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ON A-CONVEX NORMS
ON COMMUTATIVE ALGEBRAS

JORMA ARHIPPAINEN AND JUKKA KAUPPI

ABSTRACT. We study such norms on commutative alge-
bras for which the multiplication is separately continuous. By
comparing a given norm || || to its operator semi-norm || ||op,
we get two constants m(]| ||) (the modulus of m-convexity)
and 7(|| ||) (the modulus of regularity). We study how these
constants are connected to the m-convexity and to the A-
convexity of || ||. In particular, we give a concept of an ir-
regular norm and study some properties of such norms. Fur-
ther, we will give a generalization of the famous theorem of
Gelfand, which states that a complete A-convex norm || || is
always equivalent to some m-convex norm | |, and if the al-
gebra has a unit element e, this norm can be chosen so that
le] = 1.

1. Introduction. In this paper, A will denote a commutative
algebra over the field C of complex numbers. If A has a unit element,
it will be denoted by e. Let || || be a usual linear-space norm on A.
The topology on A defined by || || will be denoted by T(|| ||). It is
said that the multiplication on A is separately continuous with respect
to the norm || ||, if the mapping (x,y) — zy from A x A into A is
continuous with respect to one component, when the other one is fixed
(A x A is provided with the usual product topology induced by T'(|| ||))-
Moreover, the multiplication on A is said to be jointly continuous with
respect to the norm || ||, if the mapping (z,y) — zy from A x A into A
is continuous with respect to both components at the same time. The
norm || || is said to be absorbingly convex (shortly A-convex) on A, if
for each z in A there exists a constant M, > 0 (depending on z) such
that

oyl < M, yll for all y in A.

Moreover, the norm || || is said to be submultiplicative or multiplica-
tively convex (shortly m-convex) on A, if

lzyl| < |lz|l|ly|| for all z and y in A.
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Clearly, every m-convex norm is A-convex, but the converse is not true
in general. It is easy to verify that the multiplication on A is separately
continuous with respect to the norm || || if and only if || || is A-convex on
A. Further, the multiplication on A is jointly continuous with respect
to the norm || || if and only if there exists a constant M > 0 such that
lzy|] < M||z||||y|| for all z and y in A. If M > 0, then M| || is an
m-convex norm on A, and if M = 0, then the multiplication on A is
trivial. Hence, in this case || || is m-convex on A. So the multiplication
on A is jointly continuous with respect to the norm || || if and only if
| || is equivalent to some m-convex norm on A.

Let now || || be an A-convex norm on A. The operator semi-norm

| llop of || || is defined on A by

(1.1) [zllop = sup [lzyl, z,y € A.
lylI<1

Obviously || ||op is an m-convex norm or semi-norm on A. If ||z||op = 0
for all z € A, then the multiplication on A is trivial. Further, every
such z € A for which ||z||,p, = 0, is an annihilator of A. Hence, || ||op is
anorm on A if and only if A does not contain any nonzero annihilators.
It is easy to see that

(1.2) lzy|| < ||z|loplly]| for all z and y in A.

Note also that (k|| ||)op = || |lop for every positive real k.

In this paper, we study A- and m-convexity of norms on commutative
algebras. We are also interested in how the presence or the absence of
a unit element impacts the multiplicative structure of such algebras.
As will be shown, the operator semi-norm || |lop of a given norm || ||
plays an important role in the study of these properties. In particular,

the case where || || and || ||op are not equivalent is interesting, since the
operator norm has a strong influence on many properties of (A4, ]| ||)-
In the rest of the paper, || || will always denote a linear-space norm on

A, which is at least A-convex. When we study a commutative algebra
A equipped with || ||, we will say that (A, ] ||) is a normed algebra. If
the norm || || is m-convex and complete on A, then (A, || ||) is said to
be a Banach algebra.

2. On m-convexity of norms. We first state an important result
concerning A- and m-convexity of norms. Namely, according to the
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well-known theorem of Gelfand (see [11, Theorem 1]), we have the
following:

Theorem 2.1. Let A be a commutative algebra and || || a complete
norm on A, making the multiplication separately continuous. Then
there exists an m-conver norm | | on A that is equivalent to || ||, and

if A has a unit element e, the norm | | can be chosen so that |e| = 1.

