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A-ABSOLUTE CONTINUITY

FRANCISZEK PRUS-WISNIOWSKI

ABSTRACT. A characterization of functions continuous in
A-variation is given based on the decomposition of a local
A-variation. A natural generalization of absolutely continuous
functions is introduced, and several characterizations of it are
stated. Important relationships between various classes and
subclasses of functions of bounded A-variation are studied.

The concept of bounded harmonic variation arose naturally from the
theory of Fourier series and has many applications to it. The most
important among them is the following theorem that furnishes the same
conclusions as the Dirichlet-Jordan theorem.

Waterman’s Test. If f is of bounded harmonic variation, then
(i) S[f](x) converges to (f(x+) + f(z—))/2 pointwise;

(i1) S[f] converges to f uniformly on every closed interval of points
of continuity.

The test was proven in [18] where also a general concept of A-
variation of a function was introduced. Later Waterman found a direct
proof of his test, not resting on the Lebesgue test, see [21, 23]. The
Waterman test includes all other tests that yield Dirichlet-Jordan type
conclusions: the classical Dirichlet-Jordan test, the Salem tests and
the Garsia-Sawyer test. Waterman’s test is much more convenient to
use than the Lebesgue test since the second condition of the latter test
corresponds to no simple property of a tested function.

There are numerous other applications of the concept of A-variation
to the theory of Fourier series. The earlier results have been collected
in [1].
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The aim of this paper is to study properties of a special subclass of
functions of bounded A-variation — the so-called functions continuous
in A-variation, first considered in [19] — and to answer an open question
from [20, page 44]. We start with a collection of mostly classical
definitions and specialized notation.

A sequence ();) of positive numbers is said to be a A-sequence if it
is nondecreasing and such that > (1/);) = co. A A-sequence A = ()\;)
is said to be proper if lim A; = +00. Given a A-sequence A = (};) and
a positive integer m, the omission of the first m terms supplies a new
A-sequence ();)72,, . that will be denoted by A(p,.

Throughout this paper we will be concerned primarily with real-
valued functions defined on [0, 1]. A function is said to be regulated if
it admits discontinuities of the first kind only. We do not assume that
the value of a regulated function is always the arithmetic average of its
one-sided limits. Note that regulated functions can be characterized as
those which take monotone sequences into convergent ones.

A collection Z of nonoverlapping closed intervals with endpoints in
a set A will be called an A-family. In the most common case when
A =0, 1], we will say shortly a family instead of a [0, 1]-family. Given
a regulated function f and a point ¢, the lefthand and the righthand
limits of f at ¢ will be denoted by f(t—) and f(t+), respectively. We
agree to write f(0—) = f(0) and f(1+4) = f(1). Given a subinterval I,
not necessarily closed, we write f(I) = f(b) — f(a) and |I| = b—a
where a, b are the left and right endpoints of I, respectively. If
Z = {I;} is a family such that |f(I;+1)| < |f(I;)] for all indices, then
7 is said to be f-ordered. We write ||Z|| := sup{|I| : I € Z} and
|1Zl[g := sup{[f(I)| : T € T}.

Let A be a A-sequence or a finite set of positive numbers. Given a
family Z of cardinality not exceeding the cardinality of A, we set

UA(f7 I) = Supz %a

Iez
where the supremum is taken over all injective mappings 5 : Z — A.

The value Va(f) := supoa(f, Z), where the supremum is taken over
all families Z, is called the A-variation of f. If V(f) is finite, we say
that f is of bounded A-variation and write f € ABV. The purpose
of introducing the symbol o, (f, Z) is to allow greater flexibility and
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brevity in the proof of our main decomposition theorem (Theorem 1)
and related definitions. Definitely, the best way of thinking about
aa(f, ) is to perceive the family Z as f-ordered Z = {I, I, ...}
and then o (f, Z) becomes simply > |f(I;)|/\i, [5, Theorem 368].

To see that A-variation is a generalization of the classical variation
of a function, it suffices to take the special A-sequence A = (1), that
is, the constant sequence of 1’s. Then the A-variation of any function
is exactly the ordinary variation. The best sources of basic properties
of A-variation are papers [9, 20].

1. Wiener A-variation and its decomposition. We are going
to alter the definition of A-variation slightly. On one hand the change
will be small as our Proposition 1 shows, but on the other hand this
definition will eventually provide us with a new characterization of an
important subclass of ABV. A similar alteration of generalized varia-
tion has been used in the theory of functions of bounded ¢-variation.
It originates from an idea of Wiener [24, pages 72-73].

Definition 1. Given a A-sequence A and a positive number §, we
define Vi 5(f) := supoa(f,Z) where the supremum is taken over all
families Z with ||Z]| < §. The value

Wa(f) == S Vi, s(f)

will be called the Wiener A-variation of f.

Note that if we replace the requirement ||Z|| < § by ||Z|| < § in the
above definition, the final value W, will not change.

Clearly, one always has W) (f) < Va(f). Roughly speaking, the
Wiener A-variation of f is the A-variation of f achieved on families
of infinitely short intervals. At first glance this concept might seem
artificial, especially because of the following equivalence.

Proposition 1. For any A-sequence A and any function f, its
generalized variation Vi (f) is finite if and only if Wx(f) is finite.

Proof. Since W (f) < Va(f) for every function f, it suffices to prove
that Wy (f) < 400 implies V3 (f) < 4o00.
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Suppose f is not of bounded A-variation. Then there is a family
(I;) such that > |f(L)|/Ai = +o0, [20, Theorem 1]. Given 6 > 0,
there is a positive integer N such that |I;| < § for all ¢ > Ns. Hence,
Va,5(f) = oa(f, (1) y,) = +oo, and thus W (f) = +oo. o

It is easy to see that the functional ||f||¥ := |£(0)] + Wa(f) is a
semi-norm on ABV. One could also consider a sequence of semi-norms

[£IIR = [FO) + VA, (1/n) (£),

but if we endow ABV with the quasi-norm topology generated by this
sequence [25, page 32], we obtain merely the usual norm topology on
ABYV given by ||f|la := |f(0)| + VA(f) as defined in [20].

We now define another kind of A-variation, a variation that is deter-
mined by infinitely small changes of f.

Definition 2. Given a A-sequence A and a positive number §, we set
Vi(f) := sup op(f,Z) where the supremum is taken over all families Z
with ||Z||; <6, and define

VR(/) = Jim VR(f).

Clearly, VY(f) < Va(f) for any function. It can be proven in a
manner similar to that of the Proposition 1 that the above definition
of generalized variation does not lead to any new class of functions.

Proposition 2. Let A be a A-sequence, and let f be a regulated
function. Then V(f) is finite if and only if VL (f) is finite.

Note that the assumption on f being regulated cannot be dropped as
the example of the characteristic function of rationals shows. The last
definition admits an equivalent formulation that however obscures the
intuitive meaning of V} as of the A-variation determined by infinitely
small changes of the underlying function.
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Definition 3. Given a A-sequence A and a positive number §, we
define

(1) = p S P

where the supremum is taken over all families Z, and further we define

"Va(f) = Jim “VA(f)-

In general, °V, (f) # V2(f). For instance, the characteristic function
of the rationals Xq yields °V(Xq) = +oc and V2 (Xq) = 0. However,
for regulated functions both definitions yield the same value.

Proposition 3. The equality "Vo(f) = V2(f) holds for every A-
sequence A and every regulated function f.

Proof. 1t is easy to see that V) (f) < °Va(f) for every § > 0. Hence,
VA (f) < V().

We are now going to prove the opposite inequality. Given a positive
number 6, let K7 ; be the least upper bound of the cardinalities of
families consisting entirely of intervals I with |f(I)| > §. Since f is
regulated, Ky s is a nonnegative integer. Given now a positive number
~ and a family (I;), we get

min{~y, | f(I;
Zw: S Y

i it f(L;)|>6 it f(1:)|<8
and hence ~
TVa(f) < Kf,é)\—l + V().

