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FINITE RELATIVE DETERMINATION
AND THE ARTIN-REES LEMMA

ENRIQUE ANDRADE SOL{S AND LEON KUSHNER

ABSTRACT. If we consider the 4-dimensional vector space
of quasi-homogeneous maps in two variables of weights (%, %)
and degree 1, we get two l-parameter families fc(z,y) =
23 + (e + 1)x2y? + exy? and ge(z,y) = 23 + ex?y? +xy* + ey.
We are interested in comparing the usual finite determination
with a suitable group of diffeomorphisms. We prove analogous
theorems of finite determination for such group. This work is
a continuation of [3].

1. Introduction. Following our work [3], we consider the quasi-
11

homogeneous maps in two variables of weights (3, 5) and degree 1.
The group of germs of diffeomorphisms considered there is of the form
h(z,y) = (azx + By?,6y). We then study G, a subgroup of the group
of diffeomorphisms of the form h(z,y) = (az + By* + h1,0y + ha)
where h; € m(2)® and hy € m(2)?. We study the concepts of finite
determination on the right and finite relative determination for two
models, obtaining different numbers. We finish with a version of the

Artin-Rees lemma in £(n), the algebra of smooth germs.

1. Finite determination and finite relative determination.
Consider £(n) the algebra of smooth germs of functions from the n-
dimensional Euclidean space to the real numbers.

Theorem 1 (Stefan). A germ f is k-determined on the right if and
only if for each germ p € m(n)**, we have that

m(n)Ft! C m(n)<6(];7;u)> + m(n)*+2.
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Real case.

Proposition 2. The germ f.(z,y) = z3 + (e + 1)2%y* + exy?, (for
€#0, e#1) is 6-determined on the right and not less.

Remark 3. The germ f. (for € # 0, € # 1) is not 5-determined on the
right, since the following equality is impossible
¥ = ha(2,9) (32 + 2(c + Dy + ) + ha(w y) (e + 1)ay + deay?)
with hy and ho in m(2).

Definition 4. Let A be an R-algebra and B a real vector subspace.
If T is an ideal of A, we say that B is an I-module if for some k,

I*BCB.

Definition 5. Let I be an ideal of the R-algebra A. If B is a real
vector subspace of A, we say that it is finitely generated as an I-module
if there exist vy, ... ,v,, in B such that any element of B can be written
as a linear combination of the v; with coefficients in I*.

Next we give a version of Nakayama’s lemma.

Lemma 6. Let A be an R-algebra, and let B be a subspace of A.
Suppose I is an ideal contained in the Jacobson radical of A and such
that B is finitely generated as an I-module. If B C I*B, hence B = {0}.

Proof. Let vy,...,v, be a minimal set of generators of the I-
module B; hence, v; = ajv; + -+ + apv, with a; € I*. Then
(1 —ay)vy = agva + -+ - + apv, and ve,... ,v, also generate B as an

I-module. Therefore B = {0}. O
As a generalization of the Lemma of Nakayama one has the following.

Corollary 7. Let A be an R-algebra, B and B' I-submodules of
A. Suppose I is an ideal contained in the Jacobian radical of A. If
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(B+ B')/B is finitely generated as an I-module and I*B' + I*T1B D
I*B, hence I*B' D I*B.

Proof. We have that

I*(B+B) IFB+I*B _ I*FB+ 1B
g B 2 B
Hence, by the previous lemma, (I*B + I*B')/(I*B') = 0 and therefore
IFBCI*B'. =&

Notation. We denote by G the group of germs of diffeomorphisms
of the form

h(it, y) = (043j + ,8@/2 + h1($, y)7 6:‘/ + h2($7 y))
where ad # 0, hy € m(2)® and hy € m(2)2.
Definition 8. We say that the germ f is k-determined relative to

G if, given a germ g such that j*f(0) = j*¢(0), there exists an h € G
such that g = f o h.

Theorem 9 (A). If the germ f is k-determined on the right relative
to G, hence

nd%“4g{g%mx+mﬂ+hn+g§®y+hﬁ}+m@ﬁ+{

where a, B and § range in the real numbers, hy € m(2)® and hy €
m(2)2.

Theorem 10 (B). A germ f is (k+2)-determined on the right relative
to G if

(2 cm){ S+ 9% + )+ S y+ ha)} + i,

where a, B and § range in the real numbers, hy € m(2)® and hy €
m(2)2.



1770 ENRIQUE ANDRADE SOL{S AND LEON KUSHNER

Corollary 11. The germ f.(z,y) = x® + (e + 1)2%y* + exy?* is 9-
determined relative to G.

