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THE HOGGATT-BERGUM CONJECTURE ON
D(=1)-TRIPLES {Fy;1, For i3, Forss} AND INTEGER
POINTS ON THE ATTACHED ELLIPTIC CURVES

YASUTSUGU FUJITA

ABSTRACT. Denote by Fj, the nth Fibonacci number. We
show that if a positive integer d satisfies the property that for
an integer k > 0 each of Fy1d+1, Fopy3d+1 and Fopysd+1
is a perfect square, then d must be 4F5p4 2 Fop43Fok 4. Using
this result, we further show that if for an integer £ > 1 the
rank of the attached elliptic curve

Ek : y2 = (F2k+1w + 1)(F2k+3$ + 1)(F2k+5$ + 1)

over Q equals one, then the integer points on E} are given by

(z,y) € {(0,£1), (4F2k42Fak4+3Fak44, £(2Fop42Fop43 + 1)
X(2F5, 45 — 1)(2F2k13Fakpa — 1)}

1. Introduction. Diophantus found that the rational numbers
1/16, 33/16, 68/16, 105/16 have the property that the product of any
two of them increased by one is a square of a rational number. The
first example of four positive integers with such a property was found
by Fermat, which was the set {1,3,8,120}. Replacing “one” by “n”
leads to the following definition.

Definition 1. Let n be a nonzero integer. A set {ai,...,an,} of
m distinct positive integers is called a Diophantine m-tuple with the
property D(n) (or a D(n)-m-tuple) if a;a; + n is a perfect square for
all i, j with 1 <i < j < m.

In case n = 1, a folklore conjecture says that a D(1)-quintuple does
not exist. This is an immediate consequence of the following:
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Conjecture 1 (cf. [1]). If {a,b,c,d} is a D(1)-quadruple with
a<b<c<d, thend=d,, where

dy = 2abc+ a+b+c+ 2/ (ab+1)(ac + 1)(bc + 1).

The first result supporting the validity of Conjecture 1 was shown
by Baker and Davenport [2], which states that if {1,3,8,d} is a D(1)-
quadruple, then d = 120(= dy). This result has been generalized in
three directions. First, Dujella [8] showed that if {k — 1,k + 1,4k, d}
with k£ > 2 is a D(1)-quadruple, then d = 4k(4k? — 1)(= d.); secondly,
Dujella and Pethd [18] showed that if {1, 3, ¢,d} with ¢ < d is a D(1)-
quadruple, then d = ¢, 1(= dy), where

1
c:cl,:6{(2+\/§)2V+1+(27\/§)2'/+174}, v=1,2,...;

and thirdly, Dujella [10] showed that if {Fak, Fort2, Fogta,d}, where
k > 1 and F,, denotes the vth Fibonacci number, is a D(1)-quadruple,
then d = 4Fs 11 FopoFor13(= d) (this is called the Hoggatt-Bergum
conjecture, see [24]). The first two results have been generalized, and
it is known that if {k — 1,k + 1,¢,d} is a D(1)-quadruple with ¢ < d,
then ¢ = ¢, 41(= d4), where

e == oo { (k4 VIR )P (k- VR 1) - 2]

2(k%2—-1)
v=12,...,

cf. [4, 22]. In general, it has been shown by Dujella [15] that there
does not exist a D(1)-sextuple and there exist only finitely many D(1)-
quintuples.

For n = —1, Dujella [9] showed that the pair {1,2} cannot be
extended to a D(—1)-quadruple. Moreover, Dujella and Fuchs showed
that any D(—1)-triple {a, b, c} with 2 < a < b < ¢ cannot be extended
to a D(—1)-quadruple. This immediately implies that there does not
exist a D(—1)-quintuple. (For results in the cases of a =1 and b > 5,
see [20, 21, 32].) Recently, Dujella, Filipin and Fuchs [16] showed
that there exist only finitely many D(—1)-quadruples.
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Whereas any D(—1)-triple {a,b,c} with a < b < ¢ cannot be
conjecturally extended to a D(—1)-quadruple, there exists a positive
integer d such that each of ad+ 1, bd+1 and cd+ 1 is a perfect square.
In fact, d = d* has such a property, where

d* = 2abc — (a + b+ c) + 24/ (ab — 1)(ac — 1)(bc — 1),

cf. [14, Lemma 3]. This leads to the following definition.

Definition 2. A set {a,b,c;d} of positive integers is said to have
the property D(—1;1) if {a, b, c} is a D(—1)-triple and each of ad + 1,
bd + 1 and cd + 1 is a perfect square.