Passing to a limit with v — 0+, we obtain *Vj(f) < VJ(f) for every
§ > 0. Thus, °VA(f) < V2(f). O

The above proposition significantly simplifies the demonstration of
the fact that

I£1I3 = £ (0)] + VR(£)

is a semi-norm on ABV.
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Our next definition is motivated by the observation that, in the case
of a regulated function that is constant on each interval of continuity,
its change and thus its variation depends entirely on the behavior at
discontinuities—the jumps.

Example 1. Given a decreasing sequence u, \, 0, define

I ()i, ift e ((1/27),(1/277Y)], neN;
9(t) '_{0 if =0

Then g is a regulated function on [0, 1] and

Valg) = Wa(g) = 3 Wm0 5w

i=1 i=1

for every A-sequence A. Thus, we can say that the A-variation of g (no
matter what A is!) is obtained by arranging the jumps of g in the order
of decreasing magnitude, say (77)$°,, and then simply taking the sum

22 (m /X)-

If we changed the value of g at 1/2 from Y o,(—1)'u; to us +
Z;’iz(—l)iui, the modified function g,, would have a proper external
saltus at 1/2. This point contributes two terms to the series

l9m (1/2+) = gm(1/2)] | |9m(1/2) = gm(1/2-)]
)\1 >\2

oo —i —i
'y l9(2 +A) 9(27")|
i=2 i+l
that gives the Wiener A-variation of g¢,,. Thus, we can view g,, as
having two jumps at the point ¢ = 1/2 which makes it possible to
describe the Wiener A-variation of g,, as obtained by arranging all
jumps of g,, in the order of decreasing magnitude (n{™)?°, and then
simply taking Y (n7™)/(\;). It provides motivation for the following

definition of a sequence of jumps (nlf ) of a regulated function f.

Definition 4. First, we will associate three indicators BZ o =
1, 2, 3, with each discontinuity point ¢ of the regulated function f.
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Their purpose is to keep track of how many jumps the point ¢ con-
tributes to the sequence of jumps of f and what kind of jumps they
are. We set

Bl =BL,:=0and By == |f(t+) - f(t-)]

if f has a proper internal saltus at ¢, that is, if f has an internal saltus
at t but is not one-side continuous there, and we set

Bl = 1ft=) = f()l, By =1ft+)—FW), Bl5:=0
otherwise.

Next we arrange all elements of the countable set
Zf::{,eg‘,j:ﬁg‘,j>o, 0<t<1, j:1,2,3}

into a nonincreasing sequence (an )2,. If the set Zy is finite, we put
771?c := 0 for ¢ > card Zy.

It is easy to see that f € ABV implies Z(sz)/()‘z) < 400, but not
conversely.

Proposition 4. For every A-sequence A, the functional

n!
I£llla =Y =35
i=1 v

1s a semi-norm on ABV.

Proof. The least evident is subadditivity of the functional. However,
given regulated functions f, g and a point ¢ € [0, 1],
f+g
t,j

(i) if exactly one of the three indices 377 is positive, then

f+9 f g
; max 4+ max ;
Bij” = k:1,2,3ﬂtvk k:1,2,3ﬂt7k’

(ii) if both ﬁtf 79 and ,Btf 59 are positive, then for arbitrary numbers
0 < A1 < g,
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(a) if B/5 = B} = 0, then

e | Byt Bl B B Bl
Al )\2 - )\1 )\2 )\1 )‘2

(b) if B4 > 0 and {5 =0, then

+ +
tf,1g f g 5t3+5t1+ tg,2‘
)\1 )\2 - )\1 >\1 )\2,

(c) if ﬁtfﬁ =0 and /5 > 0, then

o’ Blat Bl Bl Bl
AL A2 T M A2 A’

(d) if Bt’i?, >0 and 373 > 0, then

+ +
[T Bl /Bt Bis  Pis
)\1 )\2 - )\1 )\1 ‘

The rest is straightforward and will be omitted. O
We are now able to formulate our main decomposition theorem.

Theorem 1. If A is a A-sequence and f is a requlated function,
then

IFIR = TIANA + IFIR-

Before we prove it, let us make few comments. Following Young, we
can define

f
ABV* .= {f € ABV : Wi (f) = ZZ\_Z}’

see [26, page 261]. An easy example of a function of the class ABV*
is provided by any step function of bounded A-variation. By our
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decomposition theorem, given a function f of bounded A-variation,
f € ABV* if and only if V)(f) = 0. Therefore, (ABV*,|| ||s) is a
closed subspace of the Banach space ABV, because

for f, € ABV*.
Denoting the ordinary variation of f by V(f), we get V(f) = VA(f) =

Wa(f) for the A-sequence A = (1)$2,. Thus, our decomposition
theorem is a generalization of the well-known fact that V(f) = V(f.)+
V(fs) where fs is the saltus function of f and f. := f — fs is the
continuous part of f, see [15, page 308] or, for a modern and more
general treatment, [4, Corollary 7.7, Theorem 5.3 and Theorem 5.5].
However, it is still unknown whether each function of bounded A-
variation can be written as a sum of a continuous part and a “saltus-
like” function.

Open problem. Let A be a proper A-sequence, and let f € ABV.
Do there exist an fi1 € ABV* and a continuous fo € ABV such that
f=Ffi+ fa and Wx(f) = Wa(f1) + Wa(f2)?

The proof of Theorem 1 is rather elementary, but very lengthy. We
start with some specialized notation and a number of lemmas that are
necessary to handle the case of discontinuous f. From now on until
the end of the proof of Lemma 8, we will always assume that f is a
disct;ntinuous regulated function. Furthermore, we will write 7; instead
of n; .

Definition 5. Given o > 0 and a function f, we set m(a) := card {i :
n; > a}. The integer-valued function m is nonincreasing on (0, c0),
continuous on the left and lim,_,o4+ m(a) = card Zy, see Definition 4.
Further, given a > 0, we set

Cl(a):{te[o, 1]:B£12aand,8£2<a}

Co(a te ,1:,6’{71<aand,6{722a}

{tepo, 1]
{tE[O, 1]:ﬂ£32a}
{teio, ]

, 1 :Bglzaandﬁzzza}.

(a)
Cs(a)
Cy() te

(07
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The sets Cj(a) are finite and pairwise disjoint. Denoting the set of all
t satisfying max{,Bth- :7=1,2,3} > aby C(a), we get

Cla) = U Cj(e) and m(a) = card Cy(cr) + card C(a).

Next, for a < 7y, we set §1(a) := (1/2)min{|t — s| : t, s € C(a) U
{0, 1}, ¢ # s}.

Let «, § be positive numbers such that a € (0, ;] and § < 6;(a).
We will say that a family Z is a §-cover of the set C(«) if Z consists of
all intervals of the following form

(i) [t =6, t] for t € C1(a);
(ii) [¢, t + 6] for t € Co(w);

(i) [t — (6/2), t + (6/2)] for t € C5(a);

(iv) [t — 0, t] and [¢, t + §] for ¢t € Cy(a).

Of course, by [c, d] we mean the intersection [c, d] N[0, 1]. We will use
the symbol Z, 5 to denote the d-cover of the set C'(a). For ¢t € C(a),

we set Zo 45 :={I € L,s: t € I}. It is easy to see that the number of
intervals in 7, 5 is exactly m(a).

Lemma 1. Let o and € be positive numbers with « < 1. Then there
exists a 02 = d2(a, €) € (0, §1(e)] such that for an arbitrary § € (0, d2),
if the variational §-cover L, 5 ={I; - i =1,... ,m(a)} is f-ordered,
then ||f (L) —ni| <& fori=1,...,m(a).

Proof. Given an o € (0, m], let (Za,5)r, 7 = 1,... ,m(), denote
the rth interval from the left in Z,s. Let r +— i, be a bijection
of {1,...,m(a)} onto itself such that |f((Zas)r)] o e for all

—

r =1,...,m(a). Then for every ¢ > 0 there exists a §(¢) > 0 such
that ||f((Za,s)r) — i, | <& for § <4&(e), r=1,...,m(a). Set

Eq i= %min{l, |ni — ;| 24, § < m(a) and n; # n;}

and, given € > 0, set dz(, €) := min{d(g), d(eq), o1()}.

