For 1l < p < 2, there exists 84 > 0 satisfying

/0 p(t) [@p (' (1) — 2 (v (2))] (' (2) = V' (2)) dt

n ,,(o)@p(@) [, (u(0)) — 2p(0(0))] (u(0) — v(0))

(0%
lu —vl%

> 6,
(lullx + llvllx)*=»

foru,v e X, u#wv.
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Proof. By (2.2) of [28], there exists a d,, > 0 satisfying

T
210) [ pl0) 006/ (0) — 8,0 ()] () ' (1)
#0008, (2) 12,u(0) - 2,000)] (u(0) - v(0)

T () — v () BY  [u(0) — v(0)?
2 [t o d””‘o)q”’(a) (u(0)] + [o(0) )27

By the Holder inequality, we obtain that

(2.11) /OTp (t)|Pdt
= </T (e |+|v t;fflpdt>

<[ [ w0+ woal
t

(2-p)/2

holds for some M > 0.

By the mean value theorem, there exists a 7 € (0,7) such that
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1/T [ u(s) ds = u(r). Then

|u(0)] =

u(r) — /OT u'(s)ds
<p [ molas s [ wte)as

N . ( ' uls)as ) Qe (/ ' (o) v

—1/p
< [T_l/p + T4 <ess inf p) }||u||X
[0,7]

= Allu||x-

By (2.10), (2.11) and (2.12), we have

/0 p(t) [8p(w' (1) — 2p(v'(1))] (' (£) — V' (2)) dt

+p(0)®, (g) [@,(u(0)) — &, (v(0))] (u(0) — v(0))
foT p(t)|u! () — o' (t)|pdt 1%/P
= |:M(||'U'||X + ||U||X)((2p)p)/2}

5 |u(0) — v(0)?
+ dyp(0), <a> A2 (JJullx + [[o]lx)* 7

~ it " O ) — Jopar) o

1 Kalu(0) —v<o>2}

for some K, Ky > 0.
Applying Lemma 2.8, the result follows as 6, = K165. o

Lemma 2.10. ®' admits a continuous inverse on X*.

Proof. First we will show that ®’ is coercive.
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For every x € X\{0}, it follows from (2.4) and Lemma 2.6 that

L (¥(2))
lelx oo [l2]lx
_ g Jo pOlaOFdt + p(T)®, (0/7)|a(T)]”
ll2flx o0 |zl x
L P02, (8/a) [z(0)]?
]l x
N Jy p®)|7' @)Pdt + p(0)®, (B/2) [z(0)|”
" llellx—o0 lzllx
6 |2l

> = +00,
lalix—oo |2||x
that is, ®’ is coercive.

Moreover, given u,v € X, we have by (2.4),

(¥ (u) — (), u—v)
= [ o), 0) - &, @) W0 - @)
T o(0)%, (5) @, (u(0)) — 2y(0(0))] (u(0) — v(0))

[0

+po(T)®p <%> (@ (u(T)) = @p(v(T))] (w(T) = v(T)).

If p > 2, by Lemma 2.7, we have
(®'(u) — @' (v),u — v) > Oafju— [k,

so ® is uniformly monotone. By Theorem 26.A (d) of [35], we have
that (®')~! exists and is continuous on X*.

If 1 <p< 2, by Lemma 2.9, we have

lu—vl%
—p’
(lullx + llollx)*=»

(2.13) (@' (u) — @' (v),u —v) > 04
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therefore, ®' is strictly monotone. By Theorem 26.A (d) of [35]
we obtain that (®')~! exists and is bounded. Furthermore, given
91,92 € X*, by (2.13) we have

(@) (1) — (@) Hg2)l1x < ei (11(@") " (91) 1 x
(@) g2) %) llgr — gallx-

so (®')~! is Lipschitz continuous for 1 < p < 2. Thus &' admits a
continuous inverse on X*. The proof is complete. ]

Lemma 2.11. ¥': X — X* is a continuous and compact operator.

Proof. First we will show that ¥’ is strongly continuous on X. For
this, let u, — w as n — oo on X; by [35] we have u, converges
uniformly to w on [0,T] as n — oo. Since f,I;, i = 1,2,...,l are
continuous, one has f(t,u,) — f(¢t,u) and I;(u,) — I;(u) as n — oo.
So ¥'(u,) — ¥'(u) as n — oo. Thus, we have shown that ¥’ is
strongly continuous on X, which implies that ¥’ is a compact operator
by Proposition 26.2 [35]. Moreover, ¥’ is continuous since it is strongly
continuous. The proof is complete. |

3. Existence results for (1.2). In the following results, we will
use the following notations:

e o2 (o) (25
som (2) (75 +oom2)

() = (St+1)k teo,2];
20 B 2Tk o B T 277,
_kt(7+TJ+E)+T<7+Ta+E) te [5. 5]

ys(t) = (55t + 1) k te [2Z,1].

