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1. Introduction. Let Z;s denote the integers modulo 16. Zig is
a ring which has 2,4,6,8,10,12, 14 as zero divisors. A set of n-tuples
over Zig is called a code over Zig or a Zqg-code if it is a Zig-module.
Similarly one can define a Zgs-code.

Linear codes are easy to understand, to encode and decode. However,
in order to get the largest possible number of codewords with a fixed
block size and correction capability, it is sometimes necessary to con-
sider nonlinear codes. Some of the best known examples of nonlinear bi-
nary error-correcting codes that are better than any corresponding lin-
ear code are the Nordstrom-Robinson, Kerdock, and Preparata codes.
In fact, some of these nonlinear binary codes satisfy a certain formal
duality property for which a satisfactory explanation is known only
in the linear code. In 1994, Hammons, Kumar, Calderbank, Sloane,
and Solé [3] explained this formal duality by showing that the Ker-
dock and Preparata codes are in fact linear, if one views them over the
ring of integers modulo 4 instead of the binary field and that, over this
larger ring the two codes are algebraically dual. They showed a simple
connection between these nonlinear codes and linear codes over Z,4 by
means of the Gray map. This generated a lot of interest on Z4-codes,
see for example [1, 10]. It is a natural question to ask what happens
for Zsm-cyclic codes.

In [2], the authors prove that idempotent generators exist for certain
Z g n-cyclic codes. The uniqueness of an idempotent generator of any
cyclic code is also proven. In fact Kanwar and Lépez-Permouth [5]
gave a systematic study of cyclic codes over Zgm.

A particularly interesting family of cyclic codes is quadratic residue
codes. Quadratic residue codes were first defined by Andrew Gleason.
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The minimum weights of many modest quadratic codes are quite high
for the codes’ lengths, making this class of codes promising. The Z4
quadratic residue codes were studied by beautiful works of Bonnecaze,
Solé and Calderbank [1] and Pless and Qian [10]. In [2], the authors
studied the Zg quadratic residue codes in some detail. In this paper, we
define Z¢ and Z32 quadratic residue codes in terms of their idempotent
generators and show that these codes also have many good properties
which are analogous in many respects to the properties of quadratic
residue codes over a field. In [4], Kanwar has general results on
quadratic residue Zgm-codes of length p where p is an odd prime
congruent to 1 modulo 4¢q. The concept of extended quadratic residue
Z g m-codes is introduced in [4], and their duals are obtained. The
purpose of this paper is to show that extended quadratic residue codes
over Zg or Zss have large automorphism groups which will be useful in
decoding these codes by using the powerful decoding method described
in [7]. We also define an isometry from Z{j; (Lee distance) to Z§Y
(Hamming distance) and an isometry from Z2, (Lee distance) to Z3*V
(Hamming distance).

In Section 2, we recall some general results on idempotent generators
of cyclic codes. In Sections 3 and 5, we study some properties of
quadratic residue codes over Zjg and Zsz, respectively (Theorems 3.3,
3.4, 5.3, and 5.4). We also study extended quadratic residue Zg-
codes and Zjp-codes and obtain their duals (Theorems 3.7 and 3.9,
respectively, Theorems 5.7 and 5.9). In Sections 4 and 6, we study
automorphism groups of extended quadratic residue codes over Z1g and
Z32, respectively. We also define an isometry from ZJ; (Lee distance)
to Z8Y (Hamming distance) and from Z3, (Lee distance) to Z3®V
(Hamming distance).

2. Preliminaries. In this section, we recall some general results
on idempotent generators of cyclic codes (cf. [2, 5]). An idempotent
in Z,m[x]/(z™ — 1), where ¢ is a prime number, is defined to be a
polynomial e(z) such that e(z)? = e(x) (mod z™ — 1). We first recall
the following general facts about the existence and uniqueness of the
idempotent generator. By a Zgm-code C of length n we shall mean
a linear code over Z,m, that is, a Z;m-module. We define an inner
product of Z7.. by (a,b) = a1b1 + -+ + a,b, (mod ¢™), and then the
notions of dual code (C), self-orthogonal code (C' C C*) and self-dual
code (C = C1) are defined in a standard way.
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Theorem 2.1. Let C be a Zgm-cyclic code of odd length n. If
C = (f) where fg = z™ — 1 for some g such that f and g are coprime,
then C' has an idempotent generator in Zgm[x]/(z™ —1). Moreover, the
idempotent generator of a cyclic code is unique.

If we know the idempotent generator of a Z,m-code, by the following
theorem we can also find the idempotent generator of the dual code.

Theorem 2.2. If a Zgm-cyclic code C' has idempotent generator
e(z), then C+ has idempotent generator 1 — e(z~1).

Theorem 2.3. Let Cy and Cy be cyclic codes with Zgm-idempotent
generators ey and ez. Then C1NCy has Zgm-idempotent generator ejes
and C1 + Cy has Zgm-idempotent generator e; + ez — erez.

3. Quadratic residue codes over Z;s. Quadratic residue (QR)
codes over Zgm are Zgm-cyclic codes which can be defined in terms of
their idempotent generators ([6, 8]).

3.1. Idempotent generators of QR codes over Zg ~. Let
e; = Z:pi and e = Zwi,
i€Q iEN
where @ is the set of quadratic residues and NV is the set of nonresidues
for a prime p = +1 (mod 8).

When p = -1 (mod 8), e; and ey are idempotents of binary
[p,(p+1)/2] QR codes. When p = 1 (mod 8), they are idempotents
of binary [p, (p — 1)/2] QR codes.

Let the map p, be defined as
Ke i % —> ai  (mod p) for any nonzero a € GF(p).

It is not hard to show that pe(fg) = pa(f)ia(g), for f and g polyno-
mials in R, = Z,m[z]/(2P — 1).

We know that, in the binary case, all one vector 1 + e; + ez, denoted
by h is an idempotent in Zs[z]/(zP — 1). In Zgm[z]/(2P — 1),

1 1
h2:(1+el+eg)h:h+pTh+pTh:h+(p—1)h:ph.
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Note. —1 is a quadratic residue in GF(p) if and only if p = 1
(mod 4) [9, Theorem 65].

The following theorems (Theorems 3.1, 3.3, 3.4, 3.7, and 3.9) are
special cases of [4]. They are needed for Section 4.

Theorem 3.1. Let p be a prime = £1 (mod 8), such that p+1 (or
p—1)=38r.

I. Suppose p+1 = 8r. (a) If r = 8k, then 1 + e; and 15e; are
idempotents in Zyg[z]/(zP — 1), where i = 1,2.

(b) If r = 8k+1, then 3e;+6e;+5 and 10e;+13e;+12 are idempotents
in Zyglz]/(xP — 1), where i,j =1,2 and i # j.

(c) If r = 8k—+2, then 3e;+12¢e;+8 and 4e;+13¢e;+9 are idempotents
in Zyglz]/ (2P — 1), where i,j =1,2 and i # j.

(d) If r = 8k+3, then e;+6e;+4 and 10e;+15e;+13 are idempotents
in Zyglz]/(xP — 1), where i,j =1,2 and i # j.

(e) If r = 8k + 4, then 8e; + Te; and 8e; + 9e; + 1 are idempotents in
Ziglz]/(axP — 1), wherei,j =1,2 and i # j.

(f) If r = 8k+5, then 2e;+5e;+12 and 11le;+14e;+5 are idempotents
in Zyglz]/(xP — 1), where i,j =1,2 and i # j.

(g) If r = 8k+6, then 4e;+11e;+8 and 5e; +12e;+9 are idempotents
in Zyglz]/(zP — 1), where i,j =1,2 and i # j.

(h) If r = 8k+7, then 2e;+7e; +13 and 9e;+ 14e;+4 are idempotents
in Zyglz]/(xP — 1), where i,j =1,2 and i # j.

II. Suppose p — 1 = 8r. (a) If r = 8k, then 1+ e; and 15¢; are
idempotents in Zyg[z]/(xP — 1), where i = 1,2.

(b) If » = 8k+1, then 2e;+7e;+13 and 9e;+14e;+4 are idempotents
in Zyglz]/(xP — 1), where i,j = 1,2 and ¢ # j.

(c) If r = 8k+2, then 4e;+11e;+8 and 5e;+12¢e;+9 are idempotents
in Zig[z]/(zP — 1), where 1,5 =1,2 and i # j.

(d) If r = 8k+3, then 2e;+5e;+12 and 11e;+14e;+5 are idempotents
in Zyg[x]/(x? — 1), where i,j = 1,2 and i # j.
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(e) If r = 8k +4, then Te; + 8e; and 8e; +9e; + 1 are idempotents in
Zis[x]/(z? — 1), wherei,j =1,2 and i # j.
i

(f) If r = 8k+5, then e; +6e;+4 and 10e;+15e;+13 are idempotents
in Zqglz]/(xP — 1), where i,j = 1,2 and ¢ # j.