As a matter of fact, in the case when A has a unit element, we can
just take | | = || |lop. On the basis of Theorem 2.1, complete and A-
convex norms can be considered as m-convex norms. Further, in the
case when A is unital, it can also be assumed that the norm of the unit
element is one.

For nonunital algebras, the proof of Theorem 2.1 has been presented
in the literature usually in the following way: Let A, = A x C be the
unitization of A, and let || ||, be an extension (the so-called l;-extension)
of || || onto A, defined by

(2.1) (@, @)lle = llzll + lal,  (2,0) € Ae.

Now A can be considered as a subalgebra of B(A.) = the algebra of all
|| ||e-bounded linear operators on A., and the equivalent norm to || ||
is the operator norm of || ||c on A, restricted to A, i.e.,

|CE| = (H(an)He)op (e) = Sup ||wy+,8w||
lyll+B81<1

Here op (e) denotes the operator norm on A.. It must be noted that this
norm includes an extra scalar component coming outside the algebra
A, which makes the use of (||(-,0)||e)op (¢) more or less complicated (see
for example [15, Theorem 1.3.1], [20, Theorem 2.4 and Corollary 2.5],
[19, pages 3-5] and [18, Proposition 1.1.9]). We will later show that
the norm (||(-,0)[|¢)op () can be replaced by another equivalent norm,
in which only the elements of A are used (see Example 4.1). Another
method for proving Theorem 2.1 is the following: First it is shown that
for the complete norm || ||, separate continuity of the multiplication
implies that the multiplication is in fact jointly continuous. Then the
norm || || is replaced by a new norm C| || (C a positive constant),
which is m-convex. For this technique, see [12, Theorem 0.3.4 and
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Proposition 1.2.5]. We will later take a closer look at this method, but
in a slightly different way. The weakness of this technique is that the
property |e| = 1, or its extension to the nonunital case, cannot be taken
into account so easily. However, we shall later introduce a technique,
where the condition |e| = 1 can be generalized to nonunital algebras.

Let || || be an A-convex norm on A. In a way, the operator semi-norm
| llop gives frames for the m-convexity of || ||. We now consider this.
The next result follows directly from (1.1) and (1.2).

Lemma 2.2. Let A be a commutative algebra with an A-convex norm
| II. Then || || is m-convex on A if and only if ||z|lop < ||z|| for every
x € A

Thus, if we want to study the multiplicative structure of || ||, it is
useful to compare || || to its operator semi-norm || ||op. We now define a
constant, which is important in studying the relationship between || ||
and || [[op. So, let

m([[ ) = sup |lyllop, v < A

llyll<1
We say that m(]|| ||) is the modulus of m-convexity of || || on A. From
the definition of m(]| ||) it follows that, for every & € A, we have
lzllop < m(|| |I)]|z||. Hence, by Lemma 2.2, || || is m-convex on A if

and only if m(]| ||) < 1. On the other hand, it is easy to verify that if
m(|| ||) is finite, then m(k| ||) = (1/k)m(|| ||) for every k > 0. Thus,
| || can be considered as an m-convex norm on A whenever m(]| ||) is
finite (if m(|| ||) # 0, then m(]| ||)|| || is an equivalent m-convex norm
on A, and if m(]| ||) = 0, then || || is m-convex on A). So we get the
following result.

Theorem 2.3. Let A be a commutative algebra and || || a norm on
A, making the multiplication separately continuous. If m(|| ||) is finite,
then || || is equivalent to some m-convex norm on A.

Note that the modulus of m-convexity is in fact the optimal value of
those constants k > 0, making the norm k|| | m-convex on A. That is,
if k = m(|[ ), then k|| || is m-convex on A, and if k < m(|| [|), then k| ||
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is not m-convex on A. The following result shows that Theorem 2.3
gives us a slight generalization of Theorem 2.1 (Gelfand).

Theorem 2.4. Let A be a commutative algebra and || || a complete
norm on A, making the multiplication separately continuous. Then
m(|| ||) is finite.

Proof. For a given y € A, let T, be the left multiplication operator
on A, defined by T,(z) = zy, « € A. It is easy to verify that T, is
a || ||-bounded linear operator on A. Moreover, for every z € A, we
have |Ty(z)|| = |lzyll < ||z|lopllyll. Thus, for each fixed x € A, the
set {Ty(z) | |ly|l| < 1} is || [|-bounded on A. Hence, by the theorem
of Uniform Boundedness, m(]| ||) = supj, <1 [|yllop = supyy <1 [Tyl is
finite. O

As there exist noncomplete norms for which the modulus of m-
convexity is finite, we see that it is indeed a more general condition
than the completeness of || ||, to ensure || || to be equivalent to some
m-convex norm on A.