It is to be noted that a D(—1)-triple {a,b,c} can be extended to a
D(-1)-quadruple {a, b, ¢, —d} in the ring Z[i] of Gaussian integers, cf.
[7, Example 1], which corresponds to our quadruple {a, b, ¢;d} having
the property D(—1;1). In this paper, we first show that if a = Fap1,
b = Farys and ¢ = Fypys, then such a d is unique, which is another
conjecture of Hoggatt and Bergum [24]:

Theorem 1. Letk > 0 be an integer. If the set {Fakt1, Fog+3, Forts5}
has the property D(—1;1), then d must be 4Fog2Fop+3Fok14.

Note that 4F5; o Fok+3Fok1a = dt.

We next examine integer points on the attached elliptic curves. Let
Cy, be the elliptic curve defined by

C : y2 = (F2k$ + 1)(F2k+2.’13 + 1)(F2k+4$ + ].)
Then, using the result obtained in [10], Dujella [13] showed that if the
rank of Cj over Q equals one, then the integer points on C} are given
by
(z,y) € {(0, £1), (4F 211 Fopt2Fopts, £(2F2p11Fop12 — 1)
X (2F3 12 + 1) (2Fo42Forr + 1))}
(For similar results on the D(1)-triples {k — 1,k + 1,4k}, k > 3, and

{1,3,¢,}, v > 1, see [11, 19].) Analogously, let Ej, be the elliptic curve
defined by

(1) Ey : y2 = (F2k+1a: + 1)(F2k+3:l? + 1)(F2k+533 + 1).
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Then, using Theorem 1 we show the following.

Theorem 2. Let k > 1 be an integer and E}, the elliptic curve given
by (1). If the rank of E), over Q equals one, then the integer points on
Ej are given by

(2) (z,y) € {(0,%1), (4Foky2Fort3Fokta, £(2Fop12Fop43 + 1)
X (2F3 13 — 1)(2Fap13Fak1a — 1))}

Note that without the assumption on the rank of Ej, one can show
that the integer points on Ej are given by (2) for 4 < k < 50 with
k ¢ {9,20,24,25,32,43}, see Remark 2, while the same is not true for
k € {0,2,3}, see Remark 1.

We prove Theorem 1 in Section 2 and Theorem 2 in Section 3 along
the same lines as in [10, 13], respectively.

2. The proof of Theorem 1.

2.1. A lower bound for solutions. Let {a,b,c} be a D(—1)-triple
with a < b < c. Let r, s,t be positive integers with

ab—1=r2 ac—1=s% be — 1 =t2.
The latter two relations lead to the Diophantine equation

(3) at?* —bs* = b — a.

Lemma 1. Let (¢,s) be a positive solution of (3). Then there exists
a solution (to, so) of (3) satisfying the following:

(i) o] < v/a(b —a), 0 <ty < \/b(b — a);

(ii) There exists an integer j > 0 such that

(4) tv/a + svVb = (tov/a + soVb)(2ab — 1 + 2rVab).
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Proof. We apply [33, Theorem I1.9, Section 4], which is analogous to
[29, Theorems 108, 108a], to the equation bs* — at? = a — b. Then we
see that there exists a solution (o, so) of (3) with

|so] < ’"—V\bfb’“ <Valb-a), 0<ty<bb—a)
and an integer j7 > 0 such that
(5) tva + svVb = +(tov/a + soVb)(2ab — 1 + 2rvVab)?,

where the + signs may be taken independently. Suppose that the first
sign is minus. Since

(tov/a + soVb)(tov/a — sovVb) =b—a > 0

and ty > 0 together imply that ty\/a + s9v/b > 0, the righthand side of
(5) is negative, which is a contradiction. Hence, the first sign must be
plus. If the second sign is minus and j > 0, then

tva + svVb = (tov/a + soVb)(2ab — 1 — 2rvVab)’
tov/a + sov/b <b\/a+r\/5<
~ 2ab—1+ 2rvab 4ab— 3

L,

which is a contradiction. Hence, the second sign must be plus, too.
This completes the proof of Lemma 1. ]

By (4), we may write s = o, where
oo = So, o1 = (2ab—1)sg + 2arty, oj+2 =2(2ab—1)0j41 —0j.
It is easy to see by induction that
oj=(~1)sy (mod a).

Hence, if (s?+1)/a is an integer (this is the case in our situation), then
so is (s2 +1)/a.
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Lemma 2. Let (t,s) be a positive solution of (3). Assume that
(s2 +1)/a is an integer and b < 3a. If (to,s0) is a solution of (3)
satisfying (i) and (ii) in Lemma 1, then we have

(to, s0) = (b —r,£(r — a)).

Proof. If a = 1 and b = 2, then equation (3) becomes t>—2s? = 1, and
its positive solutions are given by t+sv/2 = (34+2v/2)7. Hence, Lemma 2
holds. We may assume that (a,b) # (1,2). Put ¢y = (s2 + 1)/a. Then,
as we mentioned above, cj is an integer and it is clear that {a,b, co} is
a D(—1)-triple with

1
co < =(rt+1)=0.
a
Applying Lemma 7 in [17] to this triple, we see from b < 3a < 3ac

that
b=a+cy+ 2vacy — 1,

that is, co = a + b — 2r. It follows that

so=+va2+ab—2ar — 1 = +(r —a),
to=+ab+b2—2br—1="b—r.