(g) If r = 8k+6, then 3e;+12e;+8 and 4e;+13e;+9 are idempotents
in Zis[z]/(z? — 1), where 1,5 = 1,2 and i # j.

(h) If r = 8k+7, then 3e;+6€e;+5 and 10e;+13e;+12 are idempotents
in Zyg[x]/(xP — 1), where i,j = 1,2 and i # j.

Definition 3.2. A Zjg-cyclic code is a Zjg-quadratic residue (QR)
code if it is generated by one of the idempotents in the above theorem.

Hence, pg is in the group of any Z14-Q.R. code for any a € Q.
3.2. Properties of QR codes over Zg.

Theorem 3.3. Let p be a prime with p+ 1 = 8r.
If r = 8k, let

Q1= (15e1), Q2 = (15ez);
Qr=(01+e), Q)= (1+e).

Ifr =8k +1, let

Q]_ = (1061 + 1362 + 12), Q2 = (1361 + 1062 + 12),
Q1 = (3e1 + 6ex +5), Q5 = (6e1 + 3ez2 +5).
If r =8k + 2, let
Q1= (3e1 +12e2 4+ 8), Q2 = (12e1 + 3ez + 8);
Q) = (4e1 +13e2+9), Q) = (13e; +4ey +9).
If r =8k + 3, let

Q1:(€1+662+4), Q2:(661+62+4);
Q' = (10e; + 15e2 +13), Q) = (15e; + 10es + 13).
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If r = 8k + 4, let

@1 = (8e1 + Tez), Q2 = (Te1 + 8ea);
Q1 = (9e1 +8e2+1), Qf = (8er+9ez + 1).

If r =8k +5, let

Q1= (261 + beg + 12), Q2 = (561 + 2eq + 12);
Qll = (1161 + 1462 + 5), Q/2 = (1461 + 1162 + 5)

If r =8k + 6, let

Q1 = (4e1 +1lex +8), Q2 = (lley + 4ez + 8);
Qll = (561 + 12e5 + 9), QI2 = (1261 + 5eq + 9)

If r=8k+7, let

Q1 = (9e1 + 14dex +4), Q2 = (14e1 + ez + 4);
Q) = (2e1 +7ea +13), Q5 = (Tey + 2e3 + 13).

Then the following hold for Zi6-QR codes Q1,Q2, R}, Q% (a) Q1 and

Q2 are equivalent, @} and Q% are equivalent;
() QN Qs = (k) and Q1 + Q2 = R, = Zug[a]/(a? — 1), where
h = 15h if r is even, and h = Th if r is odd, where h =1 + e1 + ez;
() [Q1] = 16712 = |Qy];
(@) Q + (h), Q2 = Q5 + (h);
(e) |Q'| = 16(” D72 = |Qb);
(f) Q) and Q} are self-orthogonal and Qi = Q) and Q3 = Q).

Theorem 3.4. Let p be a prime with p — 1 = 8r.
If r =8k, let

Q1= (e1+1), Q2= (e2+1);
Q) = (15e2), Q5 = (15ey).
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If r=8k+1, let

Ql = (261 + 762 + ].3),
Qll = (961 + 1462 + 4),

If r =8k +2, let

Ql = (561 + 12e5 + 9),
Q) = (4e1 + 11ez + 8),

If r=8k+3, let

Ql = (1161 —|— 1462 + 5),
Q) = (2e1 + bey +12),

If r =8k +4, let

Q1= (861 + 9es + 1),
Qll = (761 + 862),

If r =8k +5, let

Ql = (1061 + ].562 + ].3),
Qll = (61 + 662 + 4),

If r =8k +6, let

Q= (461 + 13es + 9),
Qll = (361 + 12e5 + 8),

If r=8k+17, let

Q1 = (361 + 6esy + 5),
Q) = (10e; + 13ey + 12),

Q2 = (761 + 262 + 13),
Ql2 = (1461 + 962 + 4)

Q2 = (1261 =+ 562 + 9),
Ql2 = (1161 + 462 + 8)

Q2 = (14ey + 11lex + 5);
Q5 = (5e1 + 2e3 + 12).

Q2 = (9e1 + 8ey + 1);
Q. = (8ey + Tez).

Q2 = (1561 + 1062 + ].3),
Ql2 = (661 -+ €9 =+ 4)

Q

2 = (1361 =+ 462 + 9),
Q2=

= (1261 + 3es + 8)

Q2 = (661 + 3eq + 5),
Q) = (13e1 + 10ey + 12).

1953

Then the following hold for Zis-QR codes Q1,Q2,Q},Q%: (a) Q1 and
Q2 are equivalent, Q' and QY are equivalent;
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(b) Q1N Q2 = (h) and Q1 + Q2 = Ry, = Zug[z]/(xP — 1), where h = h
if r is even, and h = 9h if r is odd, where h =1+ e + es;
() |@1] = 16@H1/2 = |Q;
(d) Q +(R), Q2 = Q4 + (h);
() IQ’I = 16(’” D2 =1Qy;
(f) Q1 = Q) and Q7 = Q).

Definition 3.5. The extended code of a Zg-code C denoted by C is
the code obtained by adding an overall parity check to each codeword
of C.

Definition 3.6. When p + 1 = 8r and r is odd, we define @1 to be
the Zig-code generated by the following matrix

© 01 -+ - oo op—1
0

0

. a ,
TT 7 7

where each row of G7 is a cyclic shift of 3e; + 6e; +5 when r = 8k + 1,
a cyclic shift of 10e; + 15e3 4+ 13 when r = 8k + 3, a cyclic shift of
1le; + 14ez + 5 when 7 = 8k + 5 and a cyclic shift of 2e; + 7es + 13
when r = 8k 4+ 7. We define Q)2 similarly.

Theorem 3.7. Suppose p+ 1 = 8r, and let Q1,Q2 be the Z15-QR
codes in Theorem 3.3. Let Q, and Q, denote their extended codes.
Then Q, and Q, are self-dual, when r is even, and the dual of Q, is
@1 and the dual of Qy is @2 when 7 is odd.

Definition 3.8. When p — 1 = 8r, we define @1 to be the Zjg-code
generated by the following matrix, when r is even:
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oo 01 p—1
0

0

. a, ,
1 11 1

where each row of G} is a cyclic shift of 15e; when r = 8k, a cyclic
shift of 4e; + 11es + 8 when r» = 8k + 2, a cyclic shift of 7e; + 8e3 when
r = 8k + 4 and a cyclic shift of 3e; + 12e5 + 8 when r = 8k + 6.

When r is odd:

0 01 -+ vor oo p—1
0

0

: G1 ,
9 9 9 ... ... ... 9

where each row of G is a cyclic shift of 9e; +14e,+4 when r = 8k+1, a
cyclic shift of 2e; +5e5+12 when r = 8k+3, a cyclic shift of e; +6e5+4
when r = 8k + 5, a cyclic shift of 10e; + 13ez + 12 when r = 8k + 7.
We define @2 similarly.

Theorem 3.9. Suppose p — 1 = 8r, and let Q1,Q2 be the Z16-QR
codes in Theorem 3.4. Let Q; and Q) denote their extended codes.

Then the dual of Q, is @2 and the dual of Qy is @1.

4. Automorphism group of the extended QR codes over Z¢.
Let X be the Legendre symbol on the field GF(p) which is defined as:
X(0) =0 and x(¢) =1 if ¢ is a quadratic residue and X(i) = —1ifiis a
nonresidue.

We use the following theorem extensively.

Theorem 4.1 (Perron [8]). (i) Suppose p = —1 4 8r and a is a
number prime to p. Then, in the set {q + a, where ¢ € QU {0}}, there
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are 2r elements in Q U {0} and 2r elements in N. In the set {n + a,
where n € N}, there are 2r elements in Q U {0} and 2r — 1 elements
in N.

(ii) Suppose p = 1+ 8r and a is a number prime to p. Then in the
set {q+ a, where ¢ € QU {0}}, if a € Q, there are 2r + 1 elements in
Q U {0} and 2r elements in N and, if a € N, there are 2r elements in
Q and 2r+1 elements in N. In the set {n+a, wheren € N}, ifa € Q,
there are 2r elements in Q and 2r elements in N and, if a € N, there
are 2r + 1 elements in Q U {0} and 2r — 1 elements in N.

Theorem 4.2. Let G be the group generated by the following
elements:

c:1— i+ 1 (modp), co = 00; g : ¢ — ai (mod p), for a € Q,
00 = 00; p:i— —(1/i) (mod p) followed by multiplication by —X (1)
fori #0,00.

The action of p on 0 and co is defined as follows.
(D) p+1=28r. If r =8k, let
0 — oo followed by multiplication by 1,
oo — 0 followed by multiplication by 15.
Ifr =8k +1, let
0 — oo followed by multiplication by 11,
oo — 0 followed by multiplication by 13.

