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THE cd-INDEX OF THE POSET OF INTERVALS
AND E;-CONSTRUCTION

DUSKO JOJIC

ABSTRACT. Given a graded poset P, let I(P) denote the
associated poset of intervals and FE¢(P) the poset obtained
from P by the Fi-construction of Paffenholz and Ziegler [7].
We analyze how the ab-index behaves under those operations
and prove that its change is expressed in terms of certain, quite
explicit, recursively defined linear operators. If the poset P is
Eulerian, the recursive relations for those linear operators are
interpreted inside the coalgebra spanned by ¢ and d. We use
these relations to prove that the cd-index of the dual of the
poset of intervals of the simplest Eulerian poset is the same
as the cd-index of appropriate Tchebyshev poset defined by
Hetyei in [5].

1. Introduction. Throughout this paper, we will consider graded
posets with rank function r. We refer to [8] as a good general
reference for the poset terminology. For a poset P of rank n + 1
and S C [n] = {1,2,...,n}, let fs(P) denote the number of chains
1 < xy < -+ < x)g) such that § = {r(z1),r(22),...,r(25)}. The
sequence (fs(P))scpn) is called the flag f-vector of P.

The flag f-vector of P can be encoded as a homogenous noncom-
mutative polynomial in the variables a and b. Let P be a poset of
rank n + 1. To every chain

c={0<z <z < <z <1}

of P we associate a weight wt (¢) = wjws - - - w, where

Wi — {b ifie{r(zy),r(xz2),...,r(zk)};
! a— b otherwise.
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Now, the ab-index of P is defined as

(1) Up= Y wt(o).

¢ chain in P

A finite graded poset is Fulerian if every interval of rank at least one
contains as many elements of even rank as of odd rank. The face lattices
of polytopes, and more generally, of regular C'W-spheres are Eulerian.
The linear span of the flag f-vectors of all polytopes (and all Eulerian
posets) is described by generalized Dehn-Sommerville equations ([1,
Theorem 2.1]).

Bayer and Klapper proved in [2] that the ab-index of an Eulerian
poset can be written as a polynomial in the variables ¢ = a + b and
d = ab + ba. This polynomial ®p is called the cd-index, and this is
the most efficient way to encode the flag f-vector of Eulerian posets.

Ehrenborg and Readdy in [4] used some coalgebra techniques to
determine the changes of the cd-index of a polytope (more generally, of
an Eulerian poset) under certain geometric operations, such as taking
a pyramid or prism.

Let P denote the vector space over Q spanned by all isomorphism
types of graded posets. If P denotes the isomorphism type of P, the
coproduct A : P — P ® P is defined on generators by

A(P) = Z [0, 2] ® [, 1].

O<z<i

Using the Sweedler notation (9], we write A(P) = Y 5 P(1)® P(2). The
above-defined coproduct is coassociative because it satisfies (A ® id) o
A = (id® A) o A. Therefore, we can define AF*! = (A*o0id) o A. Note
that A%2 = A, and using Sweedler notation we can write

A*(P) = Z [20,21] @ +++ ® [T)—1, Tk]

ﬁ:zg<z1<---<zk:i

= ZP(l) ® P2y @+ @ Pry-
P

There is a natural coproduct A on the algebra Q(a,b). For an ab-
monomial u = wjug - Up, let Au) = D0 Ut Uim1 @ Ui Un,
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and extend A by linearity to Q(a,b). Obviously, A is coassociative
and AF(u) = 0 when the degree of an ab-monomial u is less than k.

Proposition 1 [4]. The ab-index of posets is a coalgebra homomor-
phism. That is, for a poset P we have

ATp)= Y 45,07,

0<z<i

From the above proposition and from coassociativity of the coprod-
ucts it follows that

(2) Yoo A Tew) fe (T en)

O=zo<z; - <zp=1

= Zfl(‘llpu)) o 'fk(\IIP(k))
¥p
for any linear maps f1, fo,..., fr on the algebra Q(a,b).