Now let T = {I; : j = 1,...,m(a)} be an f-ordered variational
d-cover of the set C'(a) with § < dz(a, €). For r = 1,... ,m(a) we
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denote the index of the interval (Z), in the sequence (I J);nz(f )

Given r, s € {1,... ,m(a)}, if ;. > n;,, then

max {[|F(@))] -~ m, |, ||F(@))] -~ m,

since |Z|| < d2(e, @). Therefore |f((Z),| > |f((Z)s)| and j. < Jjs,
because Z is f-ordered. Hence, n;. > mn;, implies n;. > n;,, and thus
n;, = n;, for all r = 1,... ,m(a). Since ||Z]| < é(¢), it follows that
@ = mi,] = (@0 =m| < ¢ for r = 1,...,m(a), that i,
1 f(I;)| = m;| < e for all 5. o

by j..

}<5a§%7

The next lemma is a simple corollary of Lemma 1.

Lemma 2. Let A = (A1) be a A-sequence, and let o € (0, m]. Then

m(a)
. i
L Z = E —.
6—1>I(I)1+ O'A(f7 a,5) vt Ai

Definition 6. Given a € (0, 71], we will say that an interval [sy, s2]
touches the set C'(«) at a point t if one of the following conditions
holds:

(i) t € (s1, s2) for some t € C(a);
(ii) so =t for some t € Cy(a);
(iii) s; =t for some t € Ca(a);
(iv) s1 =t or s2 =t for some t € C5(a) U Cy(a).

We will say that a family Z does not touch the set C'(«) if no interval
from 7 touches the set C(a). Further, we set

Mi(a) :=sup{|f(t—) — f(t)] : 0 < ¢t < L and |f(t—) — f(t)| < a},

My(a) == sup{|f(t+) — f(t)| : 0 <t < 1 and [f(t+) — f(t)] < a},

Ms(a) :=sup{|f(t—) — f(t+)|: 0 <t < Land |[f(t—) — f(t+)] < a},
(a

M(a) := max{M;(a) : i =1, 2, 3}
for a > 0. Finally, we set

p(t) = max{|f(t) = f(t=)], [f(t+) = FQ), [f(t+) = f(t=)I}
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for ¢ € [0, 1], and

(51, s2) := sup{u(t) 1t € (s1, 52)}

for any subinterval [s1, sq].
We can now formulate two simple lemmas.

Lemma 3. Let [s, t] be a subinterval of [0, 1]. Then 0(s, t) = u(q)
for some q € (s,t).

Lemma 4. Let o € (0, m1]. Then M(a) < a.

Both of these lemmas are based on the observation that for a regu-
lated function f the sets {t € [0, 1] : u(t) > a} are finite for o > 0.

Lemma 5. Let o € (0, m1]. Then there is a d3(c) > 0 such that for
every subinterval I with |I| < d3(c) and with |f(I)| > (a + M(a))/2,
the interval touches the set C(a).

Proof. By virtue of Lemma 3 it suffices to show that there exists
a d3(c) > 0 such that for an arbitrary interval [s, t] if t — s < d3(c)

and |f(t) — f(s)| > (o + M(a))/2, then max{|f(s+) = f(s)], [f(t) —
fE=), 0(s, t)} > o

Suppose this is not true. Then there exist intervals [s,, t,], n =
1,2,...,such that t, — s, < 1/n, |f(tn) — f(sn)| > (@ + M(c))/2 and

max{‘f(5n+) - f(sn)‘a |f(tn) - f(tn)|a e(sna tn)} <a.
Hence, by the definition of M (a) we get

(1) sup max{|f(snt) = f(sa)l, [£(tn) = F(ta)l, O(sn, tn)} < M(a)-

Passing, if necessary, to a subsequence, we conclude that there is a
point r € [0, 1] such that exactly one of the following cases holds:

(1) Sn \(T;
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(ii) t, N1
(ii)
(iv)
(v) tn \(r and s, .
In case (i) (or (ii)) the right side (left side) limit of f at r does not exist
and we get a contradiction, because f is regulated. In case (iii) we have
|f(r) = f(r+)| > (a+ M(a))/2. Tt follows that |f(r) — f(r+)| > « and
thus |f(sn) — f(sp+)| > a for all n which contradicts (1). Case (iv) is

analogous. In case (v), |f(r+) — f(r—)| > (o + M(«))/2, and hence
0(8n, tn) > a for all n which contradicts (1). u]

sp = r for all n;

t, = r for all n;

Lemma 6. Given a € (0, 1], ¢ > 0, € > 0 and a point t € C(a),
there exists a 64 := 04(av, ¢, e, t) € (0, 61) such that, if for a family Z,

(a) every interval I € T touches the set C(ca) at the point t;
(b) [IZ]] < 843

then, for arbitrary numbers A1, A2 > c,

U{Al,Az}(fa I) < U{)\l,)\z}(fv Ia,t,'y) +¢&,
for every v € (0, d4).

Note that a family Z satisfying (a) and (b) contains at most two
intervals.

Proof. We will consider only the case t € C4(a), the other cases being
similar. Let & > 0 be such that |f(r) — f(7)] < (1/2) min{ce, a} for
r, 7 € [t—0, t) and |f(s) — f(8)| < (1/2) min{ce, a} for s, § € (¢, t+4].
Set d4 := min{4, 61(a)}. If 7 is a family satisfying conditions (a) and
(b), then exactly one of the following cases holds:

(i) Z = {[r, s]} for some r < t < s;

(ii) Z = {[r, t]} for some r < t;

(iif) Z = {[¢, s]

(iv) T ={[r, 1]

} for some s > ¢;

, [t, s]} for some r < t < s.
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In case (i), because f has an external saltus at ¢ and

max{|f(r) — f(t=)], |f(s) = F(t+)I}

) —
< gmin{[f(t) - F(tH), [F(t) = f(t-)]},
we have either min{f(s), f(r)} > f(t) or max{f(r), f(s)} < f(t).

Hence, for any positive v < d4 the following inequalities are true

1£(7) = £(8)] < max{1£(r) — FO)], £(5) ~ £(0)]}
gmu{v@—w—fan+5»ua+w—fa»+§}

(Here we have assumed that f(u) = f(0) for u < 0 and that f(u) = f(1)
for w > 1.) Thus, for any v < d4 and any A2 > A\ > ¢, we get

T (f, ) = W
o max{|f(t —7) ~ f(;)|v lft+v) = f@®)I} i
< max{|f(t —v) — f@), |fE+v) — f@)}
AL
A=) = FOL 1) - 0D

=00 (Fr Zayy) + €

In case (ii) we get

0y (f T) = ‘f(r);lf(S)\ ) —ifl(t)|+(cg)/2
< ft+7) — f(#) N ft—) — f()] .
A1 Ao

<o, 23 (fr Zayey) + €
The remaining two cases are similar. ]
Lemma 7. Given o € (0, m1], e > 0 and a A-sequence A = (X;),

there exists a 05 = d5(a, A, e) > 0 such that for every family T
satisfying
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(i) every interval I € T touches the set C(a);
(ii) [|Z]] < b,
the following inequality holds:

Proof. By Lemma 2 there exists a § > 0 such that

m(a)

oalf, Tan) < 3 T te

i=1

for all v < 4. Set g1 := ¢/card C(«) and &5 := min{d4(a, A1, €1, t) :
t € Cla)}. Let T = {I; : ¢ = 1,...,n} be an f-ordered fam-
ily satisfying (i) and (ii). For t € C(«) we define K; = {i :
I; touches the set C(«) at t}. Without loss of generality we may as-
sume that the sets K; are nonempty for all ¢t € C'(«), because d4 < 0.
Furthermore, define for t € C'(a),

Av:={N:ie€ K} and Z;:={I :i € K;}.