If r = 8k + 2, let
0 — oo followed by multiplication by 9,
0o —» 0 followed by multiplication by 7.
If r = 8k + 3, let
0 — oo followed by multiplication by 13,
oo — 0 followed by multiplication by 11.
If r =8k +4, let
0 — oo followed by multiplication by 15,
oo — 0 followed by multiplication by 1.
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If r =8k +5, let

0 — oo followed by multiplication by 11,
oo — 0 followed by multiplication by 13.

If r = 8k + 6, let

0 — oo followed by multiplication by 7,
oo — 0 followed by multiplication by 9.

If r=8k+7, let

0 — oo followed by multiplication by 13,
oo — 0 followed by multiplication by 11.

(I1) p— 1 =8r. If r =8k, let

0 — oo followed by multiplication by 1,
oo — 0 followed by multiplication by 1.

If r =8k +1, let

0 — oo followed by multiplication by 3,
oo — 0 followed by multiplication by 11.

If r =8k + 2, let

0 — oo followed by multiplication by 9,
oo — 0 followed by multiplication by 9.

If r =8k + 3, let

0 — oo followed by multiplication by 5,
oo — 0 followed by multiplication by 13.

If r =8k + 4, let

0 — oo followed by multiplication by 15,
oo — 0 followed by multiplication by 15.

1957
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If r =8k +5, let

0 — oo followed by multiplication by 3,
oo — 0 followed by multiplication by 11.

If r =8k + 6, let

0 — oo followed by multiplication by 7,
oo — 0 followed by multiplication by 7.

Ifr=8k+7, let

0 — oo followed by multiplication by 5,
oo — 0 followed by multiplication by 13.

Then G is contained in the group of the extended QR code.

Proof. It is obvious that the extended code is fixed by the map, o.
The extended code is fixed by u, for a € Q because u, does not change
the oo position and it fixes the QR codes. We use the method in [7,
page 492] to show that the extended code is also fixed by the map p.

(I) We suppose that p + 1 = 8r and r = 8k. The extended code is
generated by (p + 1/2) rows of the following (p 4+ 1) x (p + 1) matrix

To 0 |
0
. G'l
T ’
Too [15 15 -+ v oo 15]

where each row of G is a cyclic shift of 1 + es.

1. Since p = 8 — 1, —1 is a nonresidue mod p. Hence, p sends @ to
N and vice versa. In particular,

ro = (0,1 + e3) = p(ro) = (1,e1) = 1579 + 15r.
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2. For s € Q, we have —1/s € N. In all the following proofs, ¢ € @
and n € N.

rs = (0,2° + Zm”“).
T_1/s = 0,271/ + Zx”f(l/s)).

Hence,

p(rs) = (1,15:c1/3+15 P AR m1/<n+s)>

n+seqQ n+seN

because the set {n + s} has element 0; therefore, in the oo position
of p(rs) it is 1. We claim that p(rs) = 15r¢ + 15r_1/5 + 15r. By
Perron’s theorem and —1 € N, the set {—1/(n+s),n + s # 0} has
2r — 1 elements in N and 2r — 1 elements in @); the set {¢ — (1/s)} has
2r — 1 elements in NV and 2r — 1 elements in @, one element is 0; the
set {n — (1/s)} has 2r — 1 elements in N and 2r elements in Q.

In the nonresidue position of p(rs) 4+ 7_(1/s), it is

15$_1/S+15 Z m—l/(n+s)+x—1/s+ Z xn—(l/s)'
n+seqQ n—(1/s)eN

Since for any —1/(n+s) € N there is an n’ € N such that
—1/(n+ s) =n' — (1/s) so the sum of the above is 0.

In the residue position of p(rs) +7_1 /s, it is

Z xfl/(nJrs) + Z x”*(l/s)_

n+seN n—(1/s)€Q
Since for any —1/(n + s) € Q, thereis a ¢ € @ such that —1/(n+ s) =

g —(1/s). And there are 2r + 2r — 1 = 4r — 1 terms, so the sum of the
above is e;. Since the set {g — (1/s)} has the element 0; therefore,

p(rs) +r_17s = (1,e1) = 1570 4 15700;

ie., p(rs) = 15r_1/, + 1579 + 157, for s € Q.
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3. For any s € N,

rs = (0,2° + Zm”+s).
T_1/s = (0,271 + Zx”_l/s).

Hence, p(rs) = (0,2 V/*+15%, oo V437 @t/ mFe)),

Because the set {g+ s} has element 0, therefore in the co position of
p(rs) it is 0. We claim that p(rs) = 1579 + r_y /.

By Perron’s theorem and —1 € N, the set {—1/n+ s} has 2r — 1
elements in @ and 2r elements in N; the set {n — (1/s)} has 2r — 1
elements in ) and 2r —1 elements in NV, one element is 0. In the residue
position of p(r,) + 15r_y, it is

m—l/s+ Z x—l/(n+s)+15x—1/s+15 Z xn—(l/s).
n+seN n—(1/s)eQ

Since, for any —1/(n+s) € @, there is an n € N such that
—1/(n+s) =n—(1/s). So the sum of the above is 0.

In the nonresidue position of p(rs) + 157_y 5, it is

15 Z z /() 4 15 Z g (1/s),

n+seqQ n—(1/s)eEN

Since for any —1/(n 4+ s) € N, thereis a ¢ € Q such that —1/(n + s) =
g — (1/s). There are 2r + 2r — 1 = 4r — 1 terms in the above, so the
sum is 15es.

Since the set {n — (1/s)} has the element 0, therefore
p(rs) +157_1/5 = (0,15 + 15e3) = 157;

ie., p(rs) =7r_1/5 + 1579, for s € N.

4. Since

Too = (15,154 15e3 + 15e3) = p(roo) = (15,14 e2+15e1) = 2rg+reo,

by similar proofs, we also get the following results:
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When r =8k + 1,

ro = (0,3e1 + 6ez + 5)
p(ro) = 13rg + 970, p(rs) = 13rg + 157y /5 + ldr, s€Q,
p(rs) =r_1/s +13rg + 167, s€N,
P(roo) = 679 + 3reo.

When r = 8k + 2,

ro = (0,4e1 + 13e3 +9)
p(ro) = Tro + 157, p(rs) = Tro 4+ 1671/ + 111, s € Q,
p(rs) =r_1/s+Tro +12r, s€ N,
P(reo) =219 + Ir00.

When r = 8k + 3,

ro = (0,10e; + 15e5 + 13)
p(ro) = 1lrg + Treo,  p(rs) = 11rg + 15715 + 13r, s € Q,
p(rs) =r_y1/s +1lrg + 14ro, s €N,
p(reo) = 10rg + 57r0o.

When r = 8k + 4,

ro = (0,9e1 + 8e2 + 1)
p(ro) =10+ 700, p(rs) =710+ 1671/ + 80, s€Q,
p(rs) =r_1/s +710+ 9%, s€N,
p(roo) = 1drg + 157.

When r = 8k + 5,

ro = (0,11ey + 14es + 5)
p(ro) = 13rg + 97, p(rs) = 1319 + 1571 /5 + 67, s € Q,
p(rs) =r_1/s +13r0 + Tree, s €N,
P(reo) = 679 + 3reo.
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When r = 8k + 6,

ro = (0,5e; + 12e5 + 9)
p(ro) =910 + Ty, p(rs) = 970 + 1571 /5 + 127, s € Q,
p(rs) =r_1/s +9r0 +13ro, s€ N,
p(reo) = 1drg + Treo.

When r =8k + 7,

ro = (0,2e1 + Teg + 13)
p(ro) = 1lrg + Trog,  p(rs) = 117 + 15671 /5 + 5re, s € Q,
p(rs) =r_1/s +1lrg +6re, s€ N,
P(700) = 10rg + 57 0.

(IT) Suppose p— 1 = 8r and r = 8k. The extended code is generated
by (p + 1)/2 rows of the following (p+ 1) x (p + 1) matrix

To 0

0

. G'l
T ’
Too \15 1 -+ .o ... 1

where each row of G is a cyclic shift of 15e.
1. Since r¢ = (0, 15e2) = p(ro) = (0, 15e2) = 7.
2. For any s € @ (in the following proofs ¢ € Q and n € N),

ry = (0, 15Zx"+5), r_1e= (0,152:0”*(1/5)).

Hence, p(rs) = (0,34 50 g~ 415 Dintsen g~/ (n+e)),

Because the set {g + s} has element 0, therefore in the co position of
p(rs) it is 0. We claim that p(rs) = ro + 15r_;/,. By Perron’s theorem
and —1 € Q, theset {—1/(n + s)} has 2r elements in Q and 2r elements
in N; the set {¢g — (1/s)} has 2r — 1 elements in @, 2r elements in N,
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and one element is 0; the set {n — (1/s)} has 2r elements in Q and 2r
elements in V.