Since A(a+b)=2-1®1 and A(ab +ba) =c® 1+ 1Q c it follows
that Q(c,d) is closed under the coproduct A. Also, if £ denotes the
subspace of P spanned by all isomorphism types of Eulerian posets, it
is easy to see that £ is closed under the coproduct. The cd-index is a
coalgebra homomorphism between £ and Q(c, d).

In [3] the following lemma is stated
Lemma 2 [3]. The linear map ¥ : P — Z(a,b) is surjective.

If P is the face lattice of a polytope V', then P x B is the face lattice of
the pyramid over V. So, for a poset P we can define Pyr (P) = P X Bj.

Proposition 3 [4]. Let P be a graded poset. Then
Ypup, =¥Yp-a+b-¥Yp+ Z\I/P(l) -ab - \pr(2)
¥p

—Up-b+a-Up+» Up, -ba-TUp,.

Vp
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The above proposition defines the linear map Pyr : Q(a,b) —
Q(a, b) by
Pyr (u) :u-a+b-u+2u(1) -ab - u(y)

(3)
:u-b+a-u+2u(1)-ba-u(2),

and for any polytope (poset) P we have that ¥py, p = Pyr (¥p). Also,
in [4], it is proven that the map Pyr can be described by

(4) Pyr(u) = u-(a+b)+ G(u),

where the derivation G is defined on the generators of the algebra
Q(a, b) by G(a) = ba and G(b) = ab. Since G(c) = d and G(d) = cd
holds, the restriction of the map Pyr on Q(c,d) is described with the
formulae (4).

The ab-index also has a product structure. For two posets P and
Q) we have that Vp.o = ¥p - Y. If we denote with H, the finite
ladder poset of rank n + 1, i.e., H, 1 is the star product of n copies of
BQ, then @Hn+l =c".

The star involution is defined on Q(a,b) such that it reads ab-
polynomials backwards. For u = ujus - - - u, we have u* = upt,_1---u1.
If P* denotes the dual poset of P, then we have that ¥p- = ¥}%.

The diamond product on posets is defined by
PoQ=(P\{0}) x (@\{0}) u{0}.

This product corresponds to the Cartesian product of polytopes, and
therefore for a poset P we define Prism (P) = P ¢ By. In [4] the linear
map Prism : Q(a, b) — Q(a, b) is defined by

Prism (u) =u- (a + b) + Z U(y) - (ab + ba) " U(2),
and it is proven that Wp,gy, (py = Prism (¥ p) holds for any poset P.

2. The interval poset. The interval poset I(P) of a graded poset
P is the set of all closed intervals of P ordered by containment:

[z,y] < [2',y'] in I(P) ifand only if ' <x <y <y in P.
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We also adjoin the empty interval to I(P) as the minimal element.

Lindstrém in [6] noted that for all n € N the interval poset of the
Boolean lattice By, (the face lattice of an (n — 1)-simplex) is the face
lattice of an n-cube, i.e., I(L(A,-1)) = L(C,,). Also, in [6] he asked
wether it is true for every polytope V' that there exists a polytope W
such that I(L(V)) = L(W).

Proposition 4. (i) For any poset P we have that I(P) = I(P*).
(ii) Intervals in the poset I(P) have the following form

[[w,y], [mlvyl]]I(P) = [mlvm]* X [yayl]’ [6’ [mvy]] I(P) = I([mvy])

(iii) Let P be a graded poset of rank n. Then I(P) is a graded poset
of rank n+1 and r([z,y]) = r(y) —r(z) + 1. Also, the f-vector of I(P)

18
n—i+1

FI(P) = Y firi-y(P):
=0

(iv) For any poset P we have that

Proof. Obviously, statements (i)—(iii) follow directly from the defini-
tion of I(P).