We will next study the structure of normed algebras with infinite
modulus of m-convexity. Note that a norm || || cannot be complete on
Aif m(|| ||) = co. Moreover, such a norm cannot be equivalent to any
m-convex norm on A, and therefore the finiteness of m(]| ||) is also a
necessary condition for || || to be equivalent to some m-convex norm on
A. We say that a norm || || with m(]|| ||) = oo is properly A-convex.

Example 2.5. Let A = C([a,b]) be the algebra of all continu-
ous complex-valued functions defined on a closed interval [a,b] and
equipped with pointwise algebraic operations. Further, let v be a con-
tinuous function from [a,b] into R for which v(a) = v(b) = 0 and
v(t) > 0, if t # a,b. Let || ||;, and || ||, be incomplete A-convex norms
on A, defined by

b
[1]le, =/ |z(t)| dt and [|z[|, = Spr]v(t)lw(t)\, z € A
a t€la,

It is easy to see that (|| li;)op = (| llv)op = || lleo and further,
that m(]| |l;;) = m(]| |lo) = oo. Note that the completions of both
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(A, | llz;) and (A,] ||») are not normed algebras. We will next show
that this is a characteristic feature of every normed algebra (A, || ||)
with m(|| ||) = oo.

For a given norm || || on A, we denote by A, the completion of A with
respect to || || and by || || the extension of || || onto A..

Theorem 2.6. Let A be a commutative algebra and || || an incomplete
A-convex norm on A. Then (A, || ||c) is a normed algebra if and only

if m(]] ||) is finite.

Proof. If m(|| ||) is finite, then || || is either m-convex on A or
equivalent to some m-convex norm on A. Hence, it follows from the
general theory of normed algebras that (A, || ||.) is @ normed algebra.
Suppose next that (A, || ||c) is a normed algebra. Since || || is complete
on A., we have m(]| ||c) < oo. On the other hand, it is easy to verify
that m(]| ||) < m(]| ||), and so m(|| ||) is finite. O

For further properties on completions of topological algebras, see [16].

When we used the constant m(]| ||) in proving Theorem 2.3, we did
not need any information about the condition |le|| = 1. So we can
deduce that we must know something more about the norm in order
to be able to extend this condition also to a nonunital case. We shall
consider this in the next section.

3. On regularity of norms. In order that we could extend the
condition |le|| = 1 from unital to nonunital algebras, we need the
following constant. So, for a given A-convex norm | || on A, set

r(l = sup |ull, yeA
lyllop <1

We will say that r(|| ||) is the modulus of regularity of || | on A (this
notion will be clarified later). From the definition of r(|| ||) it follows
that for every x € A, we have ||z|| < 7(]| ||)||z|lop. Moreover, for every
k > 0, we have (k|| ||) = k7(|| ||). The importance of the modulus
of regularity comes from the fact that by using it, we can divide all
A-convex norms into three classes. The classification we shall next
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represent has a strong impact on many properties of normed algebras.
These include the Gelfand representation (see [2-5]), approximation
properties of function algebras (see [6, 13]) and multipliers of Banach
algebras (see [14]).

Let || || be an A-convex norm on A. We will say that the norm || ||
is regular on A if || || = || ||op, Weakly regular on A if (]| ||) is finite,
and further, irregular on A if r(|| ||) = co. Clearly every regular norm
is m-convex and weakly regular. Moreover, the operator semi-norm of
a weakly regular norm is always a norm. The following shows that in a
unital algebra, every A-convex norm is automatically weakly regular.

Theorem 3.1. Let A be a commutative algebra with a unit element e.
If || || is an A-convex norm on A, then r(]| ||) = |le]|-

Proof. It is easy to verify that ||e|lop = 1. Thus, ||e|| < (]| ||). On the
other hand, for every x € A, we have ||z|| = |lez| < ||e||||z|lop. Hence,
(1) < llell, and so ([ |[) = llel[. o

From the above one can also see that in a unital algebra, the operator
norm of a given norm is always regular. This motivates us to give the
following generalization of Theorem 2.1.