<
—
~~
~
<
[V
—
o~
~
|
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F:/WZWwﬁ»ﬁfﬁﬂwF@m@Wt

T/3
T ! y(t:)
+/ F(t,y3(t))dt+z/ Ti(s) ds.
(21)/3 =170

Theorem 3.1. Assume that there exist positive constants k, d, 1, ;, u;
>0withl <p,l; <p,i=1,2,...,l, kPL > pd and a positive function
w € C([0,T]) such that:

(H1)

JEFEe)dt+ X, [0 I(s) ds
d
p{r = (Jy F(t,0(@) dt+ i, [ 1i(s)ds) }

< L ;

(H2) F(t,€) < u(t)(1+[€]") fort € [0,T] and € € [0, 00); [ I(s) ds <
pi(1+ [¢]") for & € [0, 00).
Then for each A € |A\1, A2, the problem (1.2) has at least three positive
solutions, where

kPL

M= P {r - ( JEEEO@) dt+ Y, [0 1(s) ds)}

and
d

JEFEe@)dt+ Y, @ 1i(s)ds

Ay =

Proof. From Section 2 we have seen that ® : X — R is a continuously
Gateaux differentiable and sequentially weakly lower semi-continuous
functional whose Géateaux derivative at the point u € X is the func-
tional ®'(u) € X*, given by (2.4). (®')~! exists and is continuous on
X*. ¥ : X — R is a continuously Gateaux differentiable functional
whose Géteaux derivative given by (2.5) is compact.

Now we will apply Theorem 1.1 to ® and V.
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For (i) in Theorem 1.1, by condition (H2) and Lemma 2.6 we have
lim (®(z) + AT¥(x))

ll]| x =00

T l
[ HO O e A 1+ o)

8 i
> lim —=|z|% — A(M; + [z]|) = +oo,
|z x —++oc0 P

where M; is a positive constant and 0 < [ < p. So (i) is satisfied.

To prove (ii) in Theorem 1.1, first we claim that

(A1) ¢ fo ))dt + 22:1 OQ(T) I;(s) ds)/r for each r >
0 and
(A2)
p2(r)
l Jy IF( — f(,0)y ()] dt
Jo POy (t)[pdt + p(T ) (U/V) ly(T )I" +p(0)2, (B/) ly(0)|P
s [ V) I (s) ds — (tz)}
fo (t)[pdt + p( ) p» (/%) (T )|p + P(O)q’p (8/a)ly(0)[?
(fo Dt + 3y [ Ii(s) ds) ]
L @)y (0) Pt + p(T ) p (@/7) [y(T)|P + p(0) 2, (B/a) ly(0)|P
for each » > 0 and every y € X such that
(3.1) o(y) =7

T
(3.2) / F(t,y™ (1) — F(5,0)y~ (1)) dt
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In fact, for » > 0, taking into account that ®~1!(]—oo,r[) =
@ ! (]—o0,r]) and z = 0 on [0,7] obviously belongs to ® ! (]—o0,7[)
and that ¥(0) = 0, we have

SUPgcp-1 —o0,r]) {fo t LE+ dt+z; lfo t)I dS}

r

p1(r) <

Thus, since z € @1 (]—o0,r]), that is, ®(z) < r, by Lemma 2.4 we
have

(3-3) [#]lsc < O(r).

As a consequence,

T zt(t:)
sup </ ))dt + / >
z€P~1(]—o0,r]) 0 Z
()
g/ F(t,@(r))dt+2/
0 = Jo

So (A1) is proved.

Moreover, for each 7 > 0 and each y € X such that (3.1) holds, we
have

ot Y(z) —¥(y)
re (0o ) B(y) — B(x)
_ inf fo (tat (6) = F(£,0)y~ (1) dt

2ed-1 o0 ] B(y)— ()

i [fo‘ﬁ““ Iz-(s)ds—u(ow*(ti)]
+

(y)—2(x)

pa(r) >

(Lt )= f e () dt
)-8

>, [f 1D 1) ds—r,-(O)z*(ti)}
+

o]

2(y)—2(x)
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Since (3.3) holds for z € @1 (]—o0, r]), we obtain

T
. [F(ty* (1)~ F(1,0)y~ (0)] dt
pa(r) > inf <f° B(y) ()

z€®1(]—o0,r[)
|

foy”fi) I;(s) ds—I; (0)y ™~ (ti)}
®(y)—2(2)