This completes the proof of Lemma 2. i

We now assume that {a,b,c;d} has the property D(—1;1). Then,
there exist positive integers z, y and z such that

(6) ad +1 = 22, bd +1 = o2, cd+1=2%
Eliminating d, we obtain the system of Diophantine equations:

ay? —bx? =a — b,
(7) az? —cx’ =a—c,
b2 —cy =b—c
Lemma 3. Let (y,z), (z,2) and (z,y) be positive solutions of (7),

(8) and (9), respectively. Then there exist solutions (yo,xo), (21,21)
and (z2,x2) of (7), satisfying the following:
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(1) 0 < zo < Va(b—a), lyo| < v/b(b—a),
(8) 0 <z <+a(ec—a), |z1] < v/¢e(e —a),
©) 0 <y2 <+/blc—b), |z2] < v/c(c—b);

(ii) There exist integers m, n and | > 0 such that

(10) yva—+avb = (yov/a+ zoVb)(2ab — 1 + 2rVab)™,
(11) zv/a+ zy/c = (z21v/a + x1/c)(2ac — 1 + 2sv/ac)"”,
(12) Vb + yv/e = (2aVh + yar/c)(2bc — 1 + 2tVbe).

Proof. Since one may prove this lemma in exactly the same way as
Lemma 1, we omit the proof. u]

In what follows, let (yo, o), (21,21) and (22,y2) be the ones in
Lemma 3. In the same way as was mentioned just before Lemma 2,
we easily see that if (z? — 1)/a is an integer (this is the case in our
situation), then so is (z2 —1)/a.

Lemma 4. Let (y,z) be a positive solution of (7). If (x®> —1)/a is
an integer and b < 3a, then we have

(Y0, o) = (£1,1).

Proof. If a = 1 and b = 2, then equation (7) becomes y? — 222 = —1,
and its positive solutions are given by y +zv/2 = (1 +1/2)(3 +2v2)™.
Hence, Lemma 4 holds. We may assume that (a, ) # (1, 2).

Put dy = (2 — 1)/a and
d =a+b+ (2ab—1)do + 2rzo|yol-
Then, as we mentioned above, dy is an integer. From

ac’ — 1 = (rzo + alyo|)? and bc’ — 1 = (bxo + 7|yo)?,
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we see that {a,b, ¢’} is a D(—1)-triple. Suppose now that dp > 0. Since
¢ >a+b+ 2r, by Lemma 7 in [17] we have

(13) ¢’ > 3ab.
Since dg < (a(b—a) — 1)/a < b — a, we also have

d <a+b+(2ab—1)(b—a)+2r(b—a)Vab
(14) <(4ab—1)(b—a)+a+b
< 4ab”.

On the other hand, when we number the c’s satisfying the property
that {a,b,c} is a D(—1)-triple by ¢y < ¢; < ---, Lemmas 1 and 2
imply that

co=a+b—2r

c1 =a+b+2r < 3ab,

_ {dab(r —a)+3a—r}?>+1
a

c2 > 4ab?,

where the last inequality follows from (a,b) # (1,2). This contradicts
(13) and (14). Hence, we obtain dy = 0 and zg = 1, yo = %1. O

In what follows, assume that £ > 0 is an integer and that
a= Fopq1, b= Fopys, c= Fopys.
Then we have (2a <)b < 3a and
c=3b—a, r=b-—a, s=b, t=2b—a.
Lemma 5. Let (z,y,z) be a positive solution of the system of

equations (6). Then we have

(22,92) = (£1,1) and (z1,z1) = (£1,1).
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Proof. By (10) and (12) we may write y = a,,, = (3, where

(15)

ap = Yo, a1 = (2ab — 1)yo + 2brzg, amiz = 2(2ab— 1)ami1 — Qum,
(16)

Bo = ya2, B1 = (2bc — 1)y + 2btzo, B2 = 2(2bc — 1)Bi1 — Bi.

By induction, it is easy to see from (15) and (16) that
am = (=1)™yy (mod 2b) and S = (-1)'y, (mod 2b).

We know from Lemma 4 that yo = +1, and we see from (9), with
¢ = 3b— a, that

0 <y < /b(2b—a) <2b—1.

It follows from «,,, = §; that yo = 1 and z5 = +1.