In the residue position of p(rs) +7_1/5, it is

Z m—l/n—l—s +15 Z xn—(l/s),

nt+seQ n—(1/s)eQ
since for any —1/(n + s) € Q thereis ann’ € N such that —1/(n + s) =
n’ —1/s. So the sum of the above is 0.

In the nonresidue position of p(rs) +7_1/5, it is

15 Z 71/(n+s +15 Z xnf(l/s)‘

n+seN n—(1/s)eEN

Since for any —1/(n + s) € N, there is a ¢ € @ such that —1/(n + s) =
g — (1/s). And there are 2r 4+ 2r = 4r terms, so the sum of the above
is 15eq. Since the set {g — (1/s)} has element 0, therefore

p(rs) +r-17s = (0, 15e3) = ro;

ie., p(rs) = 157_y1 /5 + 1o, for s € Q.
3. For any s € N,

re=(0,15 z""),
ro1/s = (0,15 an(/*)

Hence’ p(?‘s) = (157 EnJrsGQ m—l/(n+s) +15 EnJrseN x_l/(n+s)).

Because the set {n + s} has element 0, therefore in the co position of
p(rs) it is 15. We claim that p(rs) = ro +7_1/5 + reo-

By Perron’s theorem and —1 € @, the set {-1/(n+s),n + s # 0}
has 2r elements in @ and 2r — 1 elements in N; the set {¢ — (1/s)}
has 2r elements in @ and 2r elements in N; the set {n — (1/s)} has 2r
elements in @ and 2r — 1 elements in IV, and one element is 0. In the
nonresidue position of p(rs) + 15r_y, it is

15 Y Mo N7 g,

n+senN n—(1/s)EN
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Since for any —1/(n+s) € N, there is an n € N such that
—1/(n+s) =n—(1/s), so the sum of the above is 0.

In the residue position of p(rs) 4 157_(y /4 it is
Z xfl/(nqu) + Z xnf(l/s)‘
n+s€eqQ n—(1/s)eQ

Since for any —1/(n + s) € Q, there is a ¢ € @ such that —1/(n + s) =
g — (1/s). There are 2r 4+ 2r = 4r terms in the above, so the sum is e;.

Since the set {n — (1/s)} has the element 0, therefore
p(rs) +157_1,5 = (15,1 +€1) = ro + T'oo;

ie., p(rs) =m0 +7r_1/s + oo, for s € N.

4. Since
Too = (15,15+14e1+e2) = p(reo) = (1,154+15e1+e3) = 14rg+15r.,

by similar proofs, we also get the following results:
When r =8k + 1,
o = (0, 961 + 1462 + 4)
p(ro) = 1lrg +4re, p(rs) = 1571/, + 117 + 5roe, s € Q,
p(rs) = 1lrg +ry/s +6ree, s € N,
p(reo) = 10rg + 570o.

When r = 8k + 2,

ro = (0,4e1 + 11lex + 8)
p(ro) = 9ro + 870, p(rs) = 16715 + 970 +12r, s€Q
p(rs) =9ro+ 11/ +13r0, sEN
P(ro0) = 1drg + Treo.

When r = 8k + 3,
ro = (0, 2e1 + bey + 12)
p(ro) = 13rg +4ree, p(rs) = 1571/ + 1310 + 67, s € Q,
p(rs) =13ro +ri/s + Treo, s € N,
P(reo) = 679 + 3reo.
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When r = 8k + 4,

ro = (0,7e; + 8ez)
p(ro) = 1579, p(rs) = 1571/, + 1579 + Tree, s € Q,
p(rs) = 15rg +11/s + 87, s € N,
P(roo) = 2r9 + rog.

When r = 8k + 5,

ro = (0,e1 + 6eg + 4)
p(ro) = Llrg +4r, p(rs) = 1571/, + 11rg +13r, s € Q,
p(rs) =1lrg +ry/s + 1dry, s €N,
P(reo) = 10rg + 5reo.

When r = 8k + 6,

ro = (0,3e1 + 12e3 + 8)
p(ro) = Tro +8rs  p(rs) = 16715 + Tro + 117, s € Q,
p(rs) =Tro+rys +12ro, s€ N,
P(reo) = 219 + Ireo.

When r =8k + 7,

ro = (0,10e1 + 13e3 + 12)
p(ro) = 13rg +4re, p(rs) = 1571/ + 13rg + 1474, 5 € Q,
p(rs) = 13rg +ry/s + 157, s €N,
P(reo) =679 + 3700- O

We call a vector in a Z,m-code “even-like” if the sum of its coordinates
is 0 (mod ¢™); otherwise, we call it “odd-like.” The following corollary
is an immediate result of the fact that the group G appearing in the
above theorem is transitive; hence, all codes obtained from an extended
Z165-QR code by puncturing must be equivalent. (Recall that the code
we obtain by removing a column of a generator matrix of C' is called a
punctured C' [9, page 33].)
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Corollary 4.3. The minimum (Hamming) weight vectors of a Z1g-
QR (p,(p+1)/2) code are odd-like.

Definition 4.4. The Lee weights of the elements count +a as a for
1<a<7,8as8and 0 as 0. The Lee weight of a vector is the sum of
the Lee weights of its components.

Definition 4.5. The Euclidean weights of the elements count +a as
a? for 1 <a <7, 8as 64 and 0 as 0. The Euclidean weight of a vector
is the sum of the Euclidean weights of its components.

By direct computation using a computer, we have

Theorem 4.6. The Z15-QR (7,4) code of length 7 has minimum
Lee wetight 7, minimum FEuclidean weight 7 and minimum Hamming
weight 3.

We define maps o and B;, i =1,...,8, from Zg to Zs by

¢ afc) Bile) B2(c) PBs(c) Palc) Bslc) Bslc) PBr(c) Pslc)
0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 1
2 0 0 0 0 0 0 0 1 1
3 1 0 0 0 0 0 1 1 1
4 0 0 0 0 0 1 1 1 1
5 1 0 0 0 1 1 1 1 1
6 0 0 0 1 1 1 1 1 1
7 1 0 1 1 1 1 1 1 1
8 0 1 1 1 1 1 1 1 1
9 1 1 1 1 1 1 1 1 0
10 0 1 1 1 1 1 1 0 0
11 1 1 1 1 1 1 0 0 0
12 0 1 1 1 1 0 0 0 0
13 1 1 1 1 0 0 0 0 0
14 0 1 1 0 0 0 0 0 0
15 1 1 0 0 0 0 0 0 0

and extend them componentwise to maps from Z2; to ZY. Then the
Gray map ¢ : Zig — Z5N is given by ¢(c) = (Bi(c), Bz(c), - .. , Bs(c)).-
Note that a(c) + B1(c) + B2(c) + - - + Bs(c) = 0 for all ¢ € Zyg.
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Observe that ¢ is a distance-preserving map or isometry from Z
(Lee distance) to Z§" (Hamming distance).

The weight distribution of the image of the length 7 Z16-QR (7,4)
code under the Gray map is as follows.

i A; i A, i A;
0,56 1 14,42 296 22, 34 2814
7,49 2 15,41 518 23,33 3052
8,48 14 16,40 700 24, 32 3269
9,47 70 17,39 882 25,31 3556
10, 46 42 18,38 1162 26,30 3878
11,45 28 19,37 1582 27,29 4200
12,44 182 20,36 1876 28 4300
13,43 224 21,35 2270

Since the symmetrized Lee weight enumerator of the Z16-QR (7,4)
code of length 7 takes a few pages long to write it down, we omit it
here.

5. Quadratic residue codes over Zjs,. The following theorems
(Theorems 5.1, 5.3, 5.4, 5.7 and 5.9) are special cases of [4]. They are
needed for Section 6.

Theorem 5.1. Let p be a prime p = +1 (mod 8), such that p + 1

(orp—1) =38r.
I. Suppose p+1=8r.

(a) If r = 16k, then e;+1 and 3le; are idempotents in Zgz[x]/(x? —1),
where t = 1, 2.

(b) If r = 16k + 1, then 19e; + 22e; + 5 and 13e; + 10e; + 28 are
idempotents in Zsz[x]/(zP — 1), where i,7 =1,2 and i # j.

(c) If r = 16k + 2, then 29e; + 20e; + 9 and 3e; + 12e; + 24 are
idempotents in Zgz[x]/(xP — 1), where i,5 =1,2 and i # j.

(d) If r = 16k + 3, then 3le; + 26e; + 13 and e; + 6e; + 20 are
idempotents in Zsz[x]/(zP — 1), where i,7 =1,2 and i # j.