Next, we set Ay := {minA,} for t € UI_1Cj(a). For t € Cy(a) we set
A, := A, whenever K, consists of two indices, and A, := {Ais Ama)}
whenever K, = {i}. Arranging the m(a) elements of all sets A, in a
nondecreasing order without eliminating duplicates, we obtain a finite
sequence (ni);i(f) such that A\; < k; for i = 1,..., m(a). Thus, by
Lemma 6, for any positive number v < d5(a, A, €) we get

O_A(f,I):Z‘f(Il” = Z UAt(fa It)

A
teC(a)
Z (O-At (f7 Ia,t,’y) + 81)
teC(a)
< U(m)(fa Zay) te<oa(f, Za,y) ¢

IN
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and finally, since v < §,

m(a)

oa(f,T)< Y %+25. o

i=1

Definition 7. Given a € (0, 1], 6 > 0, and a A-sequence A, we set
VA 6(f)a :=supoa(f,Z) where the supremum is taken over all families
Z such that ||Z|| < 6 and Z does not touch the set C(a). Furthermore,

we set WA(f)a = lims_,04+ VA’(;(f)a.
Lemma 8. Let A be a A-sequence. Then for every a € (0, m],

V[?(f) < WA(m(a))(f)Ot'

Proof. Given positive numbers v, § and a family Z = {I; : i =
1,...,n} with ||Z||; <7, we get

n Ii
ZWA.)' S(z;...+(z;...+(z):...+z...,

7

i=1 ()
where the sum } ) --- is taken over i < m(a); the sum -~ is
taken over all i such that [I;| > &; the sum }_ ) -+ extends over all ¢

such that J; touches the set C'(a) and the sum }- ) --- is taken over
all remaining ¢. Therefore,

Vi(f) < )\11 <m(a) + % + 2cardC(a)> + VA (a8 (e

Passing to limits with 7y — 0+, we obtain V?(f) < VA (a6 (f)as and
thus VY(f) < Wa(pay (fla-

Proof of Theorem 1. First suppose that f is continuous. Then for
every € > 0 there is a § > 0 such that |I| < § implies |f(I)| < ¢. Thus
Va,s(f) < VE(f), and therefore Wa(f) < V2(f).
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We are now going to prove the opposite inequality. Given ¢, § > 0
and a family Z = {I; : i = 1,... ,n} with ||Z]|; < e, we get

n I;
Z;M:Z*%:

1)

where the first summation runs over all ¢ such that |I;| > ¢ and the
second sum is taken over all remaining 7. Thus,

Vi(f) < % +Vas(f).

Therefore, V2(f) < Vas(f) and finally V2(f) < Wx(f). Since
[II7l]a = O, this finishes the proof for continuous f.

Suppose now that f is not continuous. Given an ¢ > 0 and an
a € (0,m], we set § := min{ds(a), d5(cx, A, €)}. Given a family
I=A{L:i=1,...,n} with |Z]| < 4§, we get

n Ii
ZIWA—)':Z+§

1)

where the first summation runs over all ¢ such that I; touches the set
C(a) and the second one runs over all other indices. By Lemma 7 we

get
m(a)

Z...S %+5_

& im1
Next, by Lemmas 4 and 5, |f(L;)| < (a + M(a))/2 < « for indices i
such that I; does not touch the set C'(«). Hence,

m(a)

WA(f) < Vas(D) < D 3 +e+ V().

i=1 7

Since ¢ is arbitrary, it follows that for every a € (0, 7],



1630 FRANCISZEK PRUS-WISNIOWSKI

Passing to limits as & — 0+, we obtain
oo
<N
P Ai

We will now prove the opposite inequality. Given an a € (0, 1;] and
ad >0, let Z be a family with ||Z|| < é such that Z does not touch the
set C(a). Then

UA(f’ IUIDL,’Y) 2 UA(f? Ia,’y) + UA(m(a))(fv I)

for v sufficiently small, say v < §, and such that the intervals of the
~-cover of C(a) do not overlap intervals of Z. Then, by Lemma 2,

m(a)
i
VA,(;(f) > Z )\_ + VA(m(a)),(s(f)a'

Therefore, by Lemma 8 Vy s(f) > Y- (n:/\i) + VY (f), because a was
arbitrarily small. Hence, Wa(f) > > (n:/\i) + V2(f). o

2. A-absolute continuity. The notion of continuity in A-variation
was introduced by Waterman in [19] to provide a sufficient condition
for (C, B)-summability of Fourier series of a function.

Definition 8. A function f is said to be continuous in A-variation
(in symbols f € ABV,) if lim,, o VAt (f)=0.

The above limit exists for every f € ABV, because (VA(m)(f))meN
then is a nonincreasing sequence of nonnegative numbers. It soon
turned out that continuity in A-variation is very useful for estimating
the order of magnitude of Fourier coefficients (for an overview see [1]).
Clearly, ABV, C ABV, but whether the two classes are equal has
been an outstanding question since 1978 when Waterman formulated
it in [22]. The only known characterization of functions continuous in
A-variation was given by Wang in [17]. His theorem reads as follows.

Theorem [17]. The necessary and sufficient condition for f € ABV,
is that there is a A-sequence T' = (v;) such that v; = o()\;) and
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feTBV, i.e.,
ABV, = U L'BYV.
T'=o0(A)

Our next proposition shows that the semi-norm || || introduced in
the previous section yields a new description of the class ABV..

Proposition 5. Let A be a proper A-sequence, and let f be requlated.
Then im0 ||l = [I£13-

Proof. Given a positive number §, a positive integer m and a family
T = (L), we get

and hence w
i),

VA(m)(f) < K(f7 5))\

m—+1
where K (f, §) denotes the least upper bound on the number of intervals
in families consisting entirely of intervals I with |f(I)| > §, see [11,
Lemma 2.1], and wy denotes the oscillation of f. Passing to limits as
m — +oo yields limy, e Vi, (f) < V3(f), because A is a proper
A-sequence. Since § > 0 was arbitrary, we get limy, 00 Va,,, (f) <
VR(f).

We are now going to prove the opposite inequality. Given a positive
number §, a positive integer m and an f-ordered family Z = {I; : i =
1,..., n} such that |Z]|; < ¢, we get

Thus,
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and now passing to limits, first with § — 0+ and then with m — 400,
we conclude that

VA(f) < lim Vp, (f). O

m—00

By virtue of Proposition 5, a function f is continuous in the
A-variation if and only if V(f) = 0. Thus, by Theorem 1, f is con-
tinuous in the A-variation if and only if || f||X¥ = |£(0)| + ||| f|||a, which
leads to the following corollary.

Corollary 1. ABV, = ABV™ for every proper A-sequence A.

This yields a particularly nice characterization of the subspace of
continuous functions that are continuous in the A-variation.

Theorem 2. For every proper A-sequence A the following statements
are equivalent:

(i) f € C[0, 1]NABV,;
(ii) f is continuous and Wi (f) = 0;
(iif) Wa(f) =0.

The next proposition shows that the condition W (f) = 0 is equiva-
lent to a generalization of absolute continuity.

Proposition 6. Let A be a proper A-sequence. Then f € C[0, 1] N
ABV, if and only if for every ¢ > 0 there is a § > 0 such that
oa(id, Z) < & implies oa(f,Z) < € for every family T (where id denotes
the identity mapping of [0, 1] onto itself).

Indeed the condition says that if Iy, ... , I,, are nonoverlapping subin-
tervals of [0, 1] such that

—~ |1i]
E < 4,
o A
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then we must have

S,
i=1 ¢

For the special constant A-sequence \; = 1, this becomes the definition
of classical absolute continuity. Note that, for any proper A-sequence
saying that o4 (id, Z) is small is actually equivalent to saying that ||Z||
is small.

Proof of Proposition 6. If f € C[0, 1] N ABV,, then given ¢ > 0,
there is by Theorem 2, a positive number g such that ||Z]| < §p implies
oa(f,T) < e. Set 0 := dp/A1. Then the condition o (id, Z) < J implies
IIZ]| < do, and hence op(f,T) < e.

Now suppose that, given € > 0, there is a § > 0 such that for any
family Z with oa(id, Z) < §, the inequality oa(f,Z) < € holds. Of
course, Wy (id) = 0 because A is a proper A-sequence. Thus, there is a
~ > 0 such that ||Z|| <~y implies o4 (id, Z) < § and hence o5 (f,Z) < €.
Therefore, Vo »(f) < e for n <. It follows that W (f) = 0, and thus
f € C[0, 1] N ABV, by Theorem 2. O

The above characterization motivates the following definition.