Similarly, by (11) and (12) we may write z = p,, = ¢;, where

po =21, p1=(2ac—1)z1+2csT1, Pny2 = 2(2ac — 1)ppi1 — pa,

g =22, q1=(2bc—1)22 +2ctyz, q2=2(2bc —1)q11— @,
and we obtain

pn=(-1)"21 (mod2c) and ¢ =(-1)'22 (mod 2c).
We know from the above that zo = 1, and we see from (8) that
|z < Vele—a) <c.

It follows from p,, = q; that z; = 1 and x; = 1. ]

Lemma 6. Let (z,y,2z) be a positive solution of the system of
equations (6). Then, there exist integers m and n such that

T = Uy = W,
where v, and w, are the two-sided sequences, respectively, given by the
following:

(17)

vo=1 v1=2a2b—a)—1, vUpni2=2(2ab— 1)vyt1 — Vp;

(18)
wo =1, wy =2a(4b—a)—1, wpio=2(6ab—2a*> — 1w, 1 — wy.
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Proof. If we note that c=3b—a,r =b—a and s = b, Lemmas 4, 5
and equations (10) and (11) together allow us to write z = v, = w,
with m,n > 0, where

(19)

vo=1,v; =2ab—1=+2a(b—a), vmiz = 2(2ab — 1)vmi1 — Um,

(20)

wo = 1, wy = 6ab — 2a% — 1 & 2ab, w40 = 2(6a* — 2a% — 1wy, 11 —w,.

If we define

v 1 =2ab—1-2a(b—a)=2a>—1,
w_y = 6ab — 2a® — 1 — 2ab = 4ab — 2a® — 1,

and choose the plus signs in the expressions of v; and w;, we can replace
(19) and (20) with m,n > 0 by (17) and (18) with arbitrary m, n. o

Lemma 7. Assume thata # 1, i.e., k #0. If |m| > 2, then we have

|m| >2b—12>5a—1.

Proof. By induction, we easily see from (17) that
Um = (—1)™(2ma® + 1)  (mod 4ab).
Since
(21) a®>4+1=0(3a—b)=0 (modb),
from (18) it follows that

1 (mod 4ab) if n is even;
Wy, = e
—(2a® +1)  (mod 4ab) if n is odd.

(i) If both m and n are even, then we have 2ma® = 0 (mod 4ab),
that is, ma/2 = 0 (mod b). Since gcd(a,b) = 1, we obtain m/2 =0
(mod b).
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(ii) If m is even and n is odd, then we have 2ma® +1 = —(2a%2 + 1)
(mod 4ab), that is, (m+1)a® = —1 (mod 2ab), which contradicts a # 1.

(iii) If m is odd and n is even, then we have —(2ma® + 1) = 1
(mod 4ab), that is, ma®? = —1 (mod 2ab), which contradicts a # 1.

(iv) If both m and n are odd, then we have —(2ma?+1) = —(2a?+1)
(mod 4ab), that is, (m — 1)a/2 = 0 (mod b). Since ged(a,b) = 1, we
obtain (m —1)/2 =0 (mod b).

By (i), (ii), (iii) and (iv), if m > 2, then we have m/2 > b; if m < -2,
then we have (m — 1)/2 < —b. Hence, we obtain |m| > 2b — 1. This
completes the proof of Lemma 7. ]

2.2. Linear forms in three logarithms and the reduction
method. In this section, we apply Baker’s theory to linear forms
in three logarithms arising from the sequences {v,,} and {w,}, and
complete the proof of Theorem 1 using the reduction method due to
Dujella and Pethd, cf. [18], based on the Baker-Davenport lemma, cf.
[2].

Lemma 8. If v, = w, for some m and n with |m| > 2, then we
have
(22) 0 < A:=|m|loga; — |n|logas + logas < 6a1_2|m‘,
where
b+
o1 = 2ab—1+2(b—a)Vab, ay = 2ac—1+2bv/ac, oz = %.
c a

(Here, the £ signs in ag are taken independently.)

Proof. By (17) and (18), we have
v b a)(2ab — — a)Vab)™!
m 2\/5{(\/&\0(2 b—1+2(b—a)Vab)
+(Vb ¥ Va)(2ab— 1 - 2(b — a)Vab) ™},
Wy, = %C {(\/E:i: Va)(2ac — 1+ 2(c — a)v/ac)™

\/—
+(VeF Va)(2ac — 1 - 2(c — a)vac)"l}.
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Put
_VbEVa, _ ap)m
P= NG (2ab— 1+ 2(b — a)Vab) ™/,
Q_l@§%@@M—1+2mﬁaW.