Theorem 3.2. Let A be a commutative algebra with a complete
norm || ||, making the multiplication separately continuous. Then there
exists an equivalent m-convex norm | | on A. Further, if || || is weakly
reqular and || ||op is reqular on A, then the norm | | can be chosen so
that (] |) = 1.

Proof. Take | | = || ||op. Then | | is an m-convex norm on A for which
r(| |) = 1. Further, by Theorem 2.4, both m(|| ||) and r(]| ||) are finite.
Hence, by the inequalities || [lop < m(|| [DI| | and [ [| < ([ DIl lop, [I'l]
and || |lop are equivalent norms on A. o

As there exist nonunital algebras with norms satisfying the conditions
of Theorem 3.2, we see that Theorem 3.2 generalizes Theorem 2.1 to
nonunital algebras. Further, the condition 7(] |) = 1 corresponds to
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the condition |e| = 1, generalizing it to nonunital algebras. It is worth
noting that the regularity of the norm || ||op is needed to guarantee
the condition 7(| |) = 1 to be valid on A. We shall later consider the
condition (|| |lop)op = || llop in greater detail. We finally note that
for an irregular norm the condition ||e|| = 1 cannot be generalized to
nonunital algebras. That is, if || || is irregular on A, then there does
not exist an equivalent m-convex norm | | on A for which (] |) =1 (or
even finite) would hold.

It follows from the properties above that weakly regular normed
algebras behave in one sense (topologically) like normed algebras with
a unit. On the other hand, irregular normed algebras have in many
senses a different kind of structure. We consider this next. We start
with the following result, which gives a class of irregular norms. The
proof is trivial.

Theorem 3.3. Let A be a commutative algebra. If A has a nonzero
annihilator, then every A-convexr norm on A is irregqular.

We will now give a less trivial example of an algebra with an irregular
norm. Note that a norm can be complete even though its modulus of
regularity would be infinite.

Example 3.4. For 1 < p < oo, consider the Banach space
(Lp(G), || |lp) of equivalence classes of complex-valued functions on an
infinite compact topological abelian group G whose pth powers are
absolutely integrable with respect to a Haar measure A on G which is
normalized so that A(G) = 1, and the norm || ||, is defined on L,(G)

by 1/p
il = ([ 1r0raxo)

It is well-known that (L,(G),|| ||p) is a commutative Banach algebra
with respect to convolution as multiplication. Further, it follows from

the inequality [|f* gll, < [|fllllgllp; f> 9 € Lp(G), that ([|fllp)op < I £llx
for every f € L,(G). Hence, || ||, is an irregular norm on L,(G).

We saw in Theorem 3.1 that the existence of a unit element forces
every A-convex norm to be at least weakly regular. From this condition
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one can deduce that if (4,] ||) has an approximate identity, then
its boundedness should be somehow connected with the value of the
modulus of regularity. We consider this next. First we recall the
definition of an approximate identity.

Let || || be an A-convex norm on A. A net (e4)acq of A for which
lzea — z|| — 0 for every z € A, is said to be an approximate
identity of (A, | ||). If the set {|lea|| | @ € Q} is bounded, then it
is said that (eq)acq is a bounded approximate identity of (4, || ||) and
further, if |leq]| < 1 for every o € €, then (ey)qcq is said to be a
minimal approximate identity of (4, || ||). Note that if (A4,] ||) has an
approximate identity, then || ||op is a norm on A:

Theorem 3.5. Let A be a commutative algebra with an irreqular
norm || ||. If (A,]| ||) has an approzimate identity (eq)acq, then it is
unbounded with respect to || ||.

Proof. Let € A and o € Q be arbitrary. Then ||z|| < ||zeq — 2| +
lzea|l < ||lzea — || + ||z]|oplleal|, and from this it easily follows that
the || ||-boundedness of (eq)acn would imply (|| ||) to be finite. Hence,
(éa)acq is unbounded with respect to || ||. O

In the theory of normed algebras, it is often assumed that approx-
imate identities are bounded. However, in doing so, irregular norms
are excluded even though there are classical normed and Banach alge-
bras whose norms are only irregular. On the other hand, it must be
noted that, although approximate identities are unbounded with re-
spect to irregular norms, the situation can be different with respect to
corresponding operator norms.