We define F : I(P x By) — I(P)oBy by F([(z,p), (v,9)]) = ([z, y],7),

where
{1} ifp=g=g,
r=4q1{2} ifp=g=1,
1,2} ifp#a.
It is easy to verify that F' is an isomorphism. ]

If V and W are polytopes such that I(L(V)) = L(W), then (as a
special case of (5)) we have that I(L(Pyr (V))) = L(Prism (W)).

Now, we wish to express the ab-index of I(P) in terms of ¥p.



532 DUSKO JOJIC

Proposition 5. There exists a linear map T : Q{a,b) — Q(a,b)
such that for any graded poset P the identity ¥rpy = Z(¥p) holds.

Proof. We say that a chain
C= {6 =@ < [zo,y0] < [z1,31] <--- <[zr,yr] < [OPaiP] = i}
in I(P) corresponds to a chain ¢ in P if and only if the multi-chain
Op<z, <z 1< Swo<yp<p<y<--<y <dp

in P contains exactly those elements which appear in ¢. Note that for
every chain C' in I(P) there exists the unique chain in P which corre-
sponds with C. For a chain ¢ in P we denote S(c) = {C chain in I(P) :
C corresponds with c}. Obviously, {S(c) : ¢ chain in P} is a partition
of the set of all chains in I(P). Therefore, we obtain that

‘I’](P) = Z wt (C) = Z Z wt (C)

C chain in I(P) ¢ chain in P CeS(c)

Further, if two chains ¢ and ¢’ have the same contribution to ¥p, i.e.,
wt (¢) = wt ('), then there exists an obvious bijection between the sets
S(c) and S(c’) which preserves the weights of chains. So, with

I(wi(e) = 3. wt(C)

ceS(c)

a linear map is defined which satisfies the statement of the proposi-
tion. O

Now, we describe recursive relations for Z. It is easy to see that
I(l)=a+b.

Theorem 6. For any ab-monomial u the following formulas hold:

(6) Z(u-a)=Z(u)-a+ (ab+ba)-u" + ZI(u(g)) -ab -y,

(7)  Z(u-b) =Z(u) - b+ (ab+ba) - u* + Y Z(up))-ba-u).
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Proof. For an arbitrary poset P, we consider a new poset P obtained
from P by adding a new element 1 such that 2 < 1 for all z € P.
Obviously, we have that ¥+ = Up - a.

We divide all chains of I(P) into four sets:

1. Chains in which intervals of I(P) containing I do not appear.
These are exactly the ”old” chains of I(P) which may end with [0, 1]
(but not necessarily). From relation (1) it follows that the contribution
of all such chains to ¥ 1(P) is exactly ¥;(p) - a.

2. Chains in I(P) which begin with [I, I]. All such chains may contain
the interval [1, 1] (but not necessarily). From (ii) of Proposition 4, we
obtain that the contribution of all such chains to ¥ 1(P) is

b-(a—b): > wt(c)*+b-b- Y wt(c)' =ba- T}

¢ chain in P ¢ chain in P

3. Chains which contain [1, I] but do not contain [I,1]. These chains
may (but again, may not) begin with [1,1] and their contribution to
\III(F) is

b-b Y wt(e)+(a-b)-b > wt(c)" =ab- .

¢ chain in P ¢ chain in P

4. Chains in which 1 appears for the first time in the interval [z, 1]
(for an z € P, z # 1,2 # 0). Such chains may contain [z, 1] (but not
necessarily).

From (ii) of Proposition 4 we have that [&, [z, i]][(;) >~ I([z,1]p) and
[[x,1],[0,1]] = [0, 2]%. So, the contribution of all such chains to ¥
is exactly

Z Z Z wt (c) -ab - wt (c')*
z€P\{0,1} ¢ chain in I([z,1]) ¢/ chain in [0,z]

= Z I(‘I’[z,i]) -ab -, 5. = ZZ(‘I’P@) -ab- ‘Iﬂ;’m'
zeP\{0,1} Tp

1(P)

The last equation above follows from relation (2).
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So, by adding the weights of all chains of I(P) we obtain that (6) holds
when w is the ab-index of some poset P. From the linearity of Z and
Lemma 2 it follows that (6) holds for any ab-monomial u.