Then, v,, = w,, implies that

P+b_aP_1:Q+C_aQ_1.

c

The assumption |m| > 2 immediately implies that n # 0 and that
P>1,Q > 1. Since

c—aQ_l_b—aP_1> c—a

b c
(Pi Q)PilQila

P-Q="—
c—a

C

we have P > Q. |m| > 2 further implies that P > 2a%b?. Since
(c—a)/a=(3b—2a)/a < (9a — 2a)/a =7, we have P —(c — a)/a > 0,
which together with @ > P — (c—a)Q !/c > P — (¢ — a)/c implies
that

P—Q:C;aQ_l—b;aP_l
c—a c—a\"' b-a
< <P— ) - pt
c c b
cpt tpa_dpa
b b

Noting that aP~2/b < 1/(4a®b°) < 1/2, we obtain
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P P -
0<10g6:—10g<1—TQ>

< —log <1 . %P2> < <1 + %P2> : %P*2

1 a b —2|m
< (HW> .g.m@ab—l—kﬂbfa)\/%) I

< %(\/ﬂ 1)%(2ab — 1 4 2(b — a)Vab) ™!
< 6(2ab — 1+ 2(b — a)Vab) ™,

From this inequality, Lemma 8 immediately follows. u]

It is easy to see from Lemma 8 that if v, = w,, with |m| > 2, then
im| = [n].

For, if |m| < |n| — 1, then we have

e (2) e (2)
<log(\/5(\/5+\/5) 1 )

Vb(ye+va) 4(b—a)?
1
Verva <Y

< log

which contradicts (22).

Applying now Matveev’s theorem to (22), we obtain upper bounds
for |m| and k.

Theorem 3 (cf. [27]). Let A be a linear form in logarithms of
multiplicatively independent totally real algebraic numbers aq,...,q
with rational integer coefficients by,...,b;, by # 0. Let h(o;) denote
the absolute logarithmic height of o; for 1 < j < I. Define the
numbers D, A;, 1 < j < I, and B by D = [Q(a1,...,q) : Q],
A; = max{Dh(qa;),|log |}, B = max{1l, max{|b;|4;/A; 1 < j < 1}}.
Then,

10g |A‘ > —C(l)COWODZQ,
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where
c@) = ﬁ([ +2)(20 + 3)(4e(l + 1)),

Co = log(e* 7155 D% log(eD)),
Wy =log(1.5eBDlog(eD)), Q= A;---A,.

Proposition 1. Let k > 0 be an wnteger, and let a = Fopi1,
b= Fay3, ¢ = Fopys. Assume that the set {a,b,c;d} has the property
D(—l,l) with d 7& 4F2k+2F2k+3F2k+4. If k 2 1, then \m\ < 2- 1018
and k < 42; if k =0, then 2 < m < 105,

Proof. If m = 0, then x = 1 and d = 0; if m = 1, then
x =2a(2b—a) — 1 and

d=4(2b—a)(a(2b—a) — 1)
= 4b(b — a)(2b — a) = 4F2k+2F2k+3F2k+4.

Hence, we have m # 0, 1. Moreover, if £ > 1, then
w=wy=1<v =2a-1<vy=w ;=2a2b—a)—1<w, <---,

whence we have |m| > 2 and we may apply Lemma 7.

We now apply Theorem 3 with
123, b1=|m|, b2=—|n|, b3:1, D:4,

and ai, as and a3 defined by Lemma 8. We have

1 1
h(ap) = 2 loga; < 3 log(4ab — 1) < log(4a),

1 1
h(az) = 2 log ap < 3 log(4ac — 1) < log(6a).

ag satisfies the following relation:

b2 (c — a)?aj — 4b%c(c — a)ad + 2be(3bc — (a + b+ c)a)a?
— 4bc*(b — a)as + c*(b—a)? = 0.
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Since ged(a, b) = ged(a, ¢) = ged(b, ¢) = 1, we have ged(b(c — a), c(b —
a)) = 1. Hence, the leading coefficient of the minimal polynomial of a;
is b%(c —a)?. Since the conjugates of a3 which are greater than one are

Ve(vVb + /a)

Vh(Ve £ /a)’

we have

Vo(ve+va) Vb(ye
= ilog {bc(c —a)(Vb+ \/5)2} .

h(Oég) — ilog{bQ(c—af- \/E(\/E+\/a) . \/E(\/Ei_gi}

Since

be(e — a) (Vo + va)? < 3a-8a - Ta(V3a + Va)?
= 168(v/3 +1)%a* < (6a)*,

be(c — a)(Vb 4 va)? > 2a - 5a - 4a(V2a + /a)?
= 40(vV2 +1)%a* > (3)?,

we have

log(3a) < h(asz) < log(6a).