(e) If r = 16k + 4, then 25e; + 8e; + 17 and Te; + 24e; + 16 are
idempotents in Zgz[x]/(xP — 1), where i,5 =1,2 and i # j.
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(f) If r = 16k + 5, then 1le; + 30e; + 21 and 2le; + 2e; + 12 are
idempotents in Zgs[z]/(zP — 1), where i,7 = 1,2 and i # j.

(g8) If r = 16k + 6, then 2le; + 28e; + 25 and 1le; + 4e; + 8 are
idempotents in Zgz[x]/(xP — 1), where i,5 =1,2 and i # j.

(h) If r = 16k + 7, then 23e; + 2e; + 29 and 9e; + 30e; + 4 are
idempotents in Zgs[x]/(zP — 1), where i,5 = 1,2 and i # j.

(i) If r = 16k+8, then 17e;+16e;+1 and 15¢;+16¢; are idempotents
in Zga[x]/(xP — 1), where i,j = 1,2 and ¢ # j.

(G) If r = 16k + 9, then 3e; + 6e; + 5 and 29e; + 26e; + 28 are
idempotents in Zgs[z]/(zP — 1), where i,7 = 1,2 and i # j.

(k) If r = 16k + 10, then 13e; + 4e; + 9 and 19e; + 28e; + 24 are
idempotents in Zgz[x]/(xP — 1), where i,5 =1,2 and i # j.

(1) If r = 16k + 11, then 15e; + 10e; + 13 and 17e; + 22e; + 20 are
idempotents in Zgs[x]/(zP — 1), where i,7 = 1,2 and i # j.

(m) If r = 16k + 12, then 9e; + 24e; + 17 and 23e; + 8¢; + 16 are
idempotents in Zgz[x]/(xP — 1), where i,5 =1,2 and i # j.

(n) If r = 16k + 13, then 27e; + 14e; + 21 and 5e; + 18e; + 12 are
idempotents in Zgs[z]/(zP — 1), where i,7 =1,2 and i # j.

(o) If r = 16k + 14, then 5e; + 12e; + 25 and 27e; + 20e; + 8 are
idempotents in Zgz[x]/(xP — 1), where i,5 =1,2 and i # j.

(p) If r = 16k + 15, then Te; + 18e; + 29 and 25e; + 14e; + 4 are
idempotents in Zgs[z]/(zP — 1), where i,5 = 1,2 and i # j.

II. Suppose p— 1 = 8r.

(a) If r = 16k, then e;+1 and 3le; are idempotents in Zsz[x]/(xP —1),
where 1 = 1, 2.

(b) If r = 16k + 1, then 18e; + Te; + 29 and l4e; + 25e; + 4 are
idempotents in Zgz[x]/(xP — 1), where i,5 = 1,2 and i # j.

(c) If r = 16k + 2, then 12e; + 5e; + 25 and 20e; + 27e; + 8 are
idempotents in Zsz[x]/(zP — 1), where i,7 =1,2 and i # j.

(d) If r = 16k + 3, then l4e; + 27e; + 21 and 18e; + 5e; + 12 are
idempotents in Zgz[x]/(xP — 1), where i,5 =1,2 and i # j.

(e) If r = 16k + 4, then 24e; + 9¢; + 17 and 8e; + 23e; + 16 are
idempotents in Zsz[x]/(zP — 1), where i,7 =1,2 and i # j.
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(f) If r = 16k + 5, then 10e; + 15e; + 13 and 22e; + 17e; + 20 are
idempotents in Zgs[x]/(zP — 1), where i,7 =1,2 and i # j.

(g8) If r = 16k + 6, then 4e; + 13e; + 9 and 28e; + 19¢; + 24 are
idempotents in Zgz[x]/(xP — 1), where i,5 =1,2 and i # j.

(h) If r = 16k + 7, then 6e; + 3e; + 5 and 26e; + 29¢; + 28 are
idempotents in Zgs[x]/(zP — 1), where i,5 = 1,2 and i # j.

(i) If r = 16k +8, then 16e;+17e;+1 and 16e;+15e; are idempotents
in Zga[x]/(xP — 1), where i,j = 1,2 and ¢ # j.

(§) If r = 16k+9, then 2e;+23e;+29 and 30e;+9e;+4 are idempotents
in Zgz[x]/(zP — 1), where 1,5 = 1,2 and i # j.

(k) If r = 16k + 10, then 28e; + 21e; + 25 and 4e; + 1le; + 8 are
idempotents in Zgz[x]/(xP — 1), where i,5 =1,2 and i # j.

(1) If r = 16k + 11, then 30e; + 1le; + 21 and 2e; + 21e; + 12 are
idempotents in Zgs[x]/(zP — 1), where i,7 = 1,2 and i # j.

(m) If r = 16k + 12, then 8e; + 25¢; + 17 and 24e; + Te; + 16 are
idempotents in Zgz[x]/(xP — 1), where i,5 =1,2 and i # j.

(n) If r = 16k + 13, then 26e; + 3le; + 13 and 6e; + e; + 20 are
idempotents in Zgs[z]/(zP — 1), where i,7 = 1,2 and i # j.

(o) If r = 16k + 14, then 20e; + 29¢; + 9 and 12e; + 3e; + 24 are
idempotents in Zsz[x]/(xP — 1), where i,5 =1,2 and i # j.

(p) If r = 16k + 15, then 22e; + 19¢; + 5 and 10e; + 13e; + 28 are
idempotents in Zgs[x]/(zP — 1), where i,7 = 1,2 and i # j.

Definition 5.2. A Zjz-cyclic code is a Zgp-quadratic residue (QR)
code if it is generated by one of the idempotents in the above theorem.

Hence, p, is in the group of any Z32-Q.R. code for any a € Q.
Properties of QR codes over Zs,.

Theorem 5.3. Let p be a prime with p+ 1 = 8r.
If r =16k, let

Q1= (3le1), Q2= (3lez);
Qr=(e2+1), Q5= (er+1).



1970

If r =16k + 1, let
Q1= (1361 + 10es + 28),
Qll = (2261 + ].962 + 5),
If r = 16k + 2, let
Q1= (361 + 12e5 + 24),
Qll = (2061 + 2962 + 9),
If r = 16k + 3, let
Ql = (61 + 6es + 20),
Q) = (26e; + 3les + 13),
If r = 16k + 4, let
Q1= (761 + 24eq + 16),
Qll = (861 + 2562 + ].7),
If r = 16k + 5, let
Q1 = (21eq + 2e2 + 12),
Q) = (30e; + 1ley + 21),
If r = 16k + 6, let
Ql = (1161 + 462 + 8),
Q) = (28e1 + 21ez + 25),
If r =16k + 7, let
Q1 = (9e1 + 30ez + 4),
Qll = (261 + 23es + 29),
If r = 16k + 8, let

Ql = (1561 + 1662),
Q) = (16e1 + 17ex + 1),
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Q2 = (1061 + 1362 + 28),
Q/2 = (1961 + 2262 + 5)

Q2 = (1261 + 362 + 24),
Q/2 = (2961 + 2062 + 9)

Q2 = (6eg + ez + 20);
QIQ = (3161 + 2662 + ].3)

Q2 = (24e1 + Tex + 16);
QI2 = (2561 + 862 + 17)

Q2 = (2e1 + 21ey + 12);
QIQ = (1161 + 30es + 21).

Q2 = (461 + 1162 + 8),
Q) = (21e; + 28ey + 25).

Q2 = (30e1 + 9eq + 4);
Q) = (23e1 + 2es + 29).

Q2 = (1661 + 1562);
Q) = (17e1 + 16es + 1).
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If r =16k + 9, let

Q1 = (291 + 26e + 28), Q2 = (26e; + 29e3 + 28);
Q1 = (6e1 + 3ex +5), Q5 = (3e1 + 6ez +5).

If r = 16k + 10, let

Q1 = (191 + 28es + 24), Q5 = (28¢1 + 19¢5 + 24);
Q] = (4e1 + 13e2 +9), Q) = (13e1 + 4es +9).

If r = 16k + 11, let

Ql = (1761 + 2262 + 20), Q2 = (2261 + 1762 + 20),
Q' = (10ey + 15e5 +13), Q) = (15e1 + 10es + 13).

If r = 16k + 12, let

Q1= (2361 + 8es + 16), Q2 = (861 + 23es + 16);
Qll = (2461 + 962 + ].7), Ql2 = (961 + 2462 + 17)

If r = 16k + 13, let

1= (561 + 18es + 12), Q2 = (1861 + 5eq + 12);
Q) = (14ey + 27ea +21), Qy = (27ey + ldey + 21).