In order to prove the formula (7), for an arbitrary poset P we shall
consider the poset P’ = P % Bs. Let us denote two coatoms of P’ with
1" and 1”7, and the maximal element of P’ with 1. Obviously,

Z(Up)=Z(¥p-(a+b))=Z(¥Yp-a)+Z(Tp - b).

Chains in I(P’) in which 1" does not appear are in bijection with
chains of P, and their contributions to VU (py are exactly Z(¥p-a). So,
we have that Z(Up - b) is equal to the contribution of chains of I(P’) in
which 1" appears. Again, we divide the set of all such chains of I(P’)
into four parts:

1. Chains in which 1” appears only at the end (in the interval [0,1").
These are exactly the old chains of I(P) with added [0,1”]. Their
contribution to ¥;(py is exactly Z(¥p) - b.

2. Chains which contain [1”,1], but do not contain [1”,1"”]. All such
chains may begin with the interval [1,1] (but not necessarily). The
contribution of all such chains to ¥;(p) is ab - ¥%.

3. Chains in which 1” appears for the last time in an interval [z,1"]
(for an z € P\ {0,1}). Any such chain may contain [z,1] (but
not necessarily). By using (ii) of Proposition 4 we obtain that the
contribution of all such chains to ¥ (p/) is

Z Z Z wt(c) - ba - wt(c')*
z€P\{0,1} ¢ chains in I([z,1]) ¢/ chains in [0,z]

= Z I(‘I’[z,i]) “ba- ¥, 5. = ZZ(‘I’P@) ~ba- ‘Iﬂ;’m'
zeP\{0,1} Tp

4. Chains in I(P’) which contain [1”,1"”] but do not contain [z, 1"]
(for all z € P). All such chains may (but again, may not) contain
[1”,1], and their contribution to ¥ (p/) is ba- VL.

By adding all the obtained contributions we can conclude that the
formula (7) holds when w is the ab-index of a poset. Using the same
argument as before we obtain that (7) is true for any ab-monomial u. O
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From (i) and (iv) of Proposition 4 we obtain that

Z(¥p+) = Z(¥p) and Z(Pyr (U p)) = Prism (Z(¥p))

holds for any graded poset P. Lemma 2 and the linearity of Z provide
that the above formulas hold for any ab-monomial w. Further, from
the previous theorem, we obtain that the operator Z commutes with
the “bar” involution (which interchanges variables a and b), i.e., for
any ab-monomial u we have that Z(a) = Z(u).

From (ii) and (iii) of Proposition 4, it is easy to see that the operation
P — I(P) preserves the property of being Eulerian. Therefore, for an
Eulerian poset P we have that ®;p) = Z(®p).

The recursive relations for the operator Z inside the algebra Q{c,d)
are described with the following

Corollary 7. Let u be a cd-monomial. Then
Z(u-c)=Z(u) -c+2d - u* + Zl(u(g)) -d - ufy,

Z(u-d) =Z(u) d+(dc+ed) u* +d-u"-c
+Z(I(U(z))'d'PYf(“fn)de'“?z)'d'“a))‘

Proof. The first relation is easy to obtain by adding (6) and (7).
From (7) it follows that

Z(u-ab) =Z(ua) - b+ (ab + ba) - au™ + ZI((ua)(g)) -ba - (ua)(y.

ua
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As we have that A(ua) =u® 1+ ) un) ® u2)a, it follows that
Y I((ua)z) - ba - (ua)f,
=(a+b)-ba-u'+> ZI(uxa)- ba-uf)
= applying relation (6;
(a+b)-ba-u" + Zz(u@)) -aba - u())
+ Z(ab + ba) - up,) - ba - uf)

+ ZI(U(3)) -ab - u(y - ba- uf).