Hence, we obtain the following:

Ay < 4log(4a); Az < 4log(6a); 4log(3a) < Az < 4log(6a);
m| -log(4a) |n -log(6a)
) ) 1
log(3a) log(3a)
[m|log(6a) _ (log6)|m|
log(3a) — log3

C@3) = ; -5-9-(16e)* < 6.45 - 10%;

Bgmax{

< 1.64|m/;

Co =log (e4'4'3+7 .355.16 - log(4e)) < 29.9;
Wy = log (1.5e - B - 4log(4e)) < log(64|m|);
Q= A; Ay Az < 64(log(4a))? - log(6a) < 82.8(log(4a))?.
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It follows from Theorem 3 that
log A > —2.6 - 10" (log(4a))® log(64|m|),
which together with Lemma 8 implies that
~2.610" (log(4a))* log(64/m|) < log (6(2ab— 1+ 2(b — a)Vab) 2™/} .
Since
log (6(2ab —1+2(b— a)\/ﬁ)”‘m‘) < log (6(4&)*”’”‘)
< —(2|m| - 1) log(4a?),
we have

2lm| -1

—_— log(4a))? - 2.6 - 10'3.

If £ > 1, then Lemma 7 implies that |m| > 4a; hence, we have

b(m) 2lm| -1

= < 2.6-10"3.
log(64|m|)(log |m|)?

Since the function ¢(m) is increasing and ¢(2 - 1018) > 4.8 . 1013, we
obtain |m| < 2-10'8. Hence, we have

m|

F2k+1 =a< T <5- 1017,

which together with Fb.43,1 > 6.7 - 10'7 implies that k < 42.

If K = 0, then since |m| = m (see the beginning of the proof of
Lemma 4) we have

w(m) : 2m —1

=~ < (log4)?-2.6-10" < 5-10'3.
log(64m) < (log4) <

Since the function 1(m) is increasing and ¥(10'%) > 5.1-103, we obtain
m < 10%. This completes the proof of Proposition 1. u]

Proof of Theorem 1. Dividing (22) by log az, we have

(23) 0 < |m|k — |n| +p < AB~I™|
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where

_logay _logas 6 B—a?
=aj.

~ logas’ ~ logay’ - log ap’

Note that if £ > 1, respectively k = 0, then there are four, respectively
two, possibilities for p because of the + sign(s) in as. The following
lemma is a variant of the Baker-Davenport lemma, cf. [2].

Lemma 9 (cf. [10, 18]). Let M be a positive integer and p/q a
convergent of the continued fraction expansion of k such that ¢ > 6M.
Put e = ||ug|| — M||kq|| and r = [pug + 1/2], where || - || denotes the
distance from the nearest integer and [x] denotes the greatest integer
less than or equal to x.

(1) If e > 0, then the inequality (23) has no solution in the range

log(Ag/e) _

< M.
logB — Im] <

(2) If p— q+r = 0, then the inequality (23) has no solution in the

range
{ log(3Aq)
ax { ——=*

1 < M.
logB '’ }<|m|_

(3) If p— q — 2r = 0, then the inequality (23) has no solution in the
range
log(34q)

— < < M.
logB — Iml <

Proof of Lemma 9. (1), (2). These are exactly Lemma 5 a), b) in
[18].

(3) One may prove this along the same lines as Lemma 5 b) in [18].
Indeed, assume that the inequality (23) with |m| < M has a solution.
Since

0 < |m|(kg —p) + (Im|p — |nlg + 1) + (pg — ) < ¢AB~I™,
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we have

lm|p — |n|g +r| < gAB™I™ + |ug — r| + |m||xg — p|
2

If gAB~I™ < 1/3, then |m|p — |n|g +r = 0, which together with
p — q — 2r = 0 implies that

2lm[+ Dp = (2|n] + 1)g.

Since ged(p, q) = 1, we have 2/m|+1 =0 (mod ¢). On the other hand,
we know that
2|m|+1§2M+l<§+1<q;

thus, we have 2|m|+ 1 = 0, which is a contradiction. Hence, we obtain
gAB~I™l > 1/3, that is,

log(34q)
|m| < ogB

This completes the proof of Lemma 9. o

We apply Lemma 9 with M = 2-10'® for 1 < k£ < 42 and with
M = 10'5 for k = 0. We have to consider 4-42+4 2 = 170 cases. In case
k > 1, the second convergent is needed only in 11 cases; in any case, the
first step of reduction gives |m| < 6, which contradicts Lemma 7 (note
that m ¢ {0,+1}; see the beginning of the proof of Proposition 1). In
case k = 0, the first step of reduction gives m < 10, the second step
gives m < 2, and the third step gives m < 1, which is a contradiction.
This completes of the proof of Theorem 1. O

3. Integer points on the attached elliptic curves. In this
section, we prove Theorem 2.

For an integer £ > 0 and a = Fogq1, b = Fopys, ¢ = Fopys, the
elliptic curve E = E}, is given by

E:y* = (ax +1)(bz +1)(cx +1).
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The coordinate transformation
T

Yy
T — — — ——
abc’ y abe

leads to the elliptic curve
E':y* = (z + be)(z + ac)(z + ab).