Definition 9. A function f : [0, 1] — R is said to be A-absolutely
continuous (f € AAC) if f € C[0, 1] N ABV..

Another description of A-absolutely continuous functions can be
obtained in a manner analogous to one of characterizations of local
p-variation given by Love and Young in [7, page 29].

Definition 10. Given a partition 7 = (¢;)"_; of [0, 1], we define
I, = {[tiflv ti] ri=1,... 7”}7 UA(fa 7T) = UA(fa Iﬂ')? and
VA7 () = sup oa(f, ).

mCm!

Proposition 7. Let A be a proper A-sequence. Then a function
f is A-absolutely continuous if and only if for every ¢ > 0 there is a

partition w such that Vé”)(f) <e.
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Proof. Necessity of the condition follows from Theorem 2 immedi-
ately.

On the other hand if, for every € > 0, there is a partition 7 such that
V,EF)(f) < g, then f must be continuous, because

[f(t+) — f@O] | 1F(E) — f(E)]

v > " + o

for any t € [0, 1]. Given € > 0, let m. = (¢;)"_; be a partition such that
Véwf)(f) < e. Take § > 0 such that

€

2) d<minit; —ti_1:i=1,...,n;y and ws(d) < ————
( ) { 1 } f( ) Z?:]_l 1/)\2

)

where w¢(6) denotes the modulus of continuity of f. Then, given a
partition m := (s;)7, with ||Z;|| < 6, there is a bijection 8 : N — N
such that

UA(f,w):ZM:Z”.jLZ”.,

)\ﬁ(’ i€A i€B

where A is the set of all indices ¢ such that none of the points
t1,...,tp—1 belongs to (s;—1, s;) and B is the set of all other indices.
Thus,

onlf,m) < v (p + 3 20

5 A8l

and therefore by our assumption about 7. and, by (2), oo (f, m) < 2e,
which implies Vj 5(f) < 2e. Since € > 0 was arbitrary, it follows that
W (f) =0, and hence f is A-absolutely continuous by Theorem 2. O

Actually, we can introduce a quantity
VZ(f) :=inf V" (/)

as Love and Young did in [7, page 29] for the p-variation. Then
Proposition 7 says that f is in AAC if and only if V¥(f) = 0. It is easy
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to see that Vy(f) < Wa(f) for every regulated function f. Equality
may not hold. Indeed, if we define

Zp={B];:8,>0,0<t<1,j=1,2}

(compare with Definition 4 of the set Zy), then arrange the elements
of Z; into a nonincreasing sequence (n; 7 and set

o} 7]*f
IR =30 2
i=1

7

then it can be proven in a manner similar to that of the proof of
Theorem 1 that

VA(F) = VR() +IIFIIT-

It is worth noticing that for any increasing A-sequence A the following
equivalence holds: Vi (f) = Wi (f) for a regulated function f if and
only if f has no proper internal saltus, that is, f(¢) does not lie in the
open interval with endpoints f(¢t+) and f(t—) for any ¢t € [0, 1]. In
particular, V3 (f) = Wa(f) if f is one-sided continuous at every point.

Lemma 9. Let m = (¢;), be a partition of [0, 1], and let f be such
that f(t;) = f(t1) for i = 2,...,n— 1. Then, V5(f) < 2VA (f) for

any A-sequence A.

Proof. We assume, as we may, that f(t;) = 0. Given a partition
m1 = ()", let K be the set of integers such that, for ¢ € K, the open
interval (z;_1, ;) contains a point of the partition w, say a point ¢;,.
Then for any bijection 3 of positive integers onto themselves, we get

‘f xz xz 1 |: |f 1‘1 - xz 1 ‘f xz - 1):|
+
Z )‘ﬁ() % Agi ;{ Api)
+Z |f Ti— 1 ( ) §2VA7")(JL‘) o

st )‘ﬁ(l

Theorem 3. ABV, is the || ||a-closure of the set of all step functions
of bounded A-variation.
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Proof. By virtue of Corollary 1, what we have said about the class
ABV* in the remarks following Theorem 1 is true for the class of
functions continuous in A-variation. In particular, it contains all step
functions and it is a closed subspace of ABV.

Given a function f € ABV, and an ¢ > 0, we will construct a step
function ¢ such that ¢(0) = f(0) and Vao(f — @) < 4e. We only discuss
the case of discontinuous f, for the continuous case is much simpler.

By Corollary 1 we choose an a € (0, {] such that V&(f) <. Let 6

be the number é3(a) whose existence is assured by Lemma 5. Now take

a partition m = (¢;)"_, with to =0, t, = 1, ||7|| < ¢ and containing all

points of the set C'(«). Next define a step function ¢ by setting

L f((ti—l + ti)/2) ift e (ti—l, ti)
o(t) = { f(t:) if t = t;.

From Lemma 9, we have

(3) VA(f — ) <2V (f — ¢).

Now take any partition (s;)7, finer than 7. Then for any bijection
B:{1,...,m} > {1,... ,m}, we get

3 |(f = ¢)(si-1) — (f — ¢)(si)] ST it

Nars
i=1 B (@) (1) (2)
where the sum 2(1) --- is taken over all indices 7 such that at least
one of the endpoints of [s;_1, s;] belongs to 7 and the sum -, --- is

taken over all remaining ¢’s.

If ¢ is an index of the first sum, the functions f and ¢ coincide at at
least one endpoint of [s;_1, s;] and thus |(f — ¢)(s;i—1) — (f — &)(ss)|
is equal either to 0 or to |f(si;) — f((tj41+1t;)/2)| if si-1 = t; and
s; < tj41 for some j, or is equal to ‘f(si,l) - f((tj,l —|—t]-)/2)| if
s; = tj and s;_1 > tj_; for some j. Thus the first sum 2(1)---
does not exceed the variational sum oA (f, Z) for some family 7 with
IIZ]| < (6/2) such that no interval of T touches the set C(a). Thus, by
Lemmas 4 and 5,

Yo SVR() <e
1)
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For the indices 7 of the second sum, }7,) -+, we have ¢(si—1) = ¢(si),
and thus the second sum does not exceed the variational sum o (f, Z)
for some family Z with ||Z|| < & such that no interval of Z touches the
set C(a). Thus, as previously,

Yo <R <e
(2)

Therefore, by (3), Va(f — ¢) < 4e, which completes the proof. |

It is also possible to characterize A-absolute continuity in terms of
translates of a function, generalizing the classical result of Plessner,
Wiener and Young [13, Theorem II1.11.2]. Our proof, though, closely
follows the idea of Love [6].

Theorem 4. Let A be a proper A-sequence, and let f be a measurable
function. Then [ is A-absolutely continuous if and only if Vp(fn —
£, [0, 1 —h]) = 0 as h — 0+ where fr(x) := f(z+h).

Proof of necessity. If f is A-absolutely continuous, then given an
e > 0, there is by Proposition 7, a partition = = (¢;)"_, of [0, 1] with
VAF)(f) < e. Define a step function g by g(t) = f(0) for t < 0,
g(t) = f(t:) for t € (t;_1, ti], i = 1,... ,n. Clearly, V™ (f) > V{7(g),
and thus by Lemma 9,

Va(f —g) <2V70(F — g) <2V 7 (f) + 2V (—g) < 4V(F) < de.

For h € (0, inf1<;<n(t; —ti—1)), we have g(t) = g(t;) for t € [t; — h, t;],
t=1,...,n, and hence VIEF) (9) = Véw)(g,h). This implies, again by
Lemma 9,
Valg = g-ni [h 1]) < 2V37 (g = g-1) < 2(V{™ (9) + V7 (g-n)) < de
for 0 < h < ||Z,||. Finally,
Va(fa = f, (0,1 = 1))
< VA(fu—gn, [0, 1 = h]) + Va(gr — g, [0, 1 — h])
+Valg = f, [0, 1 —h])
< Va(f — g, [ 1]) + Valg — g9-n, [R, 1])
+Valg—f)<4e+4e+4e. O
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We are now starting preparations for the proof of the sufficiency part
in Theorem 4. Since the technique we are going to use rests on ap-
proximation by Fejér polynomials and on their convergence properties,
until the end of the proof of Lemma 14, we will assume that f is a
2m-periodic function defined on the whole real line.