— foT F(t,8(r) dt+Zi:1 fo@(T) 1i(s) d5>

@ (y)— ()

and under further condition (3.2) we can write

[ IF@yt () £(0)y () dt
p [ p(0)ly (D17 dt-+(p(T)/p) 84 (0/7)[y(T)[P+(p(0) /p) 2, (/) |y (0) |7

22:1 I:fy‘*'(ti) I;(s) dsfli(O)y’(ti)]

wa(r) >

0

+ T
1/Pf0 Py’ (t)[Pdt+(p(T)/p)®p (o /¥)|y(T)|P+(p(0)/p)®p(B/ )y (0)|*
(fUT F(t,0(r) di+Y ! foe(” Ii(s) ds)
1/p foT (1) (1) |Pdt+(p(T) /p) 2y (o /%) |y(T)[P+(p(0)/p)2p(B/ ) y(0) |7
So (A2) is proved.

Now in order to prove (ii) in Theorem 1.1, taking into account (A1)
and (A2), it suffices to find r > 0, y € X such that (3.1), (3.2) and

JEFem) dt+ X, [0 I(s) ds
'S

fOT[F(t,y‘F(t))—f(t,O)y*(t)]dt+Zi:1 |:fy+(ti) Ii(s) dsfli(())y’(ti):|

0

fOT Py (8)|Pdi+p(T)2p (o /)|y (T)1P+p(0)2p(B/a)|y(0) |7

B [l F@ew)dtY | [P Li(s) ds )
fOT )|y’ (t)|Pdt+p(T)®p (0 /%) |ly(T)|P+p(0)2p(B/)|y(0)|?
hold. To this end, we define
y(t)
n() = (St+1)k te o, ZL];

ua(t) =kt (52 + ) + B (czm + ) +k te [5,2);

yg(t): (_7+0Tot+l)k te [%,T]a

(3.4)

<p
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and r :=d. Clearly y(t) > 0, y € X. The assumption kP L > pd means
(3.1). From (H1), it follows that (3.4) holds, which means (3.2) holds,
too. Applying Theorem 1.1, ® + AV has at least three critical points.
By Lemma 2.2, Lemma 2.3, problem (1.2) has at least three positive
solutions. o

By Theorem 3.1, it is easy to obtain the following corollary

Corollary 3.2. Assume that g : [0, +00) — [0, 4+00) is a continuous
function, and put G(¢ fo s)ds. Besides assume there exist positive
constants k,d,l,lz,u,u, >0 wzthl <p l;y <p,i=12...,l, and
kPL > pd such that the following conditions hold:

(H3)
I re(d)
[G(@(d)) + Z/O Ii(s) ds ] <; v kp%)
P [ [Mef(-—= .
S S
(H4) G(&) < p(L+ (€], fy Li(s) ds < p 1) for € € [0,00).
Then for each X € |A\1, A2], the problem
—(p(t)2p(2'(2)))" = Ag(x(t)) t#ti, t€0,T],
— Aoty (1)) = M (z(t) =12, 1,

az'(0) — Bz(0) =0, ~2'(T)+o0x(T)=0
has at least two positive solutions, where

AL
_ kPL

l
P %G((fﬁt+l)k)dt+ > f“w’) (s) ds—G(O(d)~ Y L:(O(d))

t; €[(2/3)T,T] i=1

A2
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Example 3.1. The problem

—((L+)23(2' (1)) = Ag(x(?)) t#t,t€0,1],
(3.5) —A((+0)P3(e' (1)) = Ma(z(tr) = 1/2,
2'(0) —2(0) =0, 32'(1) +2(1) =0,

where T=1,t, =1/2,p=3,p(t) =1+t,a=1,8=1,7y=3,0 =1,

:L‘/4 z < 4,
g(z) = h(z) = {l+104(ac) >4,

admits at least two nontrivial positive solutions for each A € ]0.16,0.3].

In fact, the functions

" _[a?/8 z < 4
G(m)_/o Il(s)ds_{x—2+(1o4/2)(:c—4)2 z > 4,

satisfy all the assumptions of Corollary 3.2 by choosing k = 10, d = 1/3.

4. Existence results for (1.3). In order to obtain the existence of
positive solutions for (1.3), now we consider the problem

—(p(O)2p(2' (1)) + s(t ) p(z(t) = Af(t, 2T (t) t#ti, t €0,T],
—A(p(t:)@p(a'(t:)) = Mi(z* (t:)) i=1,2,...,1,
az'(0) — Bz(0) =0, ~z'(T)+ oz(T) = 0.