Using the above relation and (6) we obtain that
Z(uab) =Z(u) -ab+ (ab+ba)-u*-b
(8) + ) I(yw)-ab-ufy) b
—i—(;b—i-ba) -a-u"+ (a+b)-ba-u”
+ ZI(U(Q)) -a-ba-ufy

+ Z(ab +ba) - up,) - ba-uf)

+) " Z(u) - ab - ufy) - ba-ufy).

Similarly, by applying (6) and (7), we obtain that
Z(uba) =Z(u) - ba+ (ab+ ba) - u* - a
(9) + Zl(u@)) -ba-u(y -a
+(:1b+ba)-b-u*+(a+b)-ab-u*
+ ZI(u(g)) b-ab-uf) + Z(ab + ba) - uf,) - ab - uf,

+ ZI(U(g)) -ba-ufy) -ab - ug).
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Now, by adding relations (8) and (9), and by using Proposition 1 and
relation (3), we obtain the second formulae of the corollary. o

Hetyei in [5] introduced general Tchebyshev posets as follows:

For a locally finite poset @, let T(Q)) denote the set of all ordered
pairs (z,y) € Q x Q satisfying z < y, and we define (z1,y1) < (z2,¥2)
when y; < x5 or 1 = x5 and y; < ys.

Let P* denote the poset —1 <1< —2,2< —3,3< .- < ---. Pairs
of elements separated with a comma are considered incomparable.

Definition 8. The Tchebyshev poset T, is the interval [(—1,1),
(—=(n+1),—(n+2))] in T(P*).

One of the most interesting properties of the posets 7;, is that the nth
Tchebyshev polynomial arises from the cd-index upon evaluating @7,
at ¢ = z,d = (22 — 1)/2. For a cd-monomial w and a cd-polynomial
®, let [w]e denote the coefficient of w in ®. In [5, Theorem 7.1], the
following is proved

(10) [cMdc™d---cFrdefr]  =2"(ky + 1) (k2 + 1) (ky + 1)

Trny1

Theorem 9. The poset I(Hp41)* and the Tchebyshev poset T, o
have the same cd-index.

Proof. From Corollary 7 we obtain

n—1
(11) @sm,,,) =Z(c") = @, - ¢ +2dc” + 2 Z ®;(p,)de™ 1,

j=1

Using induction, we can prove that the coefficient of the cd-monomial

w = ckFrdckd - - - cFrdckr+1 in Pr(H,.0) IS

(12) [w]‘i’lwnm =2"(kpy1 + D) (kp + 1) (kg + 1),
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When k.41 > 0, from (11) it follows that

[w]e = |cfdckad - - - cFrdehrer Tt
I(Hp41)
Pr(sn)

. kl k e kr
+2-[c"dcyd ¢ ]¢I(H"717kr+1).

So, from the inductive assumption we have that
[Wle, i, =2 ks (kr +1) -+ (k2 +1)
+2-27 ke + 1) (kpy + 1) - (k2 + 1)

and (12) holds. The proof of relation (12) is similar if k,+; = 0. Now,
the statement of the theorem follows from (10). u]

Although posets T;,41 and I(H,)* have the same cd-index, for n > 2
they are not combinatorially equivalent. Note that in 7}, there is no
element of rank 2 which covers [—1, —2] and [1, 2] simultaneously, while
any two elements of I(H,,) of rank n have at least one element of rank
n — 1 which is covered by both of them.

Remark 10. Using the same ideas as in [5, Section 4], we can prove
that the order complex of the unsigned Tchebyshev poset U,, (without
the maximal element) and the order complex of the poset of intervals
of the poset 1 < 2 < --- < (n+ 1) (without the minimal element) are
the same triangulation of the n-simplex.

Let I' be a geometric realization of the order complex of A(P \
{0,1}). The geometric realization of A(I(P)\ {0;(p), 17(p)}) induces a
triangulation of the suspension of I'. As a consequence, it follows that
the order complex A(I(H,_1)\{(0,1)}) gives us the same triangulation
of the n dimensional cross-polytope as the order complex A(T,,\ {0, 1}).