If r = 16k + 14, let

Ql = (2761 + 2062 + 8), 2 = (2061 + 2762 + 8),
Qll = (1261 + 562 + 25), Ql2 = (561 + 1262 + 25)

If r = 16k + 15, let

Q]_ == (2561 + 1462 + 4), Q2 == (1461 + 2562 + 4),
Qll = (1861 + Teq + 29), QIQ = (761 + 18es + 29)

Then the following hold for Zz2-QR. codes Q1,Q2, Q}, Q%:

(a) Q1 and Q2 are equivalent, Q and QY are equivalent;
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(b) Q1N Qs = (h) and Q1 + Q2 = Ry = Zyp[a]/(a? — 1), where
h_31hzfr_4k h_23hzfr_4k+l h_15hzfr_4k+2and
h="Thifr =4k + 3, where h =e; + ey + 1;

(c) Q1] = 3272 = |Qaf;

(@) @ =@} + (h), Q2 = Qb + (h);
(e) |Q'| = 32(’” D2 = Qy);
(f) Q) and Qf are self-orthogonal and Qi = Q, Q3 = Q.

Theorem 5.4. Let p be a prime with p — 1 = 8r.
If r = 16k, let
Q1 =(e1+1), Q2= (ex+1);
Qll = (3162), Q2 (3161)
If r =16k + 1, let
Ql = (1861 + 762 + 29), Q2 = (761 + ].862 + 29),
Qll = (2561 + 1462 + 4), Ql2 (1461 + 2562 + 4)
If r = 16k + 2, let

Ql = (1261 + 562 + 25), Q2 = (561 + ].262 + 25)
Q) = (27e; + 20ex +8), Q% = (20e; + 27es + 8).

If r = 16k + 3, let
Ql = (1461 + 2762 + 21), Q2 = (2761 + 1462 + 21),
Q) = (5e1 + 18e2 +12), Q) = (181 + 5ea + 12).
If r = 16k + 4, let
Ql = (2461 + 962 + 17), Q2 = (961 + 2462 + 17),
Qll = (2361 + 8es + 16), QI2 = (861 + 23es + 16)
If r = 16k + 5, let

Q1 = (10ey + 15e5 +13), Q2 = (15e1 + 10es + 13);
Q) = (17e1 + 22e2 + 20), Q) = (22e1 + 17es + 20).
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If r = 16k + 6, let
Q]_ = (461 + 1362 + 9),
Qll = (1961 + 2862 + 24),
If r =16k + 7, let
Ql = (661 + 3eq + 5),
Qll = (2961 + 2662 + 28),
If r = 16k + 8, let
Q1= (1661 + 17eq + 1),
Qll = (1561 + 1662),
If r =16k + 9, let
Q1= (261 + 23eq + 29),
Qll = (961 + 30es + 4),
If r = 16k + 10, let
Q1 = (2861 + 2les + 25),
Qll = (1le; + 4es + 8),
If r = 16k + 11, let
Q1 = (3061 + 1ley + 21),
Q) = (2ley + 2e3 + 12),
If r = 16k 4+ 12, let
Q1 = (8e1 + 25e3 + 17),
Qll = (761 + 24eq + 16),
If r = 16k 4 13, let

1= (2661 + 3162 + 13),
Qll = (61 + beo + 20),

Q2 = (1361 + 4des + 9);
Q/2 = (2861 + 1962 + 24)

Q2 = (361 + 6es + 5);
Q/2 = (2661 + 2962 + 28)

Q2 = (17e1 + 16e2 + 1);
QI2 = (1661 + 1562).

Q2 = (23e1 + 2e3 + 29);
QIQ = (3061 + 962 + 4)

Q2 = (2161 + 2862 + 25),
Q) = (4e1 + 1les + 8).

Q2 = (1161 + 30es + 21);
Q5 = (2e1 + 21ez + 12).

Q2 = (25e; + 8ez +17);
Q) = (24e; + Tes + 16).

9 = (3161 + 26es + 13),
QI2 = (661 + es + 20)

1973
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If r = 16k + 14, let

Q1 = (20e1 + 292 +9), Q2 = (291 + 20e2 + 9);
Q) = (31 +12e2 +24), Q% = (12e; + 3ep + 24).

If r = 16k + 15, let

Q1 = (2261 + 19es + 5), Q2 = (1961 + 22e5 + 5),
Q) = (13e; +10ez + 28), Q%5 = (10e; + 13ey + 28).

Then the following hold for Zs2-QR. codes Q1,Q2, Q1, Q5:

(a) Q1 and Q2 are equivalent, Q' and QY are equivalent;

(b) Q1N Qs = (k) and Q1 + Q2 = R, = Zss[a]/(a¥ — 1), where h = h
ifr =4k, h = 25h if r = 4k + 1, h—17hzfr—4k+2andh:9hif
r =4k + 3, where h = e; +es + 1;

(c) |Q1] = 32(PT1/2 = |Q,};

(d) @ + (), Q2 = Qy + (h);
(e) IQ’I —32(” D2 =1Q4);
(f) @ h Q3 = Q).

Definition 5.5. The extended code of a Zss-code C' denoted by C' is
the code obtained by adding an overall parity check to each codeword
of C.

Definition 5.6. When p+ 1 = 8r, we defined @1 to be the Z32-code
generated by the following matrix. When r = 4k + 1:

© 0 1 - v op—1
0

: G !
0

23 23 923 .. .. ... 923

where each row of G is a cyclic shift of 22e; +19e2+5 when r = 16k+1,
a cyclic shift of 30e; + 1les + 21 when r = 16k + 5, a cyclic shift of
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6e; + 3e2 + 5 when 7 = 16k + 9 and a cyclic shift of 14e; + 27e; + 21
when r» = 16k + 13.

When r» = 4k + 3:

© 0 1 -0 cov o eoop—1

T 7T 7T e e o 7

where each row of G is a cyclic shift of 26e;+31e2+13 when r = 16k+3,
a cyclic shift of 2e; + 23es + 29 when r = 16k + 7, a cyclic shift of
10e; + 15e2 + 13 when r = 16k + 11 and a cyclic shift of 18e; + 7ez +29
when r = 16k + 15. We define Q)2 similarly.

Theorem 5.7. Suppose p + 1 = 8r, and let Q1, Q2 be the Z32-QR
codes in Theorem 5.3. Let Q, and Q, denoted their extended codes.
Then Q, and Q, are self-dual, when r = 4k and 4k + 2. The dual of
Q, is @1 and the dual of Q. is @2, when r = 4k + 1 and 4k + 3.

Definition 5.8. When p — 1 = 87, we define @1 to be the Zss-code
generated by the following matrix.

When r = 4k:
0 0 1 «+o cer eoop—1
0
: G )
0
1 1 1 «vv eee wee 1

where each row of G} is a cyclic shift of 3les when r = 16k, a cyclic
shift of 23e; + 8ey + 16 when r = 16k + 4, a cyclic shift of 15e; + 16es
when 7 = 16k +8 and a cyclic shift of 7e; +24e5+16 when r = 16k+12.
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When r = 4k + 1:

o 0 1 p—1
0

: G} )
0

25 925 25 - -2 ... 925

where each row of G is a cyclic shift of 25e; +14e2+4 when r = 16k+1,
a cyclic shift of 17e; + 22e2 + 20 when r = 16k + 5, a cyclic shift of

9e; 4+ 30es +4 when r = 16k + 9 and a cyclic shift of e; + 6e3 + 20 when
r = 16k + 13.

When r = 4k + 2:

co 0 1 p—1
0

: G !
0

17 17 17 v eev oo 1T

where each row of G} is a cyclic shift of 27e; +20e2+8 when r = 16k+2,
a cyclic shift of 19e; + 28e2 + 24 when r = 16k + 6, a cyclic shift of

1le; + 4es + 8 when r = 16k + 10 and a cyclic shift of 3e; + 12e + 24
when r = 16k + 14.

When r = 4k + 3:
© 0 1 - oo oo p—1
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where each row of G is a cyclic shift of 5e; +18e2+12 when r = 16k+3,
a cyclic shift of 29e; + 26e2 + 28 when r = 16k + 7, a cyclic shift of
2le; +2e2 +12 when r = 16k + 11 and a cyclic shift of 13e; + 10ez + 28
when r = 16k 4 15. We define Q)2 similarly.

Theorem 5.9. Suppose p — 1 = 8r, and let Q1,Q2 be the Z3z2-QR
codes in Theorem 5.4. Let Q); and @), denote their extended codes.

Then the dual of Q; is @2 and the dual of Q, is él.
6. Automorphism group of the extended QR code over Zss.

Theorem 6.1. Let G be the group generated by the following
elements:

o:i—i+1 (mod p), o0 — o0;
Wo . — ai (mod p), fora € Q, co — oo;

1
p:i— —= (mod p)
i

followed by multiplication by —X(i) for i # 0, 00.
The action of p on 0 and co s defined as follows.