E’ has the following trivial Q-rational points besides the identical
element O:

A = (=bc,0), B = (—ac,0), C = (—ab,0), P = (0, abe).

In order to determine the torsion group E’(Q)tors over Q of E’, we
need the following two lemmas.

Lemma 10 (cf. [26, Theorem 4.2, page 85]). Let C be an elliptic
curve over Q given by

C:y*=(z—a)(x—pB)(z—1)

with a, B,y in Q. For S = (x,y) € C(Q), there exists a Q-rational
point T = (z',y") on C such that [2]T = S if and only if v — o, z — 8
and x — v are all squares in Q.

Lemma 11 (cf. [5]). (1) If F,, is a perfect square, then n =1, 2, or
12.

(2) If F, is twice a perfect square, then n =3 or 6.

Lemma 12. The torsion group E'(Q)ors i isomorphic to Z/2Z &
Z/2Z.

Proof. By Lemma 10, if A € 2E'(Q), then b(a—c) is a perfect square;
if B € 2E'(Q), then a(b— ¢) is a perfect square. Since a < b < ¢, these
do not occur. Suppose that C' € 2E'(Q). Since ¢ = 3b — a, Lemma 10
implies that both a(2b — a) and b(3b — 2a) must be perfect squares.
Let’s denote by N’ the square-free part of an integer N. Then, d
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and b’ divide 2b and 2a, respectively. Since ged (a,b) = 1, we have
a',b € {1,2}. By Lemma 11, we have a = 1 and b = 2. However,
a(2b—a) = 3 is not a perfect square. Hence, we obtain E'(Q) 7 Z/4Z.

Suppose that E'(Q)ors > Z/2Z & Z/6Z. We know from gcd (a, b) =
ged (a,¢) = ged (b,¢) = 1 that ged (¢(b — a),b(c — a)) = 1. It follows
from [30, Main Theorem 1] that there exist integers a and 8 with
a/B ¢ {-2,-1,-1/2,0,1} and gcd (o, ) = 1 such that

c(a —b) = a* + 20383, bla — c) = B+ 2%
Adding both sides respectively, we have
(24) a(b+c) — 2bc = (a® + aB + %)? — 3a%5°.
While the lefthand side of (24) satisfies

a(b+c) — 2bc = Fopq1(Fart3 + Forys) — 2Fop13Fokys
= Fopy1Fop43 — FopraFopys

and
(Fort1Forys — ForyaForgs)e>o0 = (3,2,7,3,2,7,...) (mod 8),
the righthand side of (24) satisfies
(@®+aB+p%?-3a?8>=0,1, 50r 6 (mod 8),
which is a contradiction. Hence, we obtain E'(Q)tors % Z/2Z & Z /6Z.

It follows from Mazur’s theorem, cf. [28], that E'(Q)iors =~ Z/2Z @
Z/27Z. O

Corollary 1. The rank of E'(Q) is greater than or equal to one.

Proof. By Lemma 12, P = (0, abc) is not a torsion point, from which
the corollary immediately follows. u]

Lemma 13. PP+ A, P+ B,P+C ¢ 2FE'(Q).
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Proof. Denote by z(S) the z-coordinate of a point S on E’. We have
z(P+A) = a(la—b—c), z(P+B)=bb—a—c), z(P+C) = c(c—a-b).

By Lemma 10, if P € 2E’(Q), then both bc and ca are perfect squares.
Since ged (a,b) = 1, both a and b are perfect squares, which contradicts
Lemma 11. If P+ A € 2E'(Q) or P + B € 2E'(Q), then a(a — b) or
b(b—c) is a perfect square, which is impossible. If P+C € 2E'(Q), then
¢(c—b) = Fapq4Fok5 is a perfect square. Since ged (Fakta, Forts) = 1,
both Fpi4 4 and Fi4 5 are perfect squares, which contradicts Lemma 11.
This completes the proof of Lemma 13. mi

Lemma 14 (cf. [26, Proposition 4.6, page 89]). The function
pa: E'(Q) = Q*/(Q¥)? defined by

(z + be)(Q*)? if X = (z,y) # 0, 4;
0a(X) =< (be —ab)(bc — ac)(Q*)? if X = A;
(Q~)? fX=0

is a group homomorphism. (The functions gy and @. can be defined
analogously and are group homomorphisms.)

Proof of Theorem 2. Let (z,y) be an integer point on FE, and let
X = (abez,abey) € E'(Q). Let E'(Q)/E' (Q)tors = (U). Then there
exist an integer m > 0 and a point T' € E'(Q)tors such that

X =mU+T.