3. FEi-construction for posets. Paffenholz and Ziegler define in
[7] the E;-construction for posets as follows:

Let P be a graded poset of rank d + 1 with a rank function r. For an
integer t € {0,1,... ,d — 1}, let E;(P) denote the set
{(z,z) :x € Pr(x) =t+1}U{(y,2) : Jz € P,r(z) =t+1l,y < z < z}
u{o}
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ordered by reversed inclusion. For example, F;(B,,) is combinatorially
equivalent with the dual of the face lattice of the hypersimplex A, (t+
1). Note that E;(P) is also a graded poset of rank d+1. For any graded
poset P we have that

(13)  Eyp)—1(P) =P, Ey(P) =P, E(P)= E.(p)—t—1(P").

Now, we are looking for linear maps &; : Q(a,b) — Q(a, b) such that
Vg, (p) = E(¥p) holds for any graded poset P. The existence of such
maps can be proven in the same way as in Proposition 5.

From Lemma 2 and relation (13) we have that for all ab-monomials
the following holds:
(14) Eluj-1(u) = u, & (u) = u* and & (u) = &y)—¢—1(u"),

where |u| denotes the degree of monomial u. Using the same ideas as
in the previous section we can prove the following theorem.

Theorem 11. Let u be an ab-monomial. Then, for all t =
1,2,...,|ul —2:

Ei(u-a)=a-&u)+ Y uq)-ba-Eipug(ue),

u,ury|<t

E(u-b)=b-E(w) + D uq)-ab-Eijuy ().
u,|u(y|<t

Note that in the above sums only those summands of A(u) appear in
which the degree of u(;) is lower than t.

If P is an Eulerian poset, then E;(P) is also Eulerian ([7, Theo-
rem 1.4]). In that case, the computation of the cd-index of E¢(P) is
described by

Corollary 12. Let u be a cd-monomial. Then, for all t =
1,2,...,|ul —2:

(15)  &(uee)=c &)+ D uqy d- i) (ue)-

u|un|<t
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Also, for allt =1,2,... ,|u] — 3, we have that

E(u-d)=d &)+ Y Pyr(uw) d-E1juy(ue)-
u,|u(ry| <t

From relation (14) it follows that &), —2(u-d) = &1(d - u*), which
completes the recursive relations for operators & inside the coalgebra
Q(c,d).

The above formulas seem overly complicated, and we cannot express
the coefficients of £;(c™) (as we did in the proof of Theorem 9 for
Z(c™)). But, if we define an operator X : Q(c,d) — Q{c,d) with
X(u) = E(u) + E(u) + -+ + Ey)-1, we have the following

Theorem 13. Let w = cFrdck2d - - - cF~dckF+1 be a cd-monomial of
degree n. Then the coefficient of w in X(c™) is

2"(k1 + )(ke + 1)« (kr + L)kpga.

Proof. We apply relation (15) and obtain

n—3
X)) =c"+c-X(c" M) +2- Z cdd- X(c"I72).
j=0
The rest of the proof is the same as in Theorem 9. ]

For two posets P and @ of the same rank n + 1 we define
PoQ=(P\{0p,1p}) U (Q\{0q To}) U{0,1}.
When P and @ are Eulerian with an odd rank 2k + 1, then Po @Q is

Eulerian, and ®pog = ®p + @ — (c? — 2d)*, see [4]. For n = 2k + 1,
we define the poset X,, as follows
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Corollary 14. Let n be an odd positive integer. Then the coefficient
of the ed-monomial w = cF*dc?d - - - cFrdch 1 of degree n—1 in ox,
18

2" (k1 + 1) (k2 + 1) -+ (kyr + Dkpy1 — (=2)"(n = 1)
[w] = if all k; are even;
2"(k1 + 1)(ka+ 1) -+ (kr + 1)kpgn

otherwise.

From [7, Theorem 2.1], we can conclude that the order complexes
A(E;(H,)) give us the subdivisions of the cross-polytope, which differs
from the subdivisions described in [5, Section 4] and Remark 10.
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