Proof. 1t is simple to prove that

m(2)™ € m(2){(32% + (e + Day® + ey*) (azx + By* + h)
+ (2(e + )2y + dexy®)(6y + ha)} + m(2)7T2.

Then using Theorem 10 (B) we obtain that f. is 9-determined. O

Proposition 12. Let m, : m(2) — % be the canonical
projection, and let QQ be the G-orbit of z, where z is the n-jet of f.
Then we get the equality

(@) = o 5 (807 1) + 2L oy + o)

where o, 3 and § range in the real numbers hy € m(2)® and hy € m(2)2.

The proof is a consequence of a classical theorem in Lie groups.

We now prove Theorem 9 (A).

Proof. Let z be the k-jet of f. Since f is k-determined relative to G,
we have that z + m(2)*T! C Q, Q the G-orbit of z. Therefore

1 (2 +m(2)M) € M1 (Q).

Taking the tangent spaces at z, we get from our previous proposition
that

0 0
Tha1(m(2)"H1) C mppy —f(fM +By* + h1) + —f(5y +h2) ¢ |,
Ox Oy
and therefore

m(2)F+ C {%(aw—h@’f—i—fu) + g—£(6y+h2)} + m(2)*+2. o
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Let A be the R-algebra of germs of functions around (¢,0) and

7 : R® — R? the projection (¢, (z,y)) = (z,y). Consider the induced
monomorphism 7* : £(2) — A; hence, A has the structure of an £(2)-

module.
Let f and g be germs; we define the homotopy

¢(t7 (xvy)) = tg(xay) + (1 o t)f(l‘, y)

Lemma 13. If we have
0 0
(2 ©m){ S e+ 897 + )+ S 6y+ ha) p + e
hence, it is also true that
k+1 o9 2 o9 k+2
m(2)" T A C m(2) 8—x(a.’c +By° + hi) + 8—y(§y + ha) ¢ + m(2)"°A,

and by Nakayma’s lemma we get

m(2) A @] S+ 607 + ) + 56y 1) .

Proof. We have the following equalities
96 _9f _,0(g—f)

dr Oz +t oz
and 96 _of  0lg—f)
_of  0g-f)
5 oy Tt 8y

Clearly

2 of 2 ¢ k1
(ax + By~ + hl)f)x € (ax + By~ + hl)ax +m(2)"T A,

and
of 99 k41
(0y + hs) 9y € (6y + h2) ay +m(2)" A
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Therefore, our hypothesis implies that

m(2)k+1A - m(2){g¢ (ax+ﬁy2+h1)+g¢(5y+h2)}+m(2)k+2A o

o _y

The proof of Theorem 10 (B) follows by multiplying the last inclusion
by m(2)? and our previous Lemma 13 in the usual way.

Complex case. We consider g.(z,y) = 2% + ex?y? + zy* + ey®. Tt

is clear that g. is 6-determined on the right. The minimum k that
satisfies Stefan’s theorem is 6.

Remark 14. The germ g is not 5-determined on the right, since the
following equality is impossible

0 0
y® = hi(z,y) <3I2+26wy2+y4+6—g>+h2(w, y) (2€m2y+4wy3+66y5+6—5>

with hy and hs in m(2).

The case ¢ = 3. It is not hard to show that

o

v ¢ m(2)<39«“2 +2exy’ +y' + o

0
2ex’y + dxy® + 6ey® + a_,u>
Y

for u = (—8¢/9)y°.

For our group G we get m(2)"*t C m(2){(3z% + 2exy® + y*)(azx +
By? + hy) + (2ex?y + dxy® + 6ey®) (0y + h2)} +m(2)°.

Using Theorem 10 (B) we get

Theorem 15. Consider the germ g.(z,y) = z° + ex?y? + zy* + €y®.
Then

a) If €2 # 3, g. is 9-determined relative a G.
b) If €2 = 3, g. is 8-determined relative to G.
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We state the following

Theorem 16. A germ f € m(2) is finitely determined on the right

if and only if there exists k such that m(2)* C m(2)<%, g—i).

We also have from Theorems 9 (A) and 10 (B).

Theorem 17. A germ f is finitely determined relative to G if and
only if there exists k such that

of

m(2)F C m(2){%(aac + By* + hy) +

GG ha) | (24,

where a, B and § range in the real numbers, hy € m(2)? and ha € m(2)2.

These two theorems give a relation between both concepts of deter-
mination.

Theorem 18. A germ f is finitely determined on the right if and
only if is finitely determined relative to G.