Lemma 4.1. If z € C([0,T]) is a solution of (4.1), then x(t) > 0,
z(t) #0, t € [0,T], and hence it is a positive solution of (1.3).

Proof. The proof is similar to Lemma 2.2; we omit it here. a

Now we define the space Y = WP([0,T]) equipped with the norm
1/p

llly = (/OTp(t)w'(t)l”+8(t)lw(t)l”dt> ;

which is clearly equivalent to the usual one ||z||w1r; F, ||Z]|c are
defined in Section 2.
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For each z € Y, put

(12) B(r) = 17l | o) (5)p_l|x(T)|P +20 (@)p_lu(ow,

p p Y p \«

¥(w) = | " [Pl 1) - £, 000 (0] de
21/

Clearly, ® is a Gateaux differentiable functional whose Gateaux

derivative at the point z € Y is the functional El(x) € Y™, given
by

(4.3) (t:)
Ii(s) ds — I; (0).’13(t,):| .

T
(@ (2),0) = / p(t)2p (2’ (£)V' () + 5(t)@p((t))v(t) dt
(4.4) 0

+ o), (2)1em)? + o013, (£ ) aop

for every v € Y, and @ .Y — Y* is continuous. Moreover, taking into
account that @ is convex, from Proposition 25.20 (i) of [35], we obtain
that ® is a sequentially weakly lower semi-continuous functional.

It is easy to see that ¥ : Y — R is a Gateaux differentiable functional
whose Gateaux derivative at the point « € Y is the functional ¥'(z) €
Y* given by

T l
(4.5)  (¥'(z),v) = —/0 Ft, 2™ (t))v(t) dt — Zfi(ﬂv*(ti))v(ti)
for every v €Y.

Lemma 4.2 [31]. If the function x € Y is a critical point of the
functional ® + AV, then x is a solution of (1.3).

Remark 4.1. By Lemma 4.1 and Lemma 4.2, if z € X is a critical
point of the functional ® + A¥, then z is the positive solution of (1.3).
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Lemma 4.3. Ifz €Y, and there exists anr > 0 such that ®(x) < r,
then

1/q -1/p
lelloo < 477 [(%) (O) e 700 (ass inf o) | = 00

)

Proof. The proof is the same as that of Lemma 2.4. ]
Lemma 4.4. & :Y — Y* admits a continuous inverse on Y*.

Lemma 4.5. ® :Y — Y* is a continuous and compact operator.

Proof. Since ||z||y is equivalent to ||z||y1.», the proof is the same as
Lemma 2.11. |

In the following results, we will use the following notations: L, y(t)
and I' are defined in Section 3. Besides, we define

o- [

Theorem 4.6. Assume that there exist positive constants k, d, I,
liy i > 0 with I < p, l; < p, kPL > pd and a positive function
w € C([0,T]) such that:

(L1)

S F(t,(d)) dt + i S D 15(s) ds
5
P {r - ( ST F(t,0(d)) dt + ié 12D 1(s) ds> }
k(L + Q) ’

<

(L2) F(t,€) < p(t)(1+€]") fort € [0,T] and & € [0, 0); fo s)ds <
pi(1+ [¢]") for & € [0, 00).
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Then for each A € |A1, \a[, the problem (1.3) has at least three positive
solutions, where

kP(L + Q)

p{F—<foT( O(d)) dt+2fo(d)fz >}

AL =

and

d

S F(t,0(d)) dt + i 12D 1(s) ds

A2

Proof. From the above arguments, we have seen that ® : Y — R is a
continuously Gateaux differentiable and sequentially weakly lower semi-
continuous functional whose Gateaux derivative at the point u € Y
is the functional @ (u) € Y*, given by (4.5). (®)~! exists and is
continuous on Y*. ¥ :Y — R is a continuously Gateaux differentiable
functional whose Gateaux derivative given by (4.5) is compact.

Now we will apply Theorem 1.1 to ® and V.
For (i) in Theorem 1.1, by (4.2) and condition (L2), we have

lim  (®(z) + \¥(x))

llz|ly —+oo
> im - )1+ |z(t dt A i1+ |z >
|||y —+o0 < p / Ja( ZM Jat ]
. =y 7
> i (M + [ally)

" lzlly—+oo P

= +OO,

where M5 is a positive constant and 0 < [ < p. So (i) is satisfied.
To prove (ii) in Theorem 1.1, first we claim that (Al) (Section 3,
Theorem 3.1) holds for each r > 0 and
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p2(r) > p Jo [F(t,y* (1)) = £(£,0)y~ ()] dt
2 - ||y‘|113/+P(T) (U/'y)| ( )|p+p(0)¢‘p(ﬂ/a) |y(0)|P

> [0 i) ds — 1 O)w 1)
T T A%, @ T P+ o0, (5/a) W)
(fOT F(t,0(d)) dt + 2 I 1(s >
~ T+ A0, /@ T 7078, (Bra) WO

for each r > 0 and every y € Y such that
(4.6) B(y) >

and (3.2) hold.
It is the same to the proof in Section 3, (A1) holds.