Theorem 3.6. Let (A,]| ||) be a commutative Banach algebra with a
sequential approzimate identity (e,)>>, (bounded or unbounded). Then
(en)S2, is a bounded approzimate identity of (A, || |lop)-

For the proof of the theorem, see [14]. We do not know whether
Theorem 3.6 is valid for every approximate identity. However, it is
clear that the problem for the general case comes from the cardi-



376 JORMA ARHIPPAINEN AND JUKKA KAUPPI

nality of the index set Q. In the next example, || || denotes the usual
supremum norm.

Example 3.7. For 1 < p < oo, consider the Banach space
(I(Zy), || |lp) of all sequences x = (z,,)5;, where the z, are complex
numbers satisfying the condition >, |z,|P < oo, and the norm || ||,
is defined on [,(Z4) by

[e's) 1/p
lell, = (Z |) -
n=1

It is easy to verify that ({,(Z), || ||p) is a commutative Banach algebra
with respect to coordinatewise multiplication. Moreover, it follows from
the inequality laylly < 2] [yl 2.5 € p(Ze), that (2])op < [l2]
for all x € ,(Z4). Hence, || ||, is an irregular norm on [,(Z;). Note
that (I,(Z4), || ||p) has a sequential approximate identity. By Theorems
3.5 and 3.6, it is unbounded with respect to || ||, and bounded with
respect t0 (| [l)op-

Note also that the unbounded approximate identity of the algebra
(Lp(G), || llp) of Example 3.4 is bounded with respect to the corre-
sponding operator norm (see [15, pages 110-111]).

It is interesting to note that the operator norm is a very useful
tool in describing properties of normed algebras, which only contain
unbounded approximate identities. In particular, this is the case
when the approximate identities are bounded with respect to the
corresponding operator norms. Examples of such methods are found in
[5] (Gelfand representation), [13] (approximation properties of function
algebras) and [14] (multipliers).

We now return to study the condition (|| |lop)op = || [lop, Which
played an important part in generalizing the theorem of Gelfand to
nonunital algebras. It must be noted that, even for an irregular norm,
the corresponding operator norm can be regular.

Theorem 3.8. Let A be a commutative algebra with an A-convex
norm || ||. If (ea)acq is @ minimal approzimate identity of (A, | |lop),
then the equality (|| |lop)op = || llop is valid on A.
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Proof. Let x € A be given. Then for every a € (2, we have ||zeq|lop <
(2llop)op- Since lima [[2€allop = ll2lop, we have [l2lop < (Iollopop-
On the other hand, as || |lop is m-convex on A, the converse inequality
is automatically valid on A, and so we have (|| |lop)op = || llop- u]

Note that from Theorems 3.6 and 3.8 we get the following corollary.

Corollary 3.9. Let (A,|| ||) be a commutative Banach algebra with
a sequential approzimate identity (e,)o>q. Then (|| |lop)op and || |lop
are equivalent on A.

Of course it is possible that the condition (|| ||op)op = || [lop is
valid also for normed algebras without any approximate identities.
For example, any function algebra equipped with the supremum norm
satisfies this condition. On the other hand, (|| |lop)op = || |lop is nOt a
general property of normed algebras. For example, take a commutative
algebra A in which there exists an element x such that A # {0} and
zyz =0 for all y and z in A. Then for any A-convex norm || || on 4,
we have (||z]|op)op = 0, but ||z]|op > 0.

At the end of this section, we shall study irregular norms on algebras
of continuous functions. In the following example, X is a noncompact,
locally compact Hausdorff space. We denote by Cp(X) the set of all
continuous and bounded complex-valued functions on X and by Cy(X)
the set of all continuous complex-valued functions on X, which vanish
at infinity, i.e., for each f € Cp(X) and £ > 0 there exists a compact
set K. C X such that |f(t)] < € for all t € X \ K.. With respect to
pointwise algebraic operations, Cp(X) and Cy(X) are algebras and,
further, Cy(X) is a subalgebra of Cp(X). It is well known that,
under the usual supremum norm || ||, Cp(X) and Cy(X) are Banach
algebras. We now introduce two interesting function algebras whose
norms are irregular (note that the supremum norm is always regular
norm). The importance of these algebras follows from the fact that
they are not B*-algebras, but still their structures (for example, the
ideal structure) are very similar to the structures of the well-known
B-algebras (Co(X), || [leo) and (Co(X), || [lo0)-

Example 3.10. Let v be an upper semi-continuous real-valued
function on X for which inf;cx v(¢) > 0. Unless it is otherwise stated,
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we also assume that there exists a net (¢,) in X such that v(t,) — oo
when t, — to (by to we mean the point at infinity of X). Hence, v
is unbounded on X. We now define two subsets of C'(X) (= the set of
all continuous complex-valued functions on X) by

C§(X)={f € C(X) | vf vanishes at infinity}

and
CY(X)={feC(X)|vf is bounded on X}.