Proof. 1f m(2)* C m(2)(%, g—£>, then

m(2)F3 C m(2){%771 + %E | b, by € m(2)3} +m (n)""

Hence,

of

m(2)FTDH C m(2){8—f(ax + By + 1) + e

o (694 ha) b+ ()

with h; € m(2)® and hy € m(2)2. Therefore f is (k + 4)-determined
relative to G.

Now if f is k-determined relative to G, then
of

m(2)+t ¢ @ oz + o2 4 1)+ L -+ o)}
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and

m(2)*1 C m(2)2<g—£, %>.

Therefore f is k-determined on the right. O

2. Artin-Rees lemma (Following (1)). To do algebraic geometry
in the real local ring £(n) it is necessary to introduce some concepts
and results such as germ of real analytic set, coherence of real analytic
sets, Malgrange’s ideal, etc. In this direction one has the Artin-Rees
lemma. It is well-known that in the completion process, the Artin-
Rees lemma is used to simplify expressions in which Noetherian rings
and their ideals are involved. In the case of determination of germs,
it is also necessary to carry out “similar” simplifications in which are
involved the real local algebra £(n) and its ideals. Since £(n) is not a
Noetherian ring, it is not possible to use the Artin-Rees lemma directly,
so it becomes necessary to establish a similar result for the case of this
real ring.

We will denote by R[[z1,... ,z,]] the algebra of formal power series
in n variables over the real numbers.

Lemma 19 (Borel). Consider the canonical map ™ : £(n) —
Rl[z1,...,2,]] given by the infinite Taylor series. Then m is onto
and its kernel is m(n)™, the ideal of germs f, such that f and all
its derivatives vanish at the origin.

Definition 20. a) Let X and Y be subsets of R™ containing the
origin. We say that they are equivalent if there exists a neighborhood
of the origin U such that UN X =U NY. the germ X will denote the
equivalent class of X.

b) A subset X of R" is an analytic subset if there exist f1,..., fm
analytic maps such that their common zeros coincide with X.

Notation. If fi,..., f, are analytic and I denotes the ideal gener-
ated by them, we will denote X = V(I), the common zeros of I. Such
ideal can be seen in £(n) or O,, the algebra of analytic germs.
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Definition 21. Let X be a germ of an analytic set X, then Z (X)
is the ideal of germs vanishing at X’. This coincides with the ideal of
germs f such that given f a representative, there exist U neighborhood
of the origin such that f vanishes at X N U.

Definition 22. Let I be the ideal of £ (n) generated by fi,..., fm-
We denote by V(I) the germ of the common zeros of representatives

flv"' 7fm-

Definition 23. A germ X of an analytic set is irreducible if we have
X = A1 U A&,, where X} and A, are germs of analytic subsets of X,
hence X; = @ or Xy = @. A germ X of an analytic set is reducible if
it is not irreducible.

Proposition 24. A germ X of an analytic set is irreducible if and
only if I(X) is a prime ideal.

Definition 25. a) Let I ideal of £(n), then the radical of I is
Z (V(I)), also denoted by rad (I).

b) An ideal I is radical if T = rad (I).

c) Let U be an open subset of R™, and let X be an analytic set in
U. We say that X is coherent at a point x in X if there exist a W
neighborhood of = and fi,..., f; analytic functions in W such that
for each y € WN X we have that Z(WNX) = (f,..., fY%), where f/
is the germ of f; at the point y.

d) A germ of a set X is coherent if a representant X is coherent at 0.

Remark 26. In general, for an ideal I of £(n), it makes sense to define
its real radical as R-rad(I) = NP, where P are the real prime ideals
containing I. We note that m(n) and m(n)> are themselves real prime
ideals of £(n).

Counsider I to be a real radical ideal of £(n); hence, Z (V(I)) = I. Also
R-rad(I) is the smallest real ideal containing I, hence R-rad(I) = I
and both concepts coincide. We also have R-rad(I) C Z (V(I)) for
every ideal I.
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In the case I = m(n)*,Z(V(I)) = m(n) and R-rad(I) = m(n)°.

Theorem 27 (Malgrange-Tougeron). Let Xy be a germ of an analytic
set at the origin, I (Xy) as above and I.(Xp) the ideal in O,, of analytic
maps vanishing at Xy. Then the following assertions are equivalent.

i) Z.(X)E(n) = Z(X).

ii) Xy is coherent.

Definition 28. An ideal I of £(n) is a Malgrange-ideal if
i) I is finitely generated by analytic germs.
ii) V(I) is coherent.

Proposition 29. Consider the sets

X ={I is a Malgrange-ideal and also radical},
Y ={V({I) | V(I) is a coherent germ}.

Hence Z:Y — X is well defined and V : X — Y is its inverse.