When we write
P = nU + T1

for some integer n > 0 and some point 77 € E'(Q)tors, We see from
Lemma 12 that
T, € {O,A,B,C}

and from Lemma 13 that n is odd. Hence, we have

X =X; (mod2E'(Q)),

where

X,€8:={0,A,B,C,P,P+ A,P+ B,P+C}.
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Since the functions ¢,, ¢p and ¢, in Lemma 14 are homomorphisms,
the integer points (z,y) on E satisfy the following system:

(25) ar + 1 = al], br +1 = g0, cr+1=~0,

where [ denotes a square of a rational number and
(i) if X; = O, put a = be, B = ac, v = ab;

(ii) if Xy = (abeu, abev) € S\{0, A, B, C}, put o = au+1, 8 = bu+1,
¥=-cu+1;

otherwise, e.g., ifau+1=0,put a =8v, B=bu+1,vy=cu+ 1.

If X1 = P = (0, abc), then (25) means that
ar +1 =101, bx+1=101, cx+1=0.

By Theorem 1 this system has the only solution x = 4Fo,2Fok3Fok 14
other than the trivial one x = 0. These solutions correspond to the
integer points (2).

If X, € {A, B, P+ A, P+ B}, then exactly two of a, 3, -y are negative,
and (25) has no solution. Hence, it suffices to consider the cases where

X, € {0,C,P +C}.

Note that by Lemma 11 and the assumption k£ > 1, none of b, 2b, ¢, 2¢
is a perfect square.

If X3 = O, then (25) means that
ax + 1 = bcl, br +1 = acl, cx + 1 =abl.
Since ged (a, b) = ged (b, ¢) = 1, both of az + 1 and cz + 1 are divisible

by o’ (the square-free part of b), and so is ¢ — a = 3b — 2a. Hence, we
have v’ € {1, 2}, which is impossible.

If X; = C, then we have u = —1/¢, and (25) means that
az+1=c(c—a)d, bx+1=c(c—b)0, cx+1=(c—a)(c—b)O.

Since ged (¢,¢ —a) = ged (¢,¢c—b) =1, b—a = ¢ — 2b is divisible by ¢'.
Hence, we have ¢’ € {1, 2}, which is impossible.
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If X; = P+ C, then we have u = (¢ — a — b)/(ab), and (25) means
that

az+1=0b(c—a)d, bzx+1=alc—>b)T, cr+1=ablc—a)(c—0b)O.

For a positive integer N, let N = min{N’, (2N)'}. Since gcd (a,b) =
ged (b,c — b) = 1 and ged (b, ¢ — a) = ged (b,3b — 2a) =1 or 2, both of
ar +1 and cz + 1 are divisible by b”, and so is ¢ — a = 3b — 2a. Hence,
we have b’ € {1,2}, which is impossible. This completes the proof of
Theorem 2. ]

Remark 1. We calculated, using MWRANK [6], the values of the
ranks rk (E,(Q)) of Ey over Q for 0 < k < 10:

k 0|1/2(3[4|5[6|7|8]9]10
tk(By(Q)) |11 ]3|2]2[2]|1]2|1]4]|2

Since rk (E1(Q)) = 1, the integer points on E; are given by (2) with
k = 1. However, in each case of k = 0, 2 and 3, the same is not true.
In fact,

(26)  (=1,0), (1,%6) € Ey, (23,45220) € E,, (1,+£210) € Es

are integer points other than (2). In order to confirm that the integer
points on Ey, E2 and E3 other than (2) are given by (26), we used
the function “faintp” of SIMATH ([31], version 2.4). Note that the
algorithm finding integer points on elliptic curves in SIMATH is based
on [23].

Remark 2. Let (z,y) be an integer point on Ej. There exist positive
integers x1, 2 and x3 such that

ar+ 1= DQDgLE%,
(27) bz + 1 = Dy Dsya2,
cr+1= Dngmg,

where D1, Dy and D3 are square-free integers dividing ¢ — b, ¢ — a and
b — a, respectively. Then, using the method due to Dujella and Peth6
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([19]; see also [11, 13, 25]), we found that if (Dq, Dy, D3) # (1,1,1),
then system (27) is unsolvable for all k with 4 < k < 50 except the six
cases listed in the following table:

TABLE 1. The exceptional six cases.

(D1, D3, D3)
9 (89, 29, 2255)
20 (1174889, 144481, 5473)
24 (1563, 2, 503450761)
25 (98209, 1, 47140601)
32 (303955413, 4021, 1762289)
43 | (3932105689, 22235502640988369, 153088726119)

It follows that Theorem 2 holds for all £ with 4 < k < 50 except
k € {9,20,24,25,32,43} without the assumption on the rank of Fj.
The reason why we could not examine the above six cases is that the
fundamental solutions of the Pell equations attached to the Diophantine
equations given by eliminating z from (27) are too large.

Acknowledgments. We would like to thank Professor Andrej
Dujella for his helpful comments. Thanks also go to the referee for
valuable suggestions.
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