Lemma 10. If
Valfn — f, [-m, 7]) — 0 with h — 0+,

then Vo (fn — f, [-2m, 27]) is finite for h € [—m, 7] and tends to 0 with
h — 0.

Lemma 11. If (4) holds, then v(t) := VA(&(-, t), [—7, 7]) is finite
and continuous as a function of t € [0, 7], where ¢(z, t) := [f(z +1t) +
flz =8)]/2 = f(x) for = € [r, 7.

Proofs of both of these lemmas are virtually identical to those of
Lemmas 6 and 7 of [6] and, therefore, are omitted.

Lemma 12. If f is integrable and o, is its nth Fejér polynomial,
then the following statements are equivalent:

(5) Valfn — f, [-7, w]) — 0 as h — 0+;
(6) Va(on — f, [-7, m]) — 0 as n — oc.

Proof. Assume (6). The Fejér polynomials are absolutely continuous
and therefore A-absolutely continuous by Theorem 1 of [17], or by
Proposition 8 from the third section of this paper. Thus, f is a
continuous function of bounded A-variation and so is fp, for f is
periodic. Hence, by the already proven necessity part of Theorem 4
and by [20, Theorem 3],

VA(fh - fa [77‘-’ ﬂ-]) S VA(fh - fa [77‘-’ ™= h])
+VA(fh_f7 [ﬂ-_haﬂ-])_>0

as h — 0+, which proves (5).
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We are now going to prove that (5) implies (6). Let ¢(z, ¢) be the
function defined in Lemma 11. Then

on-1@ =2 [ 6w 0K

where K, is the nth Fejér kernel [2, page 134],
. 2
1 1 2
Kot sin((n-+1)/0)2)*
2(n+1) sin(t/2)

For a partition 7 = (s;)%; of [—m, n] and for any bijection 8 of
{1,...,m} onto itself, we get

‘ on— f z (O'n_f)(si—l)|
Z AB(i)

/ Z [#(sir t) = $si1, B K (t) dt.

B(i)

Hence, w
Valowf lomm) < = [ oK at

the integral being not only finite by Lemma 11, but also converging
to v(0) as n — oo by Fejér’s theorem, since v is continuous. This
establishes (6). O

Lemma 13. If f is measurable and VA(fn, — f, [0, 7 — h]) — 0 as
h — 0+, then f is continuous on [0, 7], and the set

{VA(fh - fa [07 ™= h]) the (Oa 71-)}

is bounded.

Proof. Let m be a positive integer such that Vo(fo— f, [0, 7 —6]) < 1
for 6 € (0, (w/m)). Given an h € (0, m), let h, = (vh)/m. Then

Valfn = £, [0, m—h SZ fh, = fny 1 [0, = h])

<fh/m_f7 |:077T_£:|> <m.
m

<

EMS )
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We are now going to show that the measurable function f is, in fact,
regulated. We will do this along the lines of Ursell’s proof of Lemma 1
from [16, page 411-412]. Suppose that f is not regulated. Then there
are a positive number k and a point ¢y € [0, 7] such that

lim wyf(to, t] > 2k or lm wylt, to) > 2k,

t—tl t—ty
where wyI denotes the oscillation of f on an interval I. We restrict our
attention to the second case, because the first one is analogous.

We have then ty € (0, 7]. Fix a positive integer N, and let £ be a
positive number such that

k
7 r
(7) e < 5
and
to
(8) CSNENt1)

Further, let ¢ be a continuous function such that |f(¢) — ¢(¢)| < € on
[0, 7] except in a set of measure at most . Let 6 be a positive number
such that |¢(t) — ¢(s)| < eif |t —s| <, t, s € [0, m]. We can choose &
arbitrarily small, and we shall suppose it so chosen that § < e.

Next, we pick an increasing sequence (a;) of points of ({9 — 9, to)
convergent to ty and such that

|f(a2n — flazn—1)| > 3k
for all n € N. Then, for any positive integer n, one has
|f(azn — h) — f(azn—1 — h)]|
< |f(agn — h) — ¢(azn — h)| +|¢(azn — h) — ¢p(azn—1 — h)|

+ |p(azn—1 — h) — f(agn—1 — h)|
< 3e

for all h € [0, tg — £] except for a set E,, of measure at most 2¢. Thus,
one has

(9) |f(agn —h) — flagn—1 —h)| <3cforn=1,2,... N,
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for all h € [0, ty — ¢] except for a set E = UY_, E,, of measure at most
2Ne.

The measure of all h € [0, to] for which (9) holds is at least
®) 1
to—e —2Ne > to(l— N)
Therefore, there is a number hy € (0, (t9)/N] such that (9) holds for

hpy. Since

VA(th_f7 [07 71-_hN]) > UA(th_fa {[a2n71_hN7 a2n_hN]}'r]y:1)
> zN: ‘f(a2n) — f(azn - hN) — f(a2n71) + f(a2n71 - hN)|

An
n=1
> i flazn) — flagn—1)| — |f((;\2: —hyn) — flazn—1— hn)|

3
Il
-

] =

N
(3/2)k — 3¢ (D 1
g n=1 )\n,

n

3
Il
-

we have

limsup VA(fn — £, [0, ™ — h]) = +o0,

h—0+
a contradiction. Thus, f cannot have a discontinuity of the second kind
which means that f is regulated.

Continuity of f can be now proven just as in Love’s [6, Lemma 8 |. O

Lemma 14. If f is continuous and Vo(fr — f, [0, 7 — h]) — 0 as
h — 0+, then both Vi(f,[0, h]) and VA(f, [ — h, ]) tend to O as
h — 0+.

Proof. 1t suffices to prove that Vi (f, [0, h]) and VA(f, [ — h,7]) are
finite for some h > 0 [20, Theorem 3].

Suppose that Vo (f, [0, h]) = +00. Then there is a strictly decreasing
sequence (xy) with g = /2 such that

=0

(10) Z flzk) = fzr—1)]
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for some bijection 8 of positive integers onto themselves. Observe that

wk 1— l'k
— Y

Now, by Lemma 13, for t € [0, 7/2],

zn: (x +t) — f(zr) — flrp—1 +t) + flzr—1)]

AB(k)
S VA<ft_f7 |:07 g:|> <m

for some constant m and for every n. Thus,

n

/”/2 (f (k4 1) — f(an) — (F(eer + 1) — flzi_r) dt‘ <
. As(k) -

k=1

Next, letting M := sup |f]|, we get

fowm(f(xk +t) = f(@p-1+1)) dt‘

= iEk 1—
<oM k< 2MN,

; AB(k) Z
and finally,

i (zk) — fzr—1)]

Pt )‘ﬁ(k)
. Z| Jo " (@) = flara) = (fex+1) = flana +0) dt
AB(k)

|f0 (ze +t) — fwr—1 + 1)) dt|
+
Z AB(k)

< 7+2MN7

which contradicts (10). O
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Proof of Theorem 4. Sufficiency. We are going to prove that if f is
defined on [0, 7] and VA (fr — f, [0, # — h]) — 0, then f is A-absolutely
continuous. Given a function f with the first two above properties,
we extend it to the whole real line as an even function of period 2.
Suppose 0 < h < 7. Then

VA(fh 7fa [7h7 O]) < VA(fha [7ha O])+VA(fa [7]7’5 0]) = 2VA(f7 [Oa h])

Similarly, Va(fn — f, [t — h, 71]) < 2V (f, [* — h, 7]). Also, Va(fr —
fa [_ﬂ-a _h]) = VA(fh - fa [07 ™= h]) Thus,

Va(fo = £, [=m, 7])
< Valfo = f, [=m, =h]) + Va(fa — f, [, 0])
+Valfn — f, [0, = b)) + Va(fn — f, [x — h, 71])
< 2VA(fn — f, [0, m = h]) + 2VA(f, [ — h, 7]) + 2VA(f, [0, h]),

which tends to 0 as h — 0+ by our hypothesis and by Lemmas 13 and
14. Hence, by Lemma 12, VA (f — o, [, m]) — 0, which proves that
f € AAC on [—7, 7], and thus on [0, 7]. O

In light of Theorem 4, Lemma 12 becomes a statement about approx-
imating A-absolutely continuous functions by their Fejér polynomials.
Namely, if f is a measurable 27-periodic function, then the following
statements are equivalent:

(i) f € AAC|r, 7;

(ii) |lon — flla — 0 as n — oo.