Proof. Since I is a Malgrange ideal and also radical, V(I) is coherent
andZ (V(I)) =1. Alsoif V(I)isin Y, Z (V(I)) is finitely generated and
V(Z(V(I))) = V(I) is coherent. Moreover Z (V(Z (V(I)))) = Z (V(I)).
Therefore Z and V are bijective and one is the inverse of the other. O

Definition 30. Let U be an open set of R™. We say that a smooth
map f is flat in X closed subset of U if f and all its derivatives vanish
at X. We denote the ideal of such maps by Mg .

A very important theorem that assures a common divisor for a
countable family of flat functions in a compact set is the following

Lemma 31 (Tougeron). Let U be an open set of R™, X a compact
subset in U and (fi)ien a family of functions in M. Then there exist
g € ME, g(z) > 0 for each x € U — X such that f; € gME for each
1€ N.
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Proof. See [5, Lemma 2.4, page 93]. i

Proposition 32. Let I be a radical ideal of E(n). Then we get
INm(n)> = Im(n)>.

Proof. Let f € I Nm(n)>®, then f € m(n)*>°. Using Lemma 31 for
a single element of the family we get f = gh, where g and h are in
m(n)> and h(xz) > 0, for each z # 0. Now since f vanishes at V(I),
then g too and g € Z = I. Therefore f € m(n)>1. O

Remark 33. Since m : £(n) — R[[z1,...,x,]] is an epimorphism
between local algebras, we get 7~ (M(n)) = m(n), where M(n) is the
maximal ideal of R[[z1,... ,z,]].

We state the Artin-Rees lemma for R[[z1,... ,z,]].

Lemma 34 (Artin-Rees). Let J be an ideal of R[[z1,... ,z,]]. Then
there exists a natural number ko such that for each natural number k
we get

M(n)E+*o 1 ] = M(n)F(M(n)k 0 J).

The main purpose of this section is to give an interpretation of the
Artin-Rees lemma for the algebra £(n) which is not Noetherian.

Theorem 35. Let I be a radical ideal of E(n). Then there ezists a
natural number ko such that for each natural number k we get

m(n)**0 N I = m(n)*(m(n)* N 1).

Proof. Consider the ideal 7(I) in R[[z1,... ,z,]]. Hence there exists
a natural number kg such that for each natural number k we get

M(n)*FRe nm(1) = M(n)*(M(n)* N r(1));
therefore,

m(n)" 0 0 (1 +m(n)>) = m(n)" (m(n)* 0 (I +m(n)>)).
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Intersecting the equality with the ideal I and using the modular law

m(n)k TR N T = m(n)*(m(n)* N I) + (m(n)> N1I).
Since [ is radical, by Proposition 32, the result is obtained. ]

Lemma 36. Let I be an ideal of E(n). Then there exist gi,... ,gm
germs of smooth functions in €(n) such that I = {(g1,...gm) + I N
m(n)*>.

Proof. Let hi,... ,hy, be generators of 7(I), and let g; € I be such
that m(g;) = hy, for 1 < ¢ < m; hence I + m(n)>® = (g1,--- ,9m) +
m(n)*°, if we intersect with I each side of the equality we get

I={91,---,9m)+INm(n)>. mi

The following remark answers when an ideal J in £(n) is finitely
generated.

Remark 37. With the above notation I = (g1,... ,gm) if and only if
INm®n)™® C(g1,--- ,9m)-

Proposition 38. Let I be an ideal of E(n), T its radical, and suppose
that T is finitely generated. If w(I) = w(Z), then I = T.

Proof. Since w(I) = w(Z) we get that I + m(n)* NZ = T or
I+ m(n)*Z = Z. Using Nakayama’s lemma we get I = T. o

We know that in an arbitrary commutative ring A with unitary
element the following assertion is not true in general: Let I and J
be finitely generated ideals in A, hence I N J is finitely generated. In
our algebra €(n) we get the following result.

Proposition 39. Let I be a finitely generated ideal of £(n). Then
for each k, I N m(n)**! is also finitely generated.
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Proof. Let fi,...,fs be generators of I and f € I. Hence f =
hifi + -+ hsfs. We write h; = hf + hf, where hf is the k-jet of h;
and h¥ = h; — h¥. Therefore

F=hifid- ot hafi 4+ hsfs

Consider J to be the vector space generated by {z¥ f;} where 1 < j < s
and |K| < k. Hence as vector spaces we get I = J + I m(n)**! and
therefore I N m(n)**1 = J N m(n)k*! + Im(n)**1. Hence a set of
generators for I N m(n)**! can be formed by a basis for the vector
space J Nm(n)**! and {zX f;} where 1 < j < s and |K| =k +1. o
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