Moreover, for each r > 0 and each y € Y such that (4.6) holds, we
have

I T 1)
SOZ( ) = zed ]foor) Q(y) (I)( )

N inf < Jy PGyt )70y~ (1) dt

25 Lm0l T(y)-2()

5 [f D 1) ds—h(@)y*(n)]

i=1
+ )3
ST Pt @) 0 )] dt+Z [f Y 1) ds- 0 (1)
B B(y)— <1>(m>

Since [|z||oc < O(r) holds for = € 571(] — 00,r]) and (3.1) holds, we
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obtain

STyt )10y 1dt+2{f” 9 1i(e) s 1,00y (1)
p2(r) 2 p TS +o(T) @, (o /79 (D) [P +p(0)@, (B/a)[y(0) P

fo F(t,0 r))dt—i-z fe(r) )ds

iy +o(T)@ p(a/'v)ly(T)\P+P(0)‘1> (B/a)ly(0)[P

So (B) is proved.

Now in order to prove (ii) in Theorem 1.1, taking into account
(A1) (B), it suffices to find r > 0, y € Y such that (3.2), (4.6) and

JEF(t,0(r)) dt + é S0 1(s) ds

r

. Jo [F (6, (8) = £(t,0)y (1) dt
oIy + o(T) 2, (7/2) [u(T)IP + p(0)®, (/0 (07

[ s - 10w ()]

T+ p(_ T)2, (a/7) [y(T) P + p(0)®, (B/) [y(0)|P
ST F(t,0(r)) dt + il S0 I1(s) ds

Nyl + p(T)@, (/) Iy(T)ZI;+ p(0)®, (8/a) |y(0)[?

hold. To this end, we define y(¢) as in Section 3 and r := d. Clearly
y €Y, and
(4.8)

WL < ol + ()%, (2 )@l + s, (L) o 122+ ),
The assumption kP L > pd means that ®(y) > (||ly||5-/p) > (k?L/p) > d.

From condition (L1), it follows that (4.7) holds, which means that (3.2)
holds, too. Applying Theorem 1.1, & + AV has at least three critical
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points. By Lemma 4.1 and Lemma 4.2, problem (1.3) has at least three
positive solutions. ]

By Theorem 4.6, we have the following Corollary.

Corollary 4.7. Assume that g : [0,00) — [0,00) is a continuous
function, and put G(¢ fo s)ds. Besides assume there exist positive
constants k, d, 1, u, l“ ul >0 wzth l<p,;<p,t=12,...,1, such that
kPL > pd and the following conditions hold

(L3)
[G(@(d)) + il /0 " ) ds] G + m>
< /fp(Ler Q) |:/(21;“)/3 G(( v+ Tat T l>k> a
" ti 6[(;3)T T] / :|
(L4) G(&) < m(1 + [&]"), [y Li(s)ds < pui( k) for € € [0,00).
Then for each )\ e A1, A2, the problem
(4.9)

—(p(t)2p("(2)))" + S(t)‘l’p(w(t)) = Ag(x(t)) t#t,te[0,T],
—A(p(ti) @p(@'(t:))) = Mi(2(t:)) i=12,...,1
az'(0) — Bz(0) =0, ~z'(T)+ox(T) =0,

has at least two nontrivial positive solutions, where

A = kP (L+Q)
p| fop O smtr)k) a3 [PV LG Zf@‘d) (s)ds
3
t; 6[23T T]
and J
Ao =
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Example 4.1. The problem

(4.10)
—((1+8)®3(2' (1)) + (1 + 1) ®3(z(t)) = Ag(z(t)) t#t1,te€[0,1],
—A((1+t1)23(2'(t1))) = M1(2(t1)) th =1/2,

2(0) — 2(0) =0, 32'(1) + z(1) =0,

where T=1,t1=1/2,p=3,p(t) =1+t s(t)=1+t,a=1,=1,
y=3,0=1,

x/4 x < 4,
1+104%z —4) =>4

o) = (o) = {

admits at least two nontrivial positive solutions for each A € ]0.0008, 0.3][.

In fact, the function

" _ [a?/8 r < 4
G@y_llﬂﬂ“_{x—wuwwm@_@2m>4

satisfy all the assumptions of Corollary 3.2 by choosing k¥ = 10, d = 1/3.
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