Obviously C§(X) and Cy(X) are algebras with respect to pointwise
algebraic operations. Further, C¥(X) is a proper subalgebra of Cy(X),
CP(X) is a proper subalgebra of Cy(X) and C§(X) is a subalgebra of
CP(X). If v is chosen so that v(t,) — oo for all nets (t,) in X for which
ta — too, then it is easy to see that also C} (X) is a subalgebra of Cy(X).
Note that if we assume v to be bounded on X, then we clearly have
C§(X) = Co(X) and CP(X) = Cp(X). So Co(X) (correspondingly
Cy(X)) is a special case of C§(X) (correspondingly of C¢(X)). We
next study the topological structure of these algebras.

It is easy to see that, with respect to the supremum norm, C§(X)
and C¢(X) are not complete, and therefore it is not the natural norm
for them. On the other hand, if we equip C§(X) and C}(X) with a
weighted norm || ||,,, defined by

1fllv = sup v(t)|f(t)],

teX

then || ||, is a complete A-convex norm on C§(X) and on C(X) (for
the proof of C¥(X), see [6, Theorem 3.2], and for CY(X) the proof is
similar). Thus, (C§(X), || |l») and (CP(X),]| ||lo) can be considered as
Banach algebras. Note that if v is assumed to be bounded on X, then
Il llo and || || are equivalent norms, and therefore Banach algebras
(Co(X), || lloo) and (Cu(X), || |loo) are special cases of Banach algebras
(C§(X), | |lv) and (C¥(X), ] |lo). On the other hand, in general || ||,
is properly stronger than the supremum norm. Further, then || ||,
is irregular on C§(X) and on CP(X). This follows from the equality
(Il ll+)op = | lloos Which can be shown to be valid on both C§(X) and
CP(X).

It is interesting to note that the structure of the Banach algebra
(CY(X), || |lv) is very similar to the structure of the Banach alge-
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bra (Co(X),|| ||leo). For example, (C§(X),]| ||») satisfies the Stone-
Weierstrass property, i.e., each of its points separating symmetric sub-
algebra, which is bounded away from zero, is || ||,-dense in C§(X).
Further, every closed ideal I of (C¥(X),|| ||») is of the form I = {f €
C¥(X) | f(t) = 0forallt € E}, where E is some closed subset of
X. Also, (C3(X),|| |ln) has an approximate identity (unbounded by
Theorem 3.5). On the other hand, the structure of the Banach algebra
(CP(X), ]| ||v) is very complicated and, moreover, from some parts it dif-
fers a lot from the structure of the Banach algebra (Cy(X), || ||co). For
example, (CY(X),|| |l,) does not have an approximate identity in gen-
eral. It is also worth noting that (C¢ (X), || ||») does not have the Stone-
Weierstrass property. Further, the ideal structure of (C}(X), || ||v) is
very complicated, and even the description of all of its closed maximal
ideals seems to be a difficult problem. For a more detailed study on
algebras C§(X) and Cy (X), see [6, 13].

Note also that again the approximate identity of (C¥(X),| ||») is
bounded with respect to the operator norm || |-

Some of the results of this paper can be extended in a natural
way to a noncommutative case and also to p-normed algebras with
0 < p < 1. For example, in a noncommutative case the definition of
A-convexity could be represented in the following way: A norm | ||
on a noncommutative algebra A is A-convex if for each z € A there
exists a constant M(z) > 0 such that max{||zy||, |lyz||} < M(z)|yll
for all y € A. Moreover, the operator semi-norm of x is then the
infimum of these constants. For the properties of these types of norms
or semi-norms, see [1, 10, 18]. We focused our attention only upon a
commutative case, since our applications of this theory were restricted
to commutative algebras.