(D) p+1=2_8r. If r = 16k, let
0 — oo followed by multiplication by 1,
0o —» 0 followed by multiplication by 15.
If r =16k + 1, let
0 — oo followed by multiplication by 21,
oo — 0 followed by multiplication by 3.
If r = 16k + 2, let
0 — oo followed by multiplication by 25,
oo — 0 followed by multiplication by 23.
If r = 16k + 3, let
0 — oo followed by multiplication by 13,
oo — 0 followed by multiplication by 27.
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If r = 16k + 4, let

0 — oo followed by multiplication by 17,
oo — 0 followed by multiplication by 15.

If r = 16k + 5, let

0 — oo followed by multiplication by 5,
0o —» 0 followed by multiplication by 19.

If r = 16k + 6, let

0 — oo followed by multiplication by 9,
oo — 0 followed by multiplication by 7.

If r = 16k + 7, let

0 — oo followed by multiplication by 29,
oo — 0 followed by multiplication by 11.

If r = 16k + 8, let

0 — oo followed by multiplication by 1,
oo — 0 followed by multiplication by 31.

If r =16k + 9, let

0 — oo followed by multiplication by 21,
0o —» 0 followed by multiplication by 3.

If r = 16k + 10, let

0 — oo followed by multiplication by 25,
oo — 0 followed by multiplication by 23.

If r = 16k + 11, let

0 — oo followed by multiplication by 13,
oo — 0 followed by multiplication by 27.
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If r = 16k + 12, let

0 — oo followed by multiplication by 17,
oo — 0 followed by multiplication by 15.

If r = 16k + 13, let

0 — oo followed by multiplication by 5,
oo — 0 followed by multiplication by 19.

If r = 16k + 14, let

0 — oo followed by multiplication by 9,
oo — 0 followed by multiplication by 7.

If r = 16k + 15, let

0 — oo followed by multiplication by 29,
oo — 0 followed by multiplication by 11.

(I1) p — 1 = 8r. If r = 16k, let

0 — oo followed by multiplication by 1,

oo — 0 followed by multiplication by 1.
If r =16k + 1, let

0 — oo followed by multiplication by 3,

oo — 0 followed by multiplication by 11.
If r = 16k + 2, let

0 — oo followed by multiplication by 23,

oo — 0 followed by multiplication by 7.
If r = 16k + 3, let

0 — oo followed by multiplication by 27,
oo — 0 followed by multiplication by 19.

1979



1980 C.L. HSU, W.L. KUO, S.S.-T. YAU AND Y. YU

If r = 16k + 4, let

0 — oo followed by multiplication by 15,
oo — 0 followed by multiplication by 15.

If r = 16k + 5, let

0 — oo followed by multiplication by 19,
0o —» 0 followed by multiplication by 27.

If r = 16k + 6, let

0 — oo followed by multiplication by 7,
oo — 0 followed by multiplication by 23.

If r = 16k + 7, let

0 — oo followed by multiplication by 11,
oo — 0 followed by multiplication by 3.

If r = 16k + 8, let

0 — oo followed by multiplication by 31,
oo — 0 followed by multiplication by 31.

If r =16k + 9, let

0 — oo followed by multiplication by 3,
0o —» 0 followed by multiplication by 11.

If r = 16k + 10, let

0 — oo followed by multiplication by 29,
oo — 0 followed by multiplication by 7.

If r = 16k + 11, let

0 — oo followed by multiplication by 27,
oo — 0 followed by multiplication by 19.



QUADRATIC RESIDUE CODES OVER Z16 and Z3» 1981

If r = 16k + 12, let

0 — oo followed by multiplication by 15,
oo — 0 followed by multiplication by 15.

If r = 16k + 13, let
0 — oo followed by multiplication by 19,
oo — 0 followed by multiplication by 27.
If r = 16k + 14, let
0 — oo followed by multiplication by 7,
0o —» 0 followed by multiplication by 23.
If r = 16k + 15, let

0 — oo followed by multiplication by 11,
oo — 0 followed by multiplication by 3.

Then G is contained in the group of the extended QR code.

Proof. It is obvious that the extended code is fixed by the map o.
The extended code is fixed by u, for a € Q) because u, does not change
the oo position and it fixes the QR codes.

By a similar proof as in Theorem 4.2, we can show that the extended
code is also fixed by the map p. Here we just give the results of the
action of p.

(I) p+1 = 8r. When r = 16k,
ro = (0,1 + ea),
p(ro) = 31ro +31re, p(rs) = 31r_y/s +31lrg + 311, s€Q,
p(rs) =r_;s+31lrg, s€N,
P(roo) = 2rg + T
When r = 16k + 1,
ro = (0,5 + 22e; + 19es),
p(ro) = 3ro + 237, p(rs) =31r_1)s + 310+ 171, s€Q,
p(rs) =r_1/s +3ro +18re, s €N,
p(roo) = 2679 + 297 .



1982 C.L. HSU, W.L. KUO, S.S.-T. YAU AND Y. YU

When r = 16k + 2,
ro = (0,9 + 20ey + 29e2),
p(ro) = 2370 +31r, p(rs) = 31r_q /5 +23r¢ + 117y,
p(rs) =r_1/s +23r0 + 121, s€N,
P(r00) = 1879 + 9Ir0o.
When r = 16k + 3,
ro = (0,13 + 26e; + 31es),
p(ro) = 2Tro + 2370, p(rs) = 31r_q)s +27rg + 137,
p(rs) =r_1/s +27ro + 14ro, s €N,
P(reo) = 10rg + 5.
When r = 16k + 4,
ro = (0,17 + 8e; + 25eq),
p(ro) = 1579 + 31re,  p(rs) = 31r_y/s + 1570 + 237,
p(rs) =r_1/s + 1519 + 24ro, s€ N,
P(reo) = 2rg + 17r.
When r = 16k + 5,
ro = (0,21 + 30e; + 1les),
p(ro) = 1979 + 23rec, p(rs) =31r_y/s + 1970 + Iree,
p(rs) =r_1/s +1970 + 10ro, s €N,
p(rso) = 2679 + 13rs.
When r = 16k + 6,
ro = (0,25 + 28e1 + 21es),
p(ro) = Tro 4+ 317, p(rs) = 317_1 /5 + Tro + 3reo,
p(rs) =r_1/s +Tro +4re, s€EN,
P(roo) = 18r¢ + 257 .
When r = 16k + 7,
ro = (0,29 + 2e; + 23e),
p(ro) = 11rg + 23roc, p(rs) = 31r_q/s + 11rg + 5rec,
p(rs) =r_1/s +1lrg +6ree, s €N,
p(reo) = 10rg + 21r.

s EQ,

s € Q,

sE€EQ,

sEQ,

sEQ,

s €Q,
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When r = 16k + 8,
ro = (0,1 + 16e1 + 17ez),
p(ro) = 31rg +31r, p(rs) = 31r_y/s +3lrg + 167, s€Q,
p(rs) =r_1/s +3lrg + 16rs, s€ N,
P(r00) = 2r0 + Too-
When r = 16k + 9,
ro = (0,5 + 6e + 3ez),
p(ro) = 3ro + 237, p(rs) =31r_1)s + 310 +ree, sE€Q,
p(rs) =7_1/s +3r0 + 2ree, s€EN,
P(roo) = 2679 + 297 .
When r = 16k + 10,
ro = (0,9 + 4e; + 13e3)
p(ro) = 2310 +31ree  p(rs) = 31r_y/s + 2310 + 2Tree, s € Q,
p(rs) =r_1/s +23r0 + 28ro, s€EN,
p(reo) = 18rg + 9r0o.
When r = 16k + 11,
ro = (0,13 + 10e; + 15e2),
p(ro) = 2Tro + 231,  p(rs) = 31r_1/s +27rg + 297, s € Q,
p(rs) =r_1/s +27ro +30rs, s€N,
p(reo) = 10rg + 570o.
When r = 16k + 12,
ro = (0,17 + 24eq + 9e2),
p(ro) = 1679 +31ree, p(rs) =31r_y/s + 1510+ Tree, s € Q,
p(rs) =r_1/s + 1610 +8rs, s €N,
P(r00) = 2r9 + 177 .
When r = 16k + 13,
ro = (0,21 + 14ey + 27es),
p(ro) = 1979 + 237, p(rs) = 31r_1/s + 1970 + 267, s € Q,
p(rs) =r_1/s + 1979 + 26ro, s €N,
P(roo) = 2679 + 13r .
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When r = 16k + 14,

ro = (0,25 + 12e1 + 5eq),
p(ro) = Tro +31re, p(rs) =31r_1/s +Tro + 197, s€Q,
p(rs) =r_1/s+Tro +20r, s€ N,
P(roo) = 18rg + 257 .

When r = 16k + 15,

ro = (0,29 + 18e; + Teq),
p(ro) = 11rg + 23re, p(rs) = 31r_ys + 1lrg + 217, s € Q,
p(rs) =r_y1/s +1lrg +22ro, s€N,
p(reo) = 10rg + 21r.