3. Inclusions and representations. We are now going to char-
acterize inclusions among classes ABV, ABV, and AAC for different
A-sequences. The function h described in the next lemma is the tool
for handling these issues.

Lemma 15. Let (u,)2, be a nonincreasing sequence of positive
numbers converging to 0, and let a function h : [0, 1] — R be defined
by the conditions:

(a) h(0) =0 and h(2'7%) := 322, (—1)" 1w, for all k € N;
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(b) h is linear on each closed interval of the form [27%, 21| for all
k € N.

Then for any A-sequence A one has Va(h) =Y (u;/A;). Moreover, for
any proper A-sequence A, h € ABV if and only if h € AAC.

Proof. The set K}, of points of varying monotonicity of the function
his K, = {0} U{27" : i € N}. Given any h-ordered Kj-family
Z=A{I,...,I}, one has

|n(L;)] < [h([27%, 275 F))| fori=1,2,...,k.
Thus,
L
Alh, I) < —’.
Hence, the A-variation of the function h on the set K} satisfies the
inequality

Mﬂmlﬁ)ﬁ

L
x| &

1

(2

Since the opposite inequality is obvious, one has
[e'S) u;
s K= 5
and it follows from [12, Corollary 1.5] that
_y
=t
i=1

The function h is continuous and, hence, if Vi (h) < 400, then h € AAC

because
oo

lim Vj,,(h) = lim Z

m—oo m—s o0 4 AHm

U

=0. m|

The following proposition adds four more equivalent statements to
the fundamental Theorem 3 from [10].



A-ABSOLUTE CONTINUITY 1645

Proposition 8. Let A = (\;) and T’ = (;) be A-sequences. Then
the following statements are equivalent:

(i) ABV C TBV;
(ii) ABV, C TBV;
(ili) ABV, C TBV,;

(iv) AAC C TAC;
(v) AAC C TBV;
)

(vi 22;1(1/%') =0 (Z?zl(l//\i)) as n — oo.

Proof. In the case when both A and I' are proper A-sequences, the
equivalence of (i) and (vi) has been established in [10, Theorem 3].
It has also been shown in the course of the proof of Theorem 3 that
condition (vi) implies V¥ = O(V}) as § — 0. Thus, condition (vi)
implies (iii) by Corollary 1 and by the equivalence : f € ABV* <
V{(f) = 0. The implications (iii) = (iv) = (v) are straightforward for
proper A-sequences.

If (vi) does not hold, then there is a nonincreasing sequence (u;)
of positive numbers converging to 0 such that > (u;/X\;) < +oo and
> (ui/v;) = +oo (as shown in the proof of Theorem 3 of [10]). Thus,
by our Lemma 15 there is a function h € AAC \T'BV, that is, (v) does
not hold. Therefore (v) = (vi).

The implications (i) = (ii) = (v) are obvious.

The easy proof in the remaining case when at least one of the A-
sequences is improper has been omitted. ]

It is known that the union of all ABV classes yields the class of all
regulated functions [9, Theorem 10]. However, the classes ABV are
relatively small compared to the class of regulated functions, because
for every countable collection of classes ABV there is always a regulated
function that does not belong to any class from that collection [9,
Theorem 12]. The mutual relationship between ABV classes is rather
chaotic. It is easy to see that for every proper A-sequence A there is
a proper A-sequence I' such that I'BV is a proper subset of ABV and
that for every A-sequence A there is a proper A-sequence I' such that
I'BV contains ABV properly. On the other hand, ABV = BV for any
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improper A-sequence A, and it is the smallest ABV class [9, Theorem
5]. Moreover, it is not difficult to show that for any proper A-sequence
A, there exists a proper A-sequence I' such that neither ABV C T'BV
nor 'BV C ABV.

Nevertheless, the number of nice relationships between classes ABV,
ABYV, and AAC is not small. We start with a description of intersection
of finite families of classes ABV..

Lemma 16. Let A®) = (\F)2, k=1,... ,n, be A-sequences. Then

n

ﬂ k) BV, = ABV,,
k=1

where the A-sequence A = ()\;) is defined by

n

1

Ai

for all i € N.

e

Also,

n

() A® BV, =TBYV,,

where the A-sequence T' = (vy;) is defined recursively by

m

1 1
—:1<k< ZF for all m € N.
1 i i1 N

Proof. Since for any family Z = (I;)", and any function f

— |f (L x| (L
ZUE\Z-)':ZZUif)’

i=1

it follows that for any § > 0 and any [ € {1,... ,n},

Vo (F) S VR(f Z Vi (f
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Thus, V{(f) = 0 if and only if V), (f) =0 for all k € {1,... ,n}, and
hence, by Corollary 1,

ﬂ A*® BV, = ABV.,.
k=1

The second conclusion in the lemma follows from the equality ABV, =
I'BV,, which in turn follows from Proposition 8, because the A-sequences
A and T" are equivalent. Indeed,

for every m € N. o

Thus, the intersection of every finite collection of ABV, classes always
is a ABV, class. An analogous result for ABV classes was proven by
Perlman [9, Theorem 6]. On the other hand, every ABV class can be
represented as an intersection of a suitable family of much larger ABV
classes, as the next proposition shows.

Proposition 9. For any A-sequence A = (\;)

ABV = () I'BY,
A=o(T")

where the intersection is taken over all A-sequences T' = (v;) such that

Proof. Since A; = o(v;) implies that Y ['(1/7) = o3 7 (1/N\)),
Proposition 8 implies that ABV C I'BV whenever A = o(T").

Thus, it remains to show that Na—,ry['BV C ABV. Suppose that
a function f is not of bounded A-variation. There exists a family
{I;} such that > |f(L;)|/Ai = +oo. Set ng := 0, and let (ng) be
an increasing sequence of positive integers such that

n I "k 1
Z |fg\')|22k and y22k for k € N.
1=1+ngk_1 ¢ i=l4ne— 7"
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Now define a A-sequence I' = (v;) by 7; = 2F\; fori = ng_1+1,... ,ny,
k € N. Then A = o(T") and

- Ii © 1 Nk I,' o
UL (L$ IS

k=1 i=14ng_1 k=1

Therefore, f ¢ Ny—or)['BV. O

The above proposition generalizes the well-known result that the class
of all functions of bounded variation is the intersection of all ABV
classes with A’s being proper A-sequences [9, Theorem 5]. Further,
since ABV C T'BV, for any A-sequences satisfying A = o(T") [17,
Theorem 1], the following corollary is trivial.

Corollary 2. For any A-sequence A,

ABV = ﬂ 'BYV,.
A=o(T")

However, the behavior of intersections of countable collections of
ABYV, classes is somewhat surprising. The following proposition is
related to Theorem 1 from [3].

Proposition 10. Let A = ()\;) and A™ = (A\);en, n=1,2,..., be
A-sequences. Then the following statements are equivalent:
(i) N, A™ BV, C ABV;
(ii) NN_,A™ BV, Cc ABV for some positive integer N;

(iii) Zf’:l(l/)\i) = O(maxi<,<n Zle(l/)\?)) for some positive in-
teger N as k — oo.

Proof. The equivalence of conditions (ii) and (iii) is an immediate
consequence of Proposition 8 and Lemma 16. Since the implication (ii)
= (i) is obvious, the only part of Proposition 10 that requires hard
work is the implication (i) = (ii).