4. Norms on unitization of algebras. We mentioned earlier that
Theorem 2.1 can be proved by extending a nonunital normed algebra
(A, | |) to a unital normed algebra (A, ||(+, )||c), defined in (2.1). More
generally, in the theory of normed algebras, this unitization method has
been used very often to simplify proofs concerning nonunital algebras.
However, as the structure of irregular normed algebras differs a lot
from the structure of unital normed algebras, one can deduce that the
unitization method may not be the best possible way to study algebras,
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which are equipped with irregular norms. Indeed, as (4, ||(-,*)||e) is
always a regular normed algebra, we see that the unitization method
“hides” the irregularity of the original norm. Therefore, it is easier to
study irregular normed algebras without unitization (see also [6, 8]).
We will now look in greater detail at how regularity, weak regularity
or irregularity impacts on the extension of the norm || || (or the norm
topology T'(|| ||)) onto the unitization A.. We assume here that normed
algebras in question are nonunital and complete. This is due to the
fact that otherwise it may happen that completions of these algebras
are unital, and this can cause problems when studying unitizations on
nonunital algebras (see, for example, [7, Remark 5]).

Suppose first that || || is a regular norm on A. Then it has two extreme
extensions onto the unitization A.. The maximal extension is the I;-
extension ||(+,-)||e, and the minimal extension is the so-called operator
extension ||(-,-)||op, defined by

[(z,a)llop = sup [lzy + ayll, (z,a) € Ae.
lyli<1

By [7, Corollary 2], we have
(@, a)llop < ll(z, 2)lle < 3[|(z, @)llop, (2, 0) € Ae.

Moreover, 3 is the best (minimal) constant for the upper bound. For
this result, see also [18, Proposition 1.1.13] and [9].

Suppose next that || || is a weakly regular norm on A. Again, ||(-, )]
is an extension of the norm || ||. On the other hand, ||(:,-)|/op need
not be an extension of || ||. However, also in this case the topologies
T(]|(-y)le) and T(||(+,-)|lop) on A, are equivalent and, further, they are
extensions of the norm topology T'(|| ||) onto A.. Therefore, for weakly
regular norms, it is better to study extensions of topologies instead of
extensions of norms.

Suppose finally that || || is an irregular norm on A. The main problem
in studying extensions of irregular norms, is that ||(-,-)||op is no longer

an extension of the norm || || and T'(]|(-,-)|lop) is not an extension of
the norm topology T(|| ||). Further, even though [|(-, )|l is still an
extension of || ||, the [;-extension can cause problems when studying

(A, || |) by means of (A, ||(-,-)|lc). For example, as it was shown in
[6, 13], the structure of (A, ||(*,")|le) can be much more complicated
compared to the structure of (4, ]| ||)-
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We now give an example on how Theorem 2.1, and other theorems
connected with it in this paper, can be proved by using just the elements
of A. In the following example, irregularity of a norm | | implies
irregularity of the new norm.

Example 4.1. Let A be a commutative algebra with or without a
unit. Given an A-convex norm || || on A (complete or noncomplete),
we define a norm || |[5s on A by

][ = max{[l], [z[lp}, =€ A.

Obviously || || is an m-convex norm on A and || || is m-convex on A
if and only if || ||ar = || ||- We next give some general properties for
Il llaz- Let 2 € A be arbitrary. Then ||z|| < ||z]|a < max{1,m(|| )}zl
and ||z|lop < ||zl|ar < max{L,7(|| ||)}|z|lop- From this we see that if

m(]| ||) is finite, then || || is equivalent to || ||as. Further, if (|| ||) is
finite, then || ||op is equivalent to || ||a and finally, if both constants
m(]| ||) and =(|| ||) are finite, then all three norms || ||, || |lop and || ||a

are mutually equivalent. It is interesting to note that in some cases
Il l|ar is the minimal m-convex norm on A, which majorizes the original
norm || ||. For this, see [1, 17]. The norm || ||5s can now be used in
proving Theorem 2.1. Namely, the norm (||(-,0)||c)op (¢) introduced in
Section 2, is equivalent to || ||as. This follows from the inequalities

e < G 0)lledop o) < M1 + Hllop < 2lll; -

By using || ||a instead of (||(-,0)|lc)op(e), We can avoid extra scalar
components of the latter norm. The norm (||(+,0)||c)op (¢) has been used
in the literature quite often. See, for example, [12, Proof of Proposition
1.1.9].
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