(IT) p — 1 = 8r. When r = 16k,

To = (073162)7 P(TO) =To, P(Ts) = 317“71/5 + 7o, RS Q:
p(rs) =T_1/s+10+Teo, SEN,  p(reo) =307+ 3lre.

When r = 16k + 1,

ro = (0,4 + 25e; + 14es),
p(ro) = 11rg + 207, p(rs) = 31r_y/s + 1lrg + 217, s € Q,
p(rs) =r_1/s +21lrg + 22ro, s€N,
p(re) = 10rg + 21r.

When r = 16k + 2,

ro = (0,8 + 27e; + 20e3),
p(T‘o) = Tro + 87oo, p(Ts) = 317'71/5 +Trg + 197, s€Q,
p(rs) =r_1/s+ Tro +20rs, sE€ N,
p(Too) = 1879 + 257 0.
When r = 16k + 3,
ro = (0,12 + ey + 18es),
p(ro) = 1970 + 28rs, p(rs) = 31r_q/s +19r¢ + 257, s€Q,
p(rs) =r_1/s + 1970 + 26r, s€EN,
P(roo) = 2679 + 13r .
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When r = 16k + 4,
ro = (0,16 + 23e1 + 8ez),
p(ro) = 1679 + 1670, p(rs) =31r_y/s + 1510+ Tree, s € Q,
p(rs) =r_1/s + 1610 +8rse, s €N,
P(ro0) = 2r9 + 177 .
When r = 16k + 5,
ro = (0,20 + 17ey + 22e5),
p(ro) = 2Trg +4ree, p(rs) =31r_1/s + 2710 + 297, s€Q,
p(rs) =r_1/s +27ro + 30ro, s€N,
P(reo) = 10rg + 5.
When r = 16k + 6,
ro = (0,24 + 19e; + 28es),
p(ro) = 23rg + 24re, p(rs) = 31r_y/s +23r0 + 27ree, s € Q,
p(rs) =r_1/s +23r0 + 28ro, s€EN,
P(reo) = 18rg + 97roo.
When r = 16k + 7,
ro = (0,28 + 29¢; + 26e2),
p(ro) = 3ro + 1270, p(rs) =31r_y)s +3r0 +ree, s€Q,
p(rs) =r_1/s +3r0 +2re, s€EN,
p(rso) = 2679 + 297 .
When r = 16k + 8,
ro = (0, 15e1 + 16es),
p(ro) = 31ro, p(rs) =31r_y/, +31rg + 157, s€Q,
p(rs) =r_1/s +3lrg + 167, s€ N,
P(r00) = 2r0 + Too-
When r = 16k + 9,
ro = (0,4 + 9e; + 30e),
p(ro) = 11rg + 207, p(rs) =31r_q/s +1lrg +5r, s € Q,
p(vs) = 7175 + 1170 + 670, sEN,
p(reo) = 10rg + 21r.
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When r = 16k + 10,
ro = (0,8 + 11leq + 4es),
p(ro) = Tro + 8reo, p(rs) =31r_1/s +Tro +3re, s€Q,
p(rs) =r_1/s +Tro +4re, s€EN,
P(ro0) = 18rg + 257 .
When r = 16k + 11,
ro = (0,12 + 21ey + 2es),
p(ro) = 1979 + 28roc, p(rs) =31r_1/s + 1970+ 9Ire, s € Q,
p(rs) =r_1/s +1979 + 10ro, s €N,
P(roo) = 2679 + 13r .
When r = 16k + 12,
ro = (0,16 + Teq + 24es),
p(ro) = 1579 + 167, p(rs) = 31r_y/s + 15rg + 23re, s € Q,
p(rs) =r_1/s + 1519 + 24ro, s €N,
P(reo) = 2rg + 17r.
When r = 16k + 13,
ro = (0,20 + €1 + 6es),
p(ro) = 2Tro +4reo, p(rs) =31r_y/s +27rg + 13r, s€Q,
p(rs) =r_1/s +27ro + 14ro, s€ N,
p(reo) = 10rg + 570o.
When r = 16k + 14,
ro = (0,24 + 3e1 + 12e3),
p(ro) = 23ro + 241, p(rs) = 31r_y/s +23r0 + 111, s€Q,
p(rs) =r_1/s +23r0 + 121, s€N,
P(r00) = 1879 + 97 0.
When r = 16k + 15,
ro = (0,28 + 13e; + 10es),
p(ro) = 3ro + 121, p(rs) =31r_1/5 + 310 + 171, s€Q,
p(rs) =r_1/s +3ro +18re, s €N,
p(roo) = 2679 + 297 . O
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The following corollary is an immediate result of the fact that group G
which appears in the above theorem is transitive; hence, all codes ob-
tained from an extended Z3>-QR code by puncturing must be equiva-
lent.

Corollary 6.2. The minimum (Hamming) weight vectors of a Zgo-
QR (p, (p+1)/2) code are odd-like.

Definition 6.3. The Lee weights of the elements count +a as a for
1 < a <15;16 as 16; and 0 as 0. The Lee weight of a vector is the sum
of the Lee weights of its components.

Definition 6.4. The Euclidean weights of the elements count +a as
a? for 1 < @ < 15; 16 as 256; and 0 as 0. The Euclidean weight of a
vector is the sum of the Euclidean weights of its components.

By direct computation using a computer, we have

Theorem 6.5. The Z33-QR (7,4) code of length 7 has minimum
Lee weight 7, minimum FEuclidean weight 7, and minimum Hamming
weight 3.

We define maps « and 3;, i =1,...,16, from Z3s to Zy by

¢ al)) Bile) Ba(e) Ba(c) Bale) Bs(e) Bele) Br(o)
0 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0
3 1 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0
5 1 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0
7 1 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 0
9 1 0 0 0 0 0 0 0
10 0 0 0 0 0 0 0 1
11 1 0 0 0 0 0 1 1
12 0 0 0 0 0 1 1 1
13 1 0 0 0 1 1 1 1
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Bi(c) PBa2(c) Bs(c) Balc) PBs(c) PBslc) PBr(c)

a(e)

14
15
16
17
18
19
20
21

22
23
24
25

26
27
28
29
30
31

Bis(c) Bia(c) Bis(c) Pfielc)

B12(c)

Bio(e) Pri(c)

Ba(c)

Bs(c)

10
11
12
13
14
15
16

17
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¢ Bs(c) PBo(c) PBio(c) Pii(c) Piz(c) Pia(c) Bia(e) Pis(c) Pisl(c)

18 1 1 1 1 1 1 1 0 0
19 1 1 1 1 1 1 0 0 0
20 1 1 1 1 1 0 0 0 0
21 1 1 1 1 0 0 0 0 0
22 1 1 1 0 0 0 0 0 0
23 1 1 0 0 0 0 0 0 0
24 1 0 0 0 0 0 0 0 0
25 0 0 0 0 0 0 0 0 0
26 0 0 0 0 0 0 0 0 0
27 0 0 0 0 0 0 0 0 0
28 0 0 0 0 0 0 0 0 0
29 0 0 0 0 0 0 0 0 0
30 0 0 0 0 0 0 0 0 0
31 0 0 0 0 0 0 0 0 0

and extend them in the obvious way to maps from Z2, to Z'. Then the
Gray map ¢ : Z3) — Z3°N is given by ¢(c) = (B1(c), Ba(c), - .- , Bi6(c))-
Note that a(c) + Bi(c) + B2(c) + -+ - + Bis(c) = 0 for all ¢ € Zss.

Observe that ¢ is a distance-preserving map or isometry from Z2,
(Lee distance) to Z3*N (Hamming distance).

The weight distribution of the image of length 7 Z32-QR. (7,4) code
under the Gray map is as follows.

i A;
0,112 1
7,105 2

8,9,103,104 14
13,99 56
14,98 86
15,97 42
16,96 28
17,95 154
18,94 224
19,93 252
20,92 392
21,91 478

22,90 560



1990 C.L. HSU, W.L. KUO, S.S.-T. YAU AND Y. YU

i A;
23, 89 686
24,88 1190
25,87 1442
26, 86 1666
27,85 2016
28, 84 2312
29, 83 3136
30, 82 3990
31,81 4704
32,80 4984
33,79 5978
34,78 7042
35,77 8346
36,76 9800
37,75 10696
38,74 11970
39,73 13202
40,72 15176
41,71 16674
42,70 18482
43,69 19754
44,68 21000
45,67 22736
46, 66 24416
47,65 26656
48,64 27587
49,63 28618
50, 62 29218
51,61 31010
52, 60 32032
53,59 32592
54,58 33418
55, 57 32900

56 33112

Since the symmetrized Lee weight enumerator of the Z3,-QR (7,4)
code of length 7 takes a few pages’ length to write down, we omit it
here.
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