We are going to prove it by contraposition. Thus, we assume that
the sets NY_; A(™) BV, \ ABV are nonempty for all positive integers N.
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We will construct a function f € NS, A™ BV, \ ABV. In light of
Lemma 16, we may assume that At BV, ¢ A BV, for all n. Even
more, defining, if necessary,

n

1 1
g B j=1 )‘_Z
for 7, n € N, we can require that
(11) AP > AP for all i, n € N.

Our assumption implies that A BV, \ ABV # & for every positive
integer n. Thus, condition (vi) of Proposition 8 does not hold which in
turn implies that there is a nonincreasing sequence (ul);cn of positive

1
numbers converging to 0 and such that

iz—z<+oo and ii—?:+oo.
i=1 "t i=1 7"

Actually, given arbitrary positive numbers «,, and 3,,, we may assume
without loss of generality that

ul
Z)\—; <a, and uf <fG,.

Now we are going to define inductively a special nondecreasing
sequence (u;);eN of positive numbers converging to 0. We start with a
sequence (u});en such that

Choose an index k; such that Zf;l(uzl/)\l) > 1, and define u; == u}
for 1 <i < ky.

Suppose now that n is a positive integer such that an index k,, and
numbers (u,-)f;l have been defined and that they satisfy the following

properties:
kn n

) 1 L
;‘—;gzﬁ and ZEZTL

i=1 i=1""
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Taking a sequence (u™');cn such that
o0 n+1
U, 1 1 Uk
Z < and uTl < —2n
+1 = 2 1 ’
— A} (n+1) 2
and
[e'S) +1
> =
; Ai ’
i=1
we choose a positive integer k,, 11 > k,, so that
kn+1 U/ZL+1
SRS
. Ai
1=1+k,

Then define u; := u?“ for k,, < i < ky41. Hence,

knt1

(12) 3> 7;— >n+1.
i=1

In this way we define inductively a nonincreasing sequence (u;) of

positive numbers converging to 0 such that >, u;/\; = 400, because
of (12), and such that

G < 400 for every positive integer n,
=1 "7
since
0o kn_1 00 k. (s)
(174 _ Ujg u;
Z no = A7 +Z Z A"
i=1 "7 i=1 g s=n i=1+ks_1 ¢
Fn_ ks Fn_
(1<1) n—1 Ui o0 ’LL,ES) < n—1 Ui o0 1
= P + g I E Xﬁ'4— EE < +00.
i=1 "t s=n j=1+ks_; =1 ! s=n

Thus, by Lemma 15, there is a function h € NA(™ BV, \ ABV. O
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The above proposition shows that Proposition 9 and Corollary 2 are,
in a sense, best possible. Namely, they cannot be improved by taking
countable intersections.

Corollary 3. Let A = ()\;) and A™ = (\P)ien, @ = 1,2..., be
A-sequences such that A = o(A™) for all n. Then the inclusions

ABV C (JA™BV and ABV C []A™BYV,

n=1 n=1

are proper.

We will now discuss some analogous results for classes of A-absolutely
continuous functions. The next fact is a simple consequence of Corol-
laries 2 and 3.

Proposition 11. For any A-sequence A,

CABV = () TAC,

A=o(T")

and this equality cannot be achieved by an intersection of any countable
subfamily.

Perlman and Waterman have shown in the course of the proof of
Theorem 3 from [10] that, if there is a constant C' > 0 such that

n 1 n
25, <0
k=1
then, given any nonincreasing sequence (ay) of nonnegative numbers,
we get
S sey
=1 Tk

k=1
It follows that ||f||la < (C 4 1)||f||r for any f € T'BV. Thus, if
I'AC & AAC, then the inclusion A : TAC — AAC is a continuous

1
— for all n,
1k

>4|?r
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linear operator between Banach spaces, and hence A(TAC) =T AC is
o-strongly porous in AAC by the Banach-Steinhaus-Olevskii theorem
[8], since we have assumed that TAC # AAC. In particular, since
no Banach space is o-strongly porous in itself, we obtain the following
equivalent conditions:

Proposition 12. Let A = (\;) and A™ = (A\P)ien, n=1,2,..., be
A-sequences. Then the following statements are equivalent:

(i) AAC c Ue A AC;
(ii) AAC ¢ AN AC for some positive integer N;
(iii) there is an index N such that

Fo1 F1
Z)\_N:()(Z)\_) as k — oo.

i=1 "\ i=1 "

Analogous equivalences hold for the ABV classes [3, Theorem 2].

We are now able to improve Wang’s Theorem 1 [17].

Proposition 13. Let A be a proper A-sequence. Then

AMcC = |J r4c,
I'=o0(A)

and this equality cannot be achieved by a union of any countable
subfamily.

Proof. 1f v; = o(\;), then Y% (1/\;) = o(X_,(1/7:)), and hence
['AC C AAC by Proposition 8, which shows that Ur_,,)'AC C AAC.

On the other hand, given f € AAC, let (my) be an increasing
sequence of positive integers such that

(13) Vi () < A0,
(13a) ktl ok

A

Mp+1 mg
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Since, given a positive integer k, one has (k+1)/X; — 0 as i — oo, we
have (k + 1)/X; < (k/Am, ) for all sufficiently large i.

The series >, ((k+ 1)/\;) diverges, and hence we may assume
additionally that

ME41
E+1 k
1 i 1.
(13b) Z mln{ N }>

i=14+my, k

Now define a A-sequence I' by v; = A\; for i =1,... ,my, and

1
(14) — := min

Yi

{k—i—l k

T,A—m} formk<i§mk+1, k:1,2,

Clearly, v; < ;41 if i # my. Further, by (13a),

1 k 1
< =

Y1+my - )\mk Ym ‘

Because of (14), we get v; < 1/(k+1) A; for my < i < my41 which
implies that I' = o(A). Moreover, the condition (13b) implies that
>(1/7;) = +00. Thus, I is a A-sequence.

Now, given a family 7 and a positive integer s, we get

> 3 M S 37 IS0

kesiziimy Vi i=1+my
Thus,
“k+1
Ve (F) SVA(S) D05 — 0
k=s

as s — 00, and, since f is continuous, this means that f € I'AC, which
completes the proof of the inclusion AAC C Upr_,n)I'AC.

That AAC cannot be written as a union of any countable family of
T'AC classes with T’ = o(A) follows from Proposition 12. O

Wang has shown that I' = o(A) implies 'BV C ABV.. Our next
proposition yields a slightly more general sufficient condition for the
inclusion.
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Proposition 14. If Y7 (1/X) = o> ,(1/7:)), then BV C
ABYV..

Proof. Because of Corollary 1, it suffices to show that f € I'BV
implies V{(f) = 0. Given an € > 0, let N be a positive integer such

that
Z—<EZ for n > N.

i=1
Next, let § > 0 be such that

N+1

M1
Z)\_ ¢ and 6Z—<1

Then, given an f-ordered family 7 = (I})2, with ||Z||; < § and a
positive integer m > N, one has

k<N i=1

re (X 2)0swi- 15

N<k<m—1 \i=l

1
Y
N+1
<6NZ/\ (IN+1|Z_+ Z fi{f)')

N+l<k<m
<e+e(1+Vr(f)),

which completes the proof of Proposition 14. a
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It is known that the equality ABV = ABYV, can occur [14, Theorem
6], and hence the condition in Proposition 14 is only sufficient. Finding
a characterization of the inclusion I'BV C ABV, remains an open
problem, as it has been for 20 years.

On the other hand, it is easy to see that for every A-sequence I'
there exists a A-sequence A such that I' = o(A), and therefore, since
the union of all ABV classes is the class of regulated functions [9,
Theorem 10], we obtain the following fact concerning the structure of
continuous functions.

Proposition 15. The union of all classes AAC is the class of all
continuous functions on [0, 1].

In other words, for every continuous function f : [0, 1] — R, there
is a A-sequence A such that f is A-absolutely continuous. However, no
countable union of AAC classes yields all continuous functions, which
can be proven either by direct construction as in [9, Theorem 12] or by
another application of the Banach-Steinhaus-Olevskii theorem, since
convergence in A-variation implies uniform